1
|
Jeevan H, Patidar RK, Kadam V, Dutta P, Nongbri E, Gouda MNR, Naik S, Nysanth NS. Implementing sustainable practices to combat root knot nematode infestation in tomato farming from Meghalaya. Sci Rep 2025; 15:602. [PMID: 39753659 PMCID: PMC11698739 DOI: 10.1038/s41598-024-84292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives. In vitro tests demonstrated that Lemongrass oil (LG) (0.2%) achieved the highest mortality of nematode juveniles (J2s) at 99.44% within 48 h, while Pochonia chlamydosporia (Pc) (2%) and Purpuricillium lilacinum (Pl) (2%) reduced egg hatching rates to 9.57% and 11.43%, respectively. Neem oil (NM) (0.2%) was the most effective in preventing J2 root penetration (4.42%). In vivo, a combination treatment (T7) of NM (0.2%), Trichoderma harzianum (Tz) (2%), Pl (2%), and LG (0.2%) applied at 10 day intervals significantly reduced the nematode reproduction factor to 0.035, comparable to the chemical control Bayer Velum Prime® (Fluopyram 34.48% W/W SC) (0.031). T5 (NM and Tz) resulted in the highest shoot biomass (236.73 ± 1.38 g), while Bayer Velum Prime® (Fluopyram 34.48% W/W SC) increased root biomass (31.75 ± 1.24 g). Additionally, T7 produced the longest shoots (63.37 ± 0.74 cm) and roots (36.80 ± 0.3 cm), with fewer root galls (55.67 ± 1.53) and egg masses (4 ± 0.01). T7 also minimized the final soil nematode population to 106.33 ± 1.01 per 100 g, closely followed by T8 (94.67 ± 0.89). These results indicate that combining NM, Tz, Pl and LG provide effective nematode control without phytotoxic effects, enhancing plant growth and offering a promising sustainable alternative to chemical nematicides.
Collapse
Affiliation(s)
- H Jeevan
- Division of Nematology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Raghubir Kumar Patidar
- School of Crop Protection, Nematology, Collage of Post Graduate Studies in Agricultural Sciences, CAU, Meghalaya, 793103, India
| | - Veronica Kadam
- School of Crop Protection, Nematology, Collage of Post Graduate Studies in Agricultural Sciences, CAU, Meghalaya, 793103, India
| | - Pranab Dutta
- Plant (Pathology), CoA, CAU-Imphal, Kyrdemkulai, India
| | - Euphema Nongbri
- School of Crop Protection, Nematology, Collage of Post Graduate Studies in Agricultural Sciences, CAU, Meghalaya, 793103, India
| | - M N Rudra Gouda
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Santosh Naik
- Division of Entomology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - N S Nysanth
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Ramatsitsi N, Dube ZP, Ramachela K, Motloba T. Bio-control efficacy of selected indigenous nematophagous fungi against Meloidogyne enterolobii in vitro and on dry bean (Phaseolus vulgaris L.). Int Microbiol 2024:10.1007/s10123-024-00571-1. [PMID: 39122800 DOI: 10.1007/s10123-024-00571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Dry bean (Phaseolus vulgaris L.) is an important commercialized field crop in South Africa for aiding in food security as a cheap protein source. However, it is highly susceptible to root-knot nematodes (RKN), Meloidogyne species. Use of indigenous nematophagous fungi as bio-control agents (BCA) of Meloidogyne nematodes is a promising research focus area. This is because indigenous fungal species are naturally part of the ecosystem and therefore compatible with other biological processes unlike most synthetic chemicals. The objective of the study was to identify indigenous nematophagous fungal BCA and establish their potential efficacy in reducing M. enterolobii population densities on dry bean with and without incorporation of compost. Screened indigenous fungal species included Aspergillus terreus, Talaromyces minioluteus, T. sayulitensis, Trichoderma ghanense, and T. viride. There were observed significant parasitism differences (P ≤ 0.05) among the BCA, with T. ghanense showing the highest egg parasitism (86%), followed by T. minioluteus (72%) and T. sayulitensis (70%). On the other hand, the highest J2 parasitism was observed on T. minioluteus (95%), followed by A. terreus and T. viride (63%). A similar trend was observed under in vivo conditions, with higher efficacy with compost incorporation. This provides a highly encouraging alternative and ecologically complementary Meloidogyne management in dry bean production.
