1
|
Zhao Y, Wang Y, Ren J, Gong W, Nie X, Peng Y, Li J, Duan C. Atorvastatin causes developmental and behavioral toxicity in yellowstripe goby (Mugilogobius chulae) embryos/larvae via disrupting lipid metabolism and autophagy processes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106909. [PMID: 38593744 DOI: 10.1016/j.aquatox.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Atorvastatin (ATV) is one of the most commonly prescribed lipid-lowering drugs detected frequently in the environment due to its high use and low degradation rate. However, the toxic effects of residual ATV in the aquatic environment on non-target organisms and its toxic mechanisms are still largely unknown. In the present study, embryos of a native estuarine benthic fish, Mugilogobius chulae, were employed to investigate the developmental and behavioral toxic effects of ATV including environmentally relevant concentrations. The aim of this study was to provide a scientific basis for ecological risk assessment of ATV in the aquatic environment by investigating the changes of biological endpoints at multiple levels in M. chulae embryos/larvae. The results showed that ATV had significantly lethal and teratogenic effects on M. chulae embryos/larvae and caused abnormal changes in developmental parameters including hatch rate, body length, heart rate, and spontaneous movement. ATV exposure caused oxidative stress in M. chulae embryos/larvae subsequently inhibited autophagy and activated apoptosis, leading to abnormal developmental processes and behavioral changes in M. chulae embryos/larvae. The disruptions of lipid metabolism, autophagy, and apoptosis in M. chulae embryos/larvae caused by ATV exposure may pose a potential ecological risk at the population level.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, 519087, China
| | - Jianjun Li
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510663, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Islam MA, Lopes I, Domingues I, Silva DCVR, Blasco J, Pereira JL, Araújo CVM. Behavioural, developmental and biochemical effects in zebrafish caused by ibuprofen, irgarol and terbuthylazine. CHEMOSPHERE 2023; 344:140373. [PMID: 37806324 DOI: 10.1016/j.chemosphere.2023.140373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
The increasing use of chemicals and their release into aquatic ecosystems are harming aquatic biota. Despite extensive ecotoxicological research, many environmental pollutants' ecological effects are still unknown. This study examined the spatial avoidance, behavioural and biochemical impacts of ibuprofen, irgarol, and terbuthylazine on the early life stages of zebrafish (Danio rerio) under a range of ecologically relevant concentrations (0-500 μg/L). Embryos were exposed following the OECD guideline "fish embryo toxicity test" complemented with biochemical assessment of AChE activity and behavioural analyses (swimming activity) using the video tracking system Zebrabox. Moreover, spatial avoidance was assessed by exposing 120 hpf-old larvae of D. rerio to a gradient of each chemical, by using the heterogeneous multi-habitat assay system (HeMHAS). The results obtained revealed that the 3 compounds delayed hatching at concentrations of 50 and 500 μg/L for both ibuprofen and irgarol and 500 μg/L for terbuthylazine. Moreover, all chemicals elicited a dose-dependent depression of movement (swimming distance) with LOEC values of 5, 500 and 50 μg/L for ibuprofen, irgarol and terbuthylazine, respectively. Zebrafish larvae avoided the three chemicals studied, with 4 h-AC50 values for ibuprofen, irgarol, and terbuthylazine of 64.32, 79.86, and 131.04 μg/L, respectively. The results of the HeMHAS assay suggest that larvae may early on avoid (just after 4 h of exposure) concentrations of the three chemicals that may later induce, apical and biochemical effects. Findings from this study make clear some advantages of using HeMHAS in ecotoxicology as it is: ecologically relevant (by simulating a chemically heterogeneous environmental scenario), sensitive (the perception of chemicals and the avoidance can occur at concentrations lower than those producing lethal or sublethal effects) and more humane and refined approach (organisms are not mandatorily exposed to concentrations that can produce individual toxicity).
Collapse
Affiliation(s)
- Mohammed Ariful Islam
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain; Department of Aquatic Resource Management, Faculty of Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh; Management and Conservation of the Sea, University of Cadiz, 11510, Puerto Real, Spain.
| | - Isabel Lopes
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Inês Domingues
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Daniel C V R Silva
- Institute of Exact Sciences, Federal University of Southern and Southeastern Pará, Marabá, 68507-590, Pará, Brazil; Institute of Natural Resources, Federal University of Itajubá (UNIFEI), Laboratory of Limnology and Ecotoxicolo Gy, Itajubá, 37500-903, Minas Gerais, Brazil.
