1
|
Sun Z, Lu M, Lillehoj H, Lee Y, Goo D, Yuan B, Yan X, Li C. Characterization of Collagen Binding Activity of Clostridium perfringens Strains Isolated from Broiler Chickens. Pathogens 2023; 12:778. [PMID: 37375468 DOI: 10.3390/pathogens12060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Clostridium perfringens is the etiological agent for necrotic enteritis (NE) in broiler chickens, which causes a substantial economic loss of an estimated USD 6 billion annually in the global poultry industry. Collagen adhesion is involved in the NE pathogenesis in poultry. In this study, the binding capabilities of chicken C. perfringens isolates of various genetic backgrounds (netB-tpeL-, netB+tpeL-, netB+tpeL+) to collagen types I-V and gelatin were examined, and the putative adhesin protein cnaA gene was investigated at the genomic level. In total, 28 C. perfringens strains from healthy and NE-inflicted sick chickens were examined. The results on collagen adhesin-encoding gene cnaA by the quantitative-PCR results indicated that netB-tpeL- isolates had much lower copies of the detectable cnaA gene than netB+ isolates (10 netB+tpeL- isolates, 5 netB+tpeL+ isolates). Most of the virulent C. perfringens isolates demonstrated collagen-binding abilities to types I-II and IV-V, while some strains showed weak or no binding to collagen type III and gelatin. However, the netB+tpeL+ isolates showed significantly higher binding capabilities to collagen III than netB-tpeL- and netB+tpeL- isolates. The data in this study suggest that the collagen-binding capability of clinical C. perfringens isolates correlates well with their NE pathogenicity levels, especially for C. perfringens isolates carrying genes encoding crucial virulence factors and virulence-associated factors such as netB, cnaA, and tpeL. These results indicate that the presence of the cnaA gene may be correlated with C. perfringens virulence (particularly for netB+ isolates).
Collapse
Affiliation(s)
- Zhifeng Sun
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Mingmin Lu
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Hyun Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Baohong Yuan
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Xianghe Yan
- Environment Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Charles Li
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Ramsubeik S, Jerry C, Uzal FA, Stoute S. Necrotic enteritis in a commercial turkey flock coinfected with hemorrhagic enteritis virus. J Vet Diagn Invest 2023; 35:317-321. [PMID: 36840379 PMCID: PMC10186000 DOI: 10.1177/10406387231157711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Four turkeys from a commercial flock with acutely elevated mortality levels were submitted for postmortem examination and diagnostic workup. No clinical signs had been observed before death. On gross examination, hemorrhage and necrosis were present throughout the intestinal tracts, and the spleens were markedly enlarged and speckled. Microscopically, numerous, large basophilic-to-amphophilic intranuclear inclusion bodies were observed in mononuclear cells of the spleen and the lamina propria of the small intestine. In addition, there were lesions of diffuse villus blunting and necrosis of the small intestine, with large numbers of rod-shaped bacteria adhered to the epithelium and in the intestinal lumen. Hemorrhagic enteritis virus (HEV) infection was confirmed via PCR on the spleen. Clostridium perfringens was demonstrated in the small intestine by anaerobic culture and immunohistochemistry. The C. perfringens isolate was type F by PCR and, to our knowledge, necrotic enteritis in turkeys has not been described in association with C. perfringens type F infection.
Collapse
Affiliation(s)
- Shayne Ramsubeik
- California Animal Health and Food Safety Laboratory System, Turlock branches, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Carmen Jerry
- California Animal Health and Food Safety Laboratory System, Turlock branches, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Francisco A. Uzal
- San Bernardino branches, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Simone Stoute
- California Animal Health and Food Safety Laboratory System, Turlock branches, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| |
Collapse
|
3
|
Cannabidiol and Nano-Selenium Increase Microvascularization and Reduce Degenerative Changes in Superficial Breast Muscle in C. perfringens-Infected Chickens. Int J Mol Sci 2022; 24:ijms24010237. [PMID: 36613680 PMCID: PMC9820102 DOI: 10.3390/ijms24010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Here, we demonstrated the potential of Cannabis-derived cannabidiol (CBD) and nanosized selenium (nano-Se) for the modulation of microvascularization and muscle fiber lesions in superficial breast muscle in C. perfringens-challenged chickens. The administration of CBD resulted in a decreased number of atrophic fibers (3.13 vs. 1.13/1.5 mm2) compared with the control, whereas nano-Se or both substances resulted in a decreased split fiber number (4.13 vs. 1.55/1.5 mm2) and in a lower number of necrotic myofibers (2.38 vs. 0.69/1.5 mm2) in breast muscle than the positive control. There was a significantly higher number of capillary vessels in chickens in the CBD+Nano-Se group than in the control and positive control groups (1.31 vs. 0.97 and 0.98, respectively). Feeding birds experimental diets lowered the activity of DNA damage repair enzymes, including 3,N4-ethenodeoxycytosine (by 39.6%), 1,N6-ethenodeoxyadenosine (by 37.5%), 8-oxo-guanine (by 36.2%), formamidopyrimidine (fapy)-DNA glycosylase (by 56.2%) and human alkyl adenine DNA glycosylase (by 40.2%) in the ileal mucosa, but it did not compromise the blood mitochondrial oxygen consumption rate (-2.67 OD/min on average). These findings indicate a potential link between gut mucosa condition and histopathological changes in superficial pectoral muscle under induced inflammation and show the ameliorative effect of CBD and nano-Se in this cross-talk due to their protection from mucosal DNA damage.