Collapse
Affiliation(s)
- Ndivhuwo Ramatsitsi
- School of Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2745, South Africa.
| | - Zakheleni Palane Dube
- School of Biology and Environmental Sciences, University of Mpumalanga, Private Bag X11283, Mbombela, South Africa
| | - Khosi Ramachela
- School of Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2745, South Africa
- Food Security and Safety Niche Area, Crop Science Department, North-West University, Private Bag X2046, Mmabatho, 2745, South Africa
| | - Tuelo Motloba
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| |
Collapse
|
3
|
Perera RH, Hyde KD, Jones EBG, Maharachchikumbura SSN, Bundhun D, Camporesi E, Akulov A, Liu JK, Liu ZY. Profile of Bionectriaceae, Calcarisporiaceae, Hypocreaceae, Nectriaceae, Tilachlidiaceae, Ijuhyaceae fam. nov., Stromatonectriaceae fam. nov. and Xanthonectriaceae fam. nov. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-022-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
4
|
Bhat AA, Shakeel A, Waqar S, Handoo ZA, Khan AA. Microbes vs. Nematodes: Insights into Biocontrol through Antagonistic Organisms to Control Root-Knot Nematodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:451. [PMID: 36771535 PMCID: PMC9919851 DOI: 10.3390/plants12030451] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are sedentary endoparasites that cause severe economic losses to agricultural crops globally. Due to the regulations of the European Union on the application of nematicides, it is crucial now to discover eco-friendly control strategies for nematode management. Biocontrol is one such safe and reliable method for managing these polyphagous nematodes. Biocontrol agents not only control these parasitic nematodes but also improve plant growth and induce systemic resistance in plants against a variety of biotic stresses. A wide range of organisms such as bacteria, fungi, viruses, and protozoans live in their natural mode as nematode antagonists. Various review articles have discussed the role of biocontrol in nematode management in general, but a specific review on biocontrol of root-knot nematodes is not available in detail. This review, therefore, focuses on the biocontrol of root-knot nematodes by discussing their important known antagonists, modes of action, and interactions.
Collapse
Affiliation(s)
- Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Adnan Shakeel
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Zafar Ahmad Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Abrar Ahmed Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
5
|
Cardoza RE, Mayo-Prieto S, Martínez-Reyes N, McCormick SP, Carro-Huerga G, Campelo MP, Rodríguez-González Á, Lorenzana A, Proctor RH, Casquero PA, Gutiérrez S. Effects of trichothecene production by Trichoderma arundinaceum isolates from bean-field soils on the defense response, growth and development of bean plants ( Phaseolus vulgaris). FRONTIERS IN PLANT SCIENCE 2022; 13:1005906. [PMID: 36452093 PMCID: PMC9702529 DOI: 10.3389/fpls.2022.1005906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The trichothecene toxin-producing fungus Trichoderma arundinaceum has potential as a biological control agent. However, most biocontrol studies have focused only on one strain, IBT 40837. In the current study, three Trichoderma isolates recovered from bean-field soils produced the trichothecene harzianum A (HA) and trichodermol, the latter being an intermediate in the HA biosynthesis. Based on phylogenetic analysis, the three isolates were assigned to the species T. arundinaceum. Their genome sequences had a high degree of similarity to the reference IBT 40837 strain, in terms of total genome size, number of predicted genes, and diversity of putative secondary metabolite biosynthetic gene clusters. HA production by these bean-field isolates conferred significant in vitro antifungal activity against Rhizoctonia solani and Sclerotinia sclerotiorum, which are some of the most important bean pathogens. Furthermore, the bean-field isolates stimulated germination of bean seeds and subsequent growth of above ground parts of the bean plant. Transcriptomic analysis of bean plants inoculated with these T. arundinaceum bean-field soil isolates indicated that HA production significantly affected expression of plant defense-related genes; this effect was particularly significant in the expression of chitinase-encoding genes. Together, these results indicate that Trichoderma species producing non-phytotoxic trichothecenes can induce defenses in plants without negatively affecting germination and development.