| | - Julián Blasco
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - Joana Luísa Pereira
- CESAM & Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Cristiano V M Araújo
- Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| |
Collapse
|
3
|
Tapia-Salazar M, Diaz-Sosa VR, Cardenas-Chavez DL. Toxicological effect and enzymatic disorder of non-studied emerging contaminants in Artemia salina model. Toxicol Rep 2022; 9:210-218. [DOI: 10.1016/j.toxrep.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022] Open
|
4
|
Albendín MG, Aranda V, Coello MD, González-Gómez C, Rodríguez-Barroso R, Quiroga JM, Arellano JM. Pharmaceutical Products and Pesticides Toxicity Associated with Microplastics (Polyvinyl Chloride) in Artemia salina. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010773. [PMID: 34682526 PMCID: PMC8536102 DOI: 10.3390/ijerph182010773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Pharmaceutical products, as well as insecticides and antimicrobials, have been extensively studied, but knowledge of their effects-especially those caused by their mixtures with microplastics-on aquatic organisms remains limited. However, it should be borne in mind that the state of knowledge on acute and chronic effects in aquatic organisms for pharmaceuticals and pesticides is not similar. In response, this investigation analyzed the presence of microplastics (polyvinyl chloride) and their impacts on the toxicity of chlorpyrifos (an insecticide) and triclosan (an antibacterial) when they coincide in the environment, alongside the two most consumed drugs of their type (hypolipemic and anticonvulsant, respectively), namely simvastatin and carbamazepine, in Artemia salina. LC50 and cholinesterase enzyme activity were calculated to determine the possible neurotoxicity associated with emergent contaminants in the treatments. The LC50 values obtained were 0.006 mg/dm3 for chlorpyrifos, 0.012 mg/dm3 for chlorpyrifos associated with microplastics, 4.979 mg/dm3 for triclosan, 4.957 mg/dm3 for triclosan associated with microplastics, 9.35 mg/dm3 for simvastatin, 10.29 mg/dm3 for simvastatin associated with microplastics, 43.25 mg/dm3 for carbamazepine and 46.50 mg/dm3 for carbamazepine associated with microplastics in acute exposure. These results indicate that the presence of microplastics in the medium reduces toxicity, considering the LC50 values. However, exposure to chlorpyrifos and carbamazepine, both alone and associated with microplastics, showed a decline in cholinesterase activity, confirming their neurotoxic effect. Nevertheless, no significant differences were observed with the biomarker cholinesterase between the toxicant and the toxicant with microplastics.
Collapse
Affiliation(s)
- María Gemma Albendín
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - Vanessa Aranda
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - María Dolores Coello
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
- Correspondence:
| | - Carmen González-Gómez
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| | - Rocío Rodríguez-Barroso
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
| | - José María Quiroga
- Environmental Technologies Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (R.R.-B.); (J.M.Q.)
| | - Juana María Arellano
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, 11510 Cádiz, Spain; (M.G.A.); (V.A.); (C.G.-G.); (J.M.A.)
| |
Collapse
|
5
|
Wang C, Tang T, Wang Y, Nie X, Li K. Simvastatin affects the PPARα signaling pathway and causes oxidative stress and embryonic development interference in Mugilogobius abei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105951. [PMID: 34467877 DOI: 10.1016/j.aquatox.2021.105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Simvastatin (SV) is a common hypolipidemic drug in clinical medicine that can reduce endogenous cholesterol biosynthesis by inhibiting hydroxyl-methyl-glutaryl coenzyme A reductase. SV took a large market share in the lipid-lowering drugs and it is frequently detected in various water bodies due to its increasing consumption in past years. In the present investigation, we selected a native fish species in the Pearl River Basin in China, Mugilogobius abei (M. abei), to study the effects of SV on non-target aquatic organisms. Results showed that a significant decrease in the volume of adipocytes under SV exposure were observed on oil red O section, and the expression of HMG-CoAR decreased significantly. The mRNA and protein expression of PPARα were significantly up-regulated, the expressions of other genes related to lipid metabolism were up-regulated to varying degrees as well. There was a positive correlation between the concentrations of SV and the protein expressions of plasma phospholipid transfer protein (PLTP) and cholesterolester transfer protein (CETP). In addition, the frozen sections showed that SV led to ROS accumulation in liver in a time and concentration dependent manner. The mRNA and protein expressions of Nrf2 were significantly up-regulated after 24 hours of SV exposure. Some biomarkers associated with antioxidant such as Trx2, TrxR and MDA content were positively correlated with the exposure concentration and time, while the content of GSH decreased sharply. It is noteworthy that the environmentally relevant concentration (0.5 μg/L) of SV exposure caused delayed embryonic development and deformations, decreased hatching rates. We conclude that SV promotes fat metabolism, gives rise to oxidative stress and has significant toxicity on embryo development in M. abei.