Collapse
|
4
|
Smyth JA, Mishra N, Shivaprasad HL. Toxinotyping of Clostridium perfringens Strains Recovered from U.S. Turkeys with Necrotic Enteritis. Avian Dis 2022; 66:1-4. [DOI: 10.1637/aviandiseases-d-22-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Joan A. Smyth
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269
| | - N. Mishra
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269
| | - H. L. Shivaprasad
- California Animal Health and Food Safety Laboratory System—Tulare branch, 18760, University of California Davis, Road 112, Tulare, CA 93274
| |
Collapse
|
5
|
NanI sialidase contributes to toxin expression and host cell binding of Clostridium perfringens type G strain CP56 in vitro. Vet Microbiol 2022; 266:109371. [DOI: 10.1016/j.vetmic.2022.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/20/2022]
|
6
|
Chasser KM, McGovern K, Duff AF, Trombetta M, Graham BD, Graham L, Briggs WN, Rodrigues DR, Bielke LR. Enteric permeability and inflammation associated with day of hatch Enterobacteriaceae inoculation. Poult Sci 2021; 100:101298. [PMID: 34271228 PMCID: PMC8287245 DOI: 10.1016/j.psj.2021.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Early exposure to Enterobacteriaceae may result in inappropriate microbial colonization of the gastrointestinal (GI) tract, induce mild GI inflammation, alter immune system development, and predispose poultry to opportunistic infection. Four experiments were conducted to test Enterobacteriaceae isolates Escherichia coli LG strain (LG), E. coli Huff strain (Huff), Salmonella Enteritidis LB (SE) and Salmonella Typhimurium (ST) on ability to induce GI inflammation. All 4 experiments included a noninoculated control, and day of hatch (DOH) oral inoculation of LG, Huff, SE and ST in experiment 1, LG and SE in experiment 2, and LG, Huff, SE, and ST in experiment 3. Experiment 4 included LG, Huff, a noninoculated control (NIC), and Clostridium perfringens only (NCP) wherein birds received oral C. perfringens challenge on d15-16 to induce necrotic enteritis. Body weight was measured, yolk sacs and spleens were collected, and blood was obtained for serum fluorescein isothiocyanate dextran (FITC-d) recovery and alpha-1-acid glycoprotein (A1GP) concentrations. Samples were taken weekly through 2 wk of age in experiments 1 and 2, or 4 wk of age in experiments 3 and 4. Increased FITC-d recovery was observed for LG and SE on d13 in experiment 2 (P < 0.05), and C. perfringens only birds on d27 in experiment 4 (P < 0.05) as compared to noninoculated controls. Each experiment resulted in notable differences in A1GP serum concentrations over time, with fluctuations in A1GP patterns through d14 based on DOH inoculation (P < 0.05). Over time, A1GP was increased for DOH inoculated birds from d 22 to 29, the fourth wk of life, and d 2-29, the entire experiment, vs. noninoculated controls in experiment 3 (P < 0.05). Similarly, NCP and LGCP showed increased A1GP from d 20 to 27 and d 6 to 27, vs. NIC in experiment 4 (P < 0.05). In experiment 4, C. perfringens challenge resulted in earlier A1GP response in DOH inoculated birds, d 17-20, as compared to NCP birds, d 20-27 (P < 0.05). These results suggest early Enterobacteriaceae exposure may influence early inflammatory state in the GI tract and may also alter patterns of inflammation and responsiveness to pathogens.
Collapse
Affiliation(s)
- K M Chasser
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - K McGovern
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - A F Duff
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - M Trombetta
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - B D Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR
| | - L Graham
- Department of Poultry Science, University of Arkansas, Fayetteville, AR
| | - W N Briggs
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - D R Rodrigues
- Department of Animal Sciences, The Ohio State University, Columbus, OH
| | - L R Bielke
- Department of Animal Sciences, The Ohio State University, Columbus, OH.
| |
Collapse
|
7
|
Emami NK, Dalloul RA. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult Sci 2021; 100:101330. [PMID: 34280643 PMCID: PMC8318987 DOI: 10.1016/j.psj.2021.101330] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotic enteritis (NE) is a significant enteric disease in commercial poultry with considerable economic effect on profitability manifested by an estimated $6 billion in annual losses to the global industry. NE presents a unique challenge, being a complex enteric disease that often leads to either clinical (acute) or subclinical (chronic) form. The latter typically results in poor performance (reduced feed intake, weight gain and eventually higher feed conversion ratio [FCR]) with low mortality rates, and represents the greatest economic impact on poultry production. The use of antibiotic growth promoters (AGPs) has been an effective tool in protecting birds from enteric diseases by maintaining enteric health and modifying gut microbiota, thus improving broilers’ production efficiency and overall health. The removal of AGPs presented the poultry industry with several challenges, including reduced bird health and immunity as well as questioning the safety of poultry products. Consequently, research on antibiotic alternatives that can support gut health was intensified. Probiotics, prebiotics, essential oils, and organic acids were among various additives that have been tested for their efficacy against NE with some being effective but not to the level of AGPs. The focus of this review is on the relationship between NE pathogenesis, microbiome, and host immune responses, along with references to recent reviews addressing production aspects of NE. With a comprehensive understanding of these dynamic changes, new and programmed strategies could be developed to make use of the current products more effectively or build a stepping stone toward the development of a new generation of supplements.
Collapse
Affiliation(s)
- Nima K Emami
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|