Collapse
Affiliation(s)
- Rosa E. Cardoza
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| | - Sara Mayo-Prieto
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Natalia Martínez-Reyes
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| | - Susan P. McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utiization Research, Agriculture Research Service, U.S. Department of Agriculture, Peoria, IL, United States
| | - Guzmán Carro-Huerga
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - M. Piedad Campelo
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Álvaro Rodríguez-González
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Alicia Lorenzana
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Robert H. Proctor
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utiization Research, Agriculture Research Service, U.S. Department of Agriculture, Peoria, IL, United States
| | - Pedro A. Casquero
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Crop Production, Universidad de León, León, Spain
| | - Santiago Gutiérrez
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, Universidad de León, Ponferrada, Spain
| |
Collapse
|
6
|
Sikder MM, Vestergård M, Kyndt T, Topalović O, Kudjordjie EN, Nicolaisen M. Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion. THE ISME JOURNAL 2022; 16:2230-2241. [PMID: 35760884 PMCID: PMC9381567 DOI: 10.1038/s41396-022-01276-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 05/29/2023]
Abstract
In-depth understanding of metabolite-mediated plant-nematode interactions can guide us towards novel nematode management strategies. To improve our understanding of the effects of secondary metabolites on soil nematode communities, we grew Arabidopsis thaliana genetically altered in glucosinolate, camalexin, or flavonoid synthesis pathways, and analyzed their root-associated nematode communities using metabarcoding. To test for any modulating effects of the associated microbiota on the nematode responses, we characterized the bacterial and fungal communities. Finally, as a proxy of microbiome-modulating effects on nematode invasion, we isolated the root-associated microbiomes from the mutants and tested their effect on the ability of the plant parasitic nematode Meloidogyne incognita to penetrate tomato roots. Most mutants had altered relative abundances of several nematode taxa with stronger effects on the plant parasitic Meloidogyne hapla than on other root feeding taxa. This probably reflects that M. hapla invades and remains embedded within root tissues and is thus intimately associated with the host. When transferred to tomato, microbiomes from the flavonoid over-producing pap1-D enhanced M. incognita root-invasion, whereas microbiomes from flavonoid-deficient mutants reduced invasion. This suggests microbiome-mediated effect of flavonoids on Meloidogyne infectivity plausibly mediated by the alteration of the abundances of specific microbial taxa in the transferred microbiomes, although we could not conclusively pinpoint such causative microbial taxa.
Collapse
Affiliation(s)
- Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Gent, Belgium
| | - Olivera Topalović
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
7
|
Wan B, Song Q, Peng H, Cui Y, Wang H, Wang S, Zhu Z. Structure analysis and Pb2+-resistant activity of novel oligosaccharide from Trichoderma asperellum. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Tian X, Sun T, Lin R, Liu R, Yang Y, Xie B, Mao Z. Genome Sequence Resource of Sarocladium terricola TR, an Endophytic Fungus as a Potential Biocontrol Agent Against Meloidogyne incognita. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:505-508. [PMID: 35395910 DOI: 10.1094/mpmi-11-21-0284-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Xueliang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P. R. China
| | - Tingting Sun
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang 453003, P. R. China
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Runmao Lin
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Rui Liu
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yuhong Yang
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Bingyan Xie
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Zhenchuan Mao
- Institute of Vegetable and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Zehra A, Swapnil P. Role of Microbial Bioagents as Elicitors in Plant Defense Regulation. TRANSCRIPTION FACTORS FOR BIOTIC STRESS TOLERANCE IN PLANTS 2022:103-128. [DOI: 10.1007/978-3-031-12990-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
10
|