Collapse
Affiliation(s)
- Chao Wang
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Tianli Tang
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology/Hydrobiology Research Institute, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Kaibin Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
6
|
da Silva THG, Furtado RXDS, Zaiat M, Azevedo EB. Tandem anaerobic-aerobic degradation of ranitidine, diclofenac, and simvastatin in domestic sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137589. [PMID: 32171136 DOI: 10.1016/j.scitotenv.2020.137589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
There is a consensus among scientists that domestic sewage treatment plants are the main sources of drugs entry into the aquatic environment. Therefore, this work studies the biodegradation of the drugs ranitidine (RNT), diclofenac (DCF), and simvastatin (SVT) (50 μg L-1, each), in real domestic sewage, using a continuous anaerobic-aerobic reactor with immobilized biomass and an anaerobic batch reactor. The continuous anaerobic-aerobic reactor was operated for 6 months with hydraulic retention time (HRT) of 8 h. The initial degradation rates and the maximum oxidation capacities (MOC) of the system were estimated, achieving 90, 72, and 62% removals and 100, 93, and 72% of MOC for RNT, DCF and SVT, respectively, as well as 71% removal of soluble chemical oxygen demand (COD). RNT was degraded throughout the reactor, while DCF was degraded mainly in the two anaerobic chambers and SVT in the first anaerobic chamber. Anaerobic batches were used for the identification of biodegradation by-products (2,6-dichloro-N-(2-methylphenyl) aniline and simvastatin acid), the evaluation of the specific methanogenic activity (SMA) inhibition, and the estimation of acute and chronic ecotoxicities using the ECOSAR 1.11 software. The present study showed that, even at environmental concentrations, RNT, DCF, and SVT were capable of inhibiting the SMA. Lipophilicities dictated the behavior of those three drugs. The greater their lipophilicities, the greater the SMA inhibition and their ecotoxicity.
Collapse
Affiliation(s)
- Thiago H G da Silva
- São Carlos, Institute of Chemistry, University of São Paulo, C.P.780, São Carlos, SP CEP 13560-970, Brazil.
| | - Rafaely X de S Furtado
- São Carlos, Institute of Chemistry, University of São Paulo, C.P.780, São Carlos, SP CEP 13560-970, Brazil.
| | - Marcelo Zaiat
- São Carlos School of Engineering, University of São Paulo, C.P.780, São Carlos, SP CEP 13560-970, Brazil.
| | - Eduardo B Azevedo
- São Carlos, Institute of Chemistry, University of São Paulo, C.P.780, São Carlos, SP CEP 13560-970, Brazil.
| |
Collapse
|
7
|
Fu H, Xia Y, Chen Y, Xu T, Xu L, Guo Z, Xu H, Xie HQ, Zhao B. Acetylcholinesterase Is a Potential Biomarker for a Broad Spectrum of Organic Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8065-8074. [PMID: 29995397 DOI: 10.1021/acs.est.7b04004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) is a classical biomarker for monitoring contamination and intoxication of organophosphate (OP) and carbamate pesticides. In addition to these classical environmental AChE inhibitors, other organic toxic substances have been found to alter AChE activity in various species. These emerging organic AChE disruptors include certain persistent organic pollutants (POPs), polycyclic aromatic hydrocarbons (PAHs), and wildly used chemicals, most of which have received considerable public health concern in recent years. It is necessary to re-evaluate the environmental significances of AChE in terms of these toxic substances. Therefore, the present review is aiming to summarize correlations of AChE activity of certain organisms with the level of the contaminants in particular habitats, disruptions of AChE activity upon treatment with the emerging disruptors in vivo and in vitro, and action mechanisms underlying the effects on AChE. Over 40 chemicals belonging to six main categories were reviewed, including 12 POPs listed in the Stockholm Convention. AChE activity in certain organisms has been found to be well correlated with the contamination level of certain persistent pesticides and PAHs in particular habitats. Moreover, it has been documented that most of the listed toxic chemicals could inhibit AChE activity in diverse species ranging from invertebrates to mammals. Besides directly inactivating AChE, the mechanisms in terms of interference with the biosynthesis have been recognized for some emerging AChE disruptors, particularly for dioxins. The collected evidence suggests that AChE could serve as a potential biomarker for a diverse spectrum of organic environmental pollutants.