Fan H, Yao M, Wang H, Zhao D, Zhu X, Wang Y, Liu X, Duan Y, Chen L. Isolation and effect of Trichoderma citrinoviride Snef1910 for the biological control of root-knot nematode, Meloidogyne incognita. BMC Microbiol 2020; 20:299. [PMID: 33008296 PMCID: PMC7531111 DOI: 10.1186/s12866-020-01984-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background Root-knot nematode is one of the most significant diseases of vegetable crops in the world. Biological control with microbial antagonists has been emerged as a promising and eco-friendly treatment to control pathogens. The aim of this study was to screen and identify novel biocontrol agents against root-knot nematode, Meloidogyne incognita. Results A total of 890 fungal isolates were obtained from rhizosphere soil of different crops and screened by nematicidal activity assays. Snef1910 strain showed high virulence against second stage juveniles (J2s) of M. incognita and identified as Trichoderma citrinoviride by morphology analysis and biomolecular assay. Furthermore, T. citrinoviride Snef1910 significantly inhibited egg hatching with the hatching inhibition percentages of 90.27, 77.50, and 67.06% at 48, 72, and 96 h after the treatment, respectively. The results of pot experiment showed that the metabolites of T. citrinoviride Snef1910 significantly decreased the number of root galls, J2s, and nematode egg masses and J2s population density in soil and significantly promoted the growth of tomato plants. In the field experiment, the biocontrol application showed that the control efficacy of T. citrinoviride Snef1910 against root-knot nematode was more than 50%. Meanwhile, T. citrinoviride Snef1910 increased the tomato plant biomass. Conclusions T. citrinoviride strain Snef1910 could be used as a potential biological control agent against root-knot nematode, M. incognita.
Collapse
Affiliation(s)
- Haiyan Fan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Meiling Yao
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Haiming Wang
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang, China
| | - Xiaofeng Zhu
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Wang
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, China
| | - Xiaoyu Liu
- College of Sciences, Shenyang Agricultural University, Shenyang, China
| | - Yuxi Duan
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lijie Chen
- Nematology Institute of Northern China, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
11
|
Forghani F, Hajihassani A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. FRONTIERS IN PLANT SCIENCE 2020; 11:1125. [PMID: 32793271 PMCID: PMC7387703 DOI: 10.3389/fpls.2020.01125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 05/17/2023]
Abstract
Root-knot nematodes (RKNs), Meloidogyne spp., are sedentary endoparasites that negatively affect almost every crop in the world. Current management practices are not enough to completely control RKN. Application of certain chemicals is also being further limited in recent years. It is therefore crucial to develop additional control strategies through the application of environmentally benign methods. There has been much research performed around the world on the topic, leading to useful outcomes and interesting findings capable of improving farmers' income. It is important to have dependable resources gathering the data produced to facilitate future research. This review discusses recent findings on the application of environmentally benign treatments to control RKN between 2015 and April 2020. A variety of biological control strategies, natural compounds, soil amendments and other emerging strategies have been included, among which, many showed promising results in RKN control in vitro and/or in vivo. Development of these methods continues to be an area of active research, and new information on their efficacy will continuously become available. We have discussed some of the control mechanisms involved and suggestions were given on maximizing the outcome of the future efforts.
Collapse
|
12
|
Phanerochaete chrysosporium strain B-22, a nematophagous fungus parasitizing Meloidogyne incognita. PLoS One 2020; 15:e0216688. [PMID: 31931510 PMCID: PMC6957339 DOI: 10.1371/journal.pone.0216688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/22/2019] [Indexed: 11/24/2022] Open
Abstract
The root-knot nematode Meloidogyne incognita has a wide host range and it is one of the most economically important crop parasites worldwide. Biological control has been a good approach for reducing M. incognita infection, for which many nematophagous fungi are reportedly applicable. However, the controlling effects of Phanerochaete chrysosporium strain B-22 are still unclear. In the present study we characterized the parasitism of this strain on M. incognita eggs, second-stage juveniles (J2), and adult females. The highest corrected mortality was 71.9% at 3 × 108 colony forming units (CFU) mL-1 and the estimated median lethal concentration of the fungus was 0.96 × 108 CFU mL-1. Two days after treatment with Phanerochaete chrysosporium strain B-22 eggshells were dissolved. A strong lethal effect was noted against J2, as the fungal spores developed in their body walls, germinated, and the resulting hyphae crossed the juvenile cuticle to dissolve it, thereby causing shrinkage and deformation of the juvenile body wall. The spores and hyphae also attacked adult females, causing the shrinkage and dissolution of their bodies and leakage of contents after five days. Greenhouse experiments revealed that different concentrations of the fungal spores effectively controlled M. incognita. In the roots, the highest inhibition rate for adult females, juveniles, egg mass, and gall index was 84.61%, 78.91%, 84.25%, and 79.48%, respectively. The highest juvenile inhibition rate was 89.18% in the soil. Phanerochaete chrysosporium strain B-22 also improved tomato plant growth, therefore being safe for tomato plants while effectively parasitizing M. incognita. This strain is thus a promising biocontrol agent against M. incognita.
Collapse
|
13
|
Lindo L, McCormick SP, Cardoza RE, Kim HS, Brown DW, Alexander NJ, Proctor RH, Gutiérrez S. Role of Trichoderma arundinaceum tri10 in regulation of terpene biosynthetic genes and in control of metabolic flux. Fungal Genet Biol 2019; 122:31-46. [DOI: 10.1016/j.fgb.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 02/03/2023]
|
14
|
Endophytic Fungi and Bioactive Metabolites Production: An Update. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L, Feng Z, Zhu H. Potential of Endophytic Fungi Isolated from Cotton Roots for Biological Control against Verticillium Wilt Disease. PLoS One 2017; 12:e0170557. [PMID: 28107448 PMCID: PMC5249208 DOI: 10.1371/journal.pone.0170557] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt is a soil-borne disease, and severely limits the development of cotton production. To investigate the role of endophytic fungi on Verticillium wilt, CEF-818 (Penicillium simplicissimum), CEF-714 (Leptosphaeria sp.), CEF-642 (Talaromyces flavus.) and CEF-193 (Acremonium sp.) isolated from cotton roots were used to assess their effects against cotton wilt disease caused by a defoliating V. dahliae strain Vd080. In the greenhouse, all treatments significantly reduced disease incidence and disease index, with the control efficacy ranging from 26% (CEF-642) to 67% (CEF-818) at 25 days (d) after inoculation. In the disease nursery, compared to controls (with disease incidence of 33.8% and disease index of 31), CEF-818, CEF-193, CEF-714 and CEF-642 provided a protection effect of 69.5%, 69.2%, 54.6% and 45.7%, respectively. Especially, CEF-818 and CEF-714 still provided well protection against Verticillium wilt with 46.9% and 56.6% or 14.3% and 33.7% at the first peak of the disease in heavily infected field, respectively (in early July). These results indicated that these endophytes not only delayed but also reduced wilt symptoms on cotton. In the harvest, the available cotton bolls of plant treated with CEF-818 and CEF-714 increased to 13.1, and 12.2, respectively. And the seed cotton yield significantly increased after seed bacterization with CEF-818 (3442.04 kg/ha) compared to untreated control (3207.51 kg/ha) by 7.3%. Furtherly, CEF-818 and CET-714 treatment increased transcript levels for PAL, PPO, POD, which leads to the increase of cotton defense reactions. Our results indicate that seed treatment of cotton plants with CEF-818 and CET-714 can help in the biocontrol of V. dahliae and improve seed cotton yield in cotton fields. This study provided a better understanding of cotton-endophyte interactions which will aid in developing effective biocontrol agents for Verticillium wilt of cotton in futhre.
Collapse
Affiliation(s)
- Yuan Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Lingfei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Zhifang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Yongqiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - LiHong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, P. R. China
| |
Collapse
|
16
|
Abstract
Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.
Collapse
Affiliation(s)
- Alexander Schouten
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
17
|
Grunewaldt-Stöcker G, von Alten H. Is the root-colonizing endophyte Acremonium strictum an ericoid mycorrhizal fungus? MYCORRHIZA 2016; 26:429-40. [PMID: 26846148 DOI: 10.1007/s00572-016-0682-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/27/2016] [Indexed: 05/21/2023]
Abstract
In previous investigations, we found that Acremonium strictum (strain DSM 100709) developed intracellular structures with similarity to mycelia of ericoid mycorrhizal fungi in the rhizodermal cells of flax plants and in hair roots of Rhododendron plantlets. A. strictum had also been isolated from roots of ericaceous salal plants and was described as an unusual ericoid mycorrhizal fungus (ERMF). As its mycorrhizal traits were doubted, we revised the hypothesis of a mycorrhizal nature of A. strictum. A successful synthesis of mycorrhiza in hair roots of inoculated ericaceous plants was a first step of evidence, followed by fluorescence microscopy with FUN(®)1 cell stain to observe the vitality of the host cells at the early infection stage. In inoculation trials with in vitro-raised mycorrhiza-free Rhododendron plants in axenic liquid culture and in greenhouse substrate culture, A. strictum was never observed in living hair root cells. As compared to the ERMF Oidiodendron maius and Rhizoscyphus ericae that invaded metabolically active host cells and established a symbiotic unit, A. strictum was only found in cells that were dead or in the process of dying and in the apoplast. In conclusion, A. strictum does not behave like a common ERMF-if it is one at all. A comparison of A. strictum isolates from ericaceous and non-ericaceous hosts could reveal further identity details to generalize or specify our findings on the symbiotic nature of A. strictum. At least, the staining method enables to discern between true mycorrhizal and other root endophytes-a tool for further studies.
Collapse
Affiliation(s)
- Gisela Grunewaldt-Stöcker
- Institute of Horticultural Production Systems, Section Phytomedicine, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| | - Henning von Alten
- Institute of Horticultural Production Systems, Section Phytomedicine, Gottfried Wilhelm Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| |
Collapse
|
18
|
Sharma IP, Sharma AK. Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 2016. [DOI: 10.1007/s13199-016-0423-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
|
20
|
Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita. World J Microbiol Biotechnol 2015; 31:549-56. [DOI: 10.1007/s11274-014-1781-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/19/2014] [Indexed: 01/29/2023]
|
21
|
Isolation of nematicidal triterpenoid saponins from Pulsatilla koreana root and their activities against Meloidogyne incognita. Molecules 2013; 18:5306-16. [PMID: 23698044 PMCID: PMC6269694 DOI: 10.3390/molecules18055306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/02/2022] Open
Abstract
Pulsatilla koreana, a species endemic to Korea, is an important herb used in traditional medicine to treat amoebic dysentery and malaria. In the present study, 23 oleanane-type triterpenoid saponins 1–23 and eight lupane-type triterpenoid saponins 24–31 were isolated from the roots of P. koreana. Their structures were elucidated on the basis of spectroscopic data. The methanol extract and isolated compounds were next assessed for nematicidal activity against the root-knot nematode (Meloidogyne incognita). The methanol extract showed strong nematicidal activity after 48 h, with a LC50 value of 92.8 μg/mL. Compounds 2, 5, 9, 20, and 21 showed significant effects, with LC50 values ranging from 70.1 to 94.7 μg/mL after 48 h. These results suggest that triterpenoid saponins from P. koreana should be explored as potential natural nematicides for developing new agents to control root-knot nematode disease.
Collapse
|
22
|
Agrawal T, Kotasthane AS. Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SPRINGERPLUS 2012; 1:73. [PMID: 23526575 PMCID: PMC3602610 DOI: 10.1186/2193-1801-1-73] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/17/2012] [Indexed: 11/17/2022]
Abstract
Chitin is the second most abundant polymer in nature after cellulose and plays a major role in fungal cell walls. As a producer of variety of chitinase enzymes Trichoderma has become an important means of biological control of fungal diseases. A simple and sensitive method based on the use of basal medium with colloidal chitin as sole carbon source supplemented with Bromo cresol purple (pH indicator dye) is proposed to evaluate large populations of Trichoderma for chitinase activity. The soluble substrate with pH indicator dye (Bromo cresol purple, BCP) for the assay of chitinase activity on solid media is sensitive, easy, reproducible semi-quantitative enzyme diffusion plate assay and economic option to determine chitinases. Colloidal chitin derived from Rhizoctonia cell wall and commercial chitin included as a carbon source in broth also allowed selection and comparison of chitinolytic and exochitinase activity in Trichoderma spectrophotometrically. Released N-acetyl-β--D-glucosamine (NAGA) ranged from 37.67 to 174.33 mg/ml and 37.67 to 327.67 mg/ml and p-nitrophenol (pNP) ranged from 0.17 to 35.78 X 10(-3) U/ml and 0.62 to 32.6 X 10(-3) U/ml) respectively with Rhizoctonia cell wall and commercial chitin derived colloidal chitin supplemented broth.
Collapse
Affiliation(s)
- Toshy Agrawal
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492 006 Chhattisgarh, India
| | - Anil S Kotasthane
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 492 006 Chhattisgarh, India
| |
Collapse
|
23
|
Yan XN, Sikora RA, Zheng JW. Potential use of cucumber (Cucumis sativus L.) endophytic fungi as seed treatment agents against root-knot nematode Meloidogyne incognita. J Zhejiang Univ Sci B 2011; 12:219-25. [PMID: 21370507 DOI: 10.1631/jzus.b1000165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Seed treatment with endophytic fungi has been regarded as an effective method for plant parasitic nematode control. Endophytic fungi from cucumber seedlings were isolated and screened for their potential to be used as seed treatment agents against Meloidogyne incognita. Among the 294 isolates screened, 23 significantly reduced galls formed by M. incognita in greenhouse test. The 10 most effective isolates were Fusarium (5), Trichoderma (1), Chaetomium (1), Acremonium (1), Paecilomyces (1), and Phyllosticta (1). Their control efficacies were repeatedly tested and their colonizations as well as in vitro activity against M. incognita were studied. They reduced the number of galls by 24.0%-58.4% in the first screening and 15.6%-44.3% in the repeated test, respectively. Phyllosticta Ph511 and Chaetomium Ch1001 had high colonizations on both the roots and the aboveground parts of cucumber seedlings. Fusarium isolates had colonization preference on the roots, their root colonizations ranging from 20.1% to 47.3% of the total root area. Trichoderma Tr882, Paecilomyces Pa972, and Acremonium Ac985 had low colonizations on both the roots and the aboveground parts. Acremonium Ac985, Chaetomium Ch1001, Paecilomyces Pa972, and Phyllosticta Ph511 produced compounds affecting motility of the second stage juveniles of M. incognita. Based on these results, Chaetomium Ch1001 was considered to have the highest potential as a seed treatment agent for M. incognita biocontrol.
Collapse
Affiliation(s)
- Xiao-ning Yan
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
24
|
Yamazaki Y, Tojo M, Hoshino T, Kida K, Sakamoto T, Ihara H, Yumoto I, Tronsmo AM, Kanda H. Characterization of Trichoderma polysporum from Spitsbergen, Svalbard archipelago, Norway, with species identity, pathogenicity to moss, and polygalacturonase activity. FUNGAL ECOL 2011. [DOI: 10.1016/j.funeco.2010.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010; 87:787-99. [PMID: 20461510 PMCID: PMC2886115 DOI: 10.1007/s00253-010-2632-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 01/01/2023]
Abstract
Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.
Collapse
|
26
|
Kubicek CP, Komon-Zelazowska M, Druzhinina IS. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 2008; 9:753-63. [PMID: 18837102 DOI: 10.1631/jzus.b0860015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypocrea/Trichoderma is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans and animals, while others can cause damage to cultivated mushroom. With the recent advent of a reliable, BarCode-aided identification system for all known taxa of Trichoderma and Hypocrea, it became now possible to study some of the biological fundamentals of the diversity in this fungal genus in more detail. In this article, we will therefore review recent progress in (1) the understanding of the geographic distribution of individual taxa; (2) mechanisms of speciation leading to development of mushroom diseases and facultative human mycoses; and (3) the possible correlation of specific traits of secondary metabolism and molecular phylogeny.
Collapse
Affiliation(s)
- Christian P Kubicek
- Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9/E1665, A-1060 Vienna, Austria.
| | | | | |
Collapse
|