Collapse
Affiliation(s)
- Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Zhiling Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Haiming Xu
- School of Public Health and Management , Ningxia Medical University , Yinchuan , Ningxia Hui Autonomous Region 750004 , China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences, Beijing 100085 , China
| |
Collapse
|
8
|
Barros S, Montes R, Quintana JB, Rodil R, André A, Capitão A, Soares J, Santos MM, Neuparth T. Chronic environmentally relevant levels of simvastatin disrupt embryonic development, biochemical and molecular responses in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 201:47-57. [PMID: 29879595 DOI: 10.1016/j.aquatox.2018.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic compound, is among the most prescribed pharmaceuticals for cardiovascular disease prevention worldwide. Several studies have shown that acute exposure to SIM causes multiple adverse effects in aquatic organisms. However, uncertainties still remain regarding the chronic effects of SIM in aquatic ecosystems. Therefore, the present study aimed to investigate the effects of SIM in the model freshwater teleost zebrafish (Danio rerio) following a chronic exposure (90 days) to environmentally relevant concentrations ranging from 8 ng/L to 1000 ng/L. This study used a multi-parameter approach integrating distinct ecologically-relevant endpoints, i.e. survival, growth, reproduction and embryonic development, with biochemical markers (cholesterol and triglycerides). Real Time PCR was used to analyse the transcription levels of key genes involved in the mevalonate pathway (hmgcra, cyp51, and dhcr7). Globally, SIM induced several effects that did not follow a dose-response relationship; embryonic development, biochemical and molecular markers, were significantly impacted in the lower concentrations, 8 ng/L, 40 ng/L and/or 200 ng/L, whereas no effects were recorded for the highest tested SIM levels (1000 ng/L). Taken together, these findings expand our understanding of statin effects in teleosts, demonstrating significant impacts at environmentally relevant concentrations and highlight the importance of addressing the effects of chemicals under chronic low-level concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Rosa Montes
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Rosario Rodil
- Department of Analytical Chemistry, Nutrition and Food Sciences, IIAA-Institute for Food Analysis and Research, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain
| | - Ana André
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Ana Capitão
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana Soares
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal.
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
9
|
Environmentally friendly procedure based on VA-MSPD for the determination of booster biocides in fish tissue. Food Chem 2018; 242:475-480. [DOI: 10.1016/j.foodchem.2017.09.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/09/2017] [Accepted: 09/15/2017] [Indexed: 11/23/2022]
|
10
|
Amara I, Miled W, Slama RB, Ladhari N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:115-130. [PMID: 29258017 DOI: 10.1016/j.etap.2017.12.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/03/2017] [Accepted: 12/03/2017] [Indexed: 05/22/2023]
Abstract
The production infrastructure in aquaculture invariably is a complex assortment of submerged components with cages, nets, floats and ropes. Cages are generally made from polyamide or high density polyethylene (PEHD). All of these structures serve as surfaces for biofouling. However, cage nets and supporting infrastructure offer fouling organisms thousands of square meters of multifilament netting. That's why, before immersing them in seawater, they should be coated with an antifouling agent. It helps to prevent net occlusion and to increase its lifespan. Biofouling in marine aquaculture is a specific problem and has three main negative effects. It causes net occlusion and so restricts water and oxygen exchange. Besides, the low dissolved oxygen levels from poor water exchange increases the stress levels of fish, lowers immunity and increases vulnerability to disease. Also, the extra weight imposed by fouling causes cage deformation and structural fatigue. The maintenance and loss of equipment cause the increase of production costs for the industry. Biocides are chemical substances that can prohibit or kill microorganisms responsible for biofouling. The expansion of the aquaculture industry requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. Unfortunately, the use of biocides in the aquatic environment has proved to be harmful as it has toxic effects on the marine environment. The most commonly used biocides in antifouling paints are Tributyltin (TBT), Chlorothalonil, Dichlofluanid, Sea-Nine 211, Diuron, Irgarol 1051 and Zinc Pyrithione. Restrictions were imposed on the use of TBT, that's why organic booster biocides were recently introduced. The replacement products are generally based on copper metal oxides and organic biocides. This paper provides an overview of the effects of antifouling biocides on aquatic organisms. It will focus on the eight booster biocides in common use, despite little data are available for some of them. Toxicity values and effects of these antifoulants will also be mentioned for different species of fish, crustaceans, invertebrates and algae.
Collapse
Affiliation(s)
- Intissar Amara
- Textile Engineering Laboratory, University of Monastir, Tunisia.
| | - Wafa Miled
- Textile Engineering Laboratory, University of Monastir, Tunisia.
| | - Rihab Ben Slama
- Laboratory of Analysis, Treatment and Valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, University of Monastir, Tunisia.
| | - Neji Ladhari
- Higher Institute of the Fashion Trades of Monastir, University of Monastir, Tunisia.
| |
Collapse
|
11
|
Pasha R, Moon TW. Coenzyme Q10 protects against statin-induced myotoxicity in zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:150-160. [PMID: 28414942 DOI: 10.1016/j.etap.2017.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is the rate-limiting enzyme of the mevalonic acid pathway and is required for cholesterol biosynthesis and the synthesis of Coenzyme Q10 (CoQ10). Statins inhibit HMGCR, thus inhibiting the downstream products of this pathway including the biosynthesis of decaprenyl-pyrophosphate that is critical for the synthesis of Coenzyme Q10 (CoQ10). We show that zebrafish (Danio rerio) larvae treated in tank water with Atorvastatin (ATV; Lipitor) exhibited movement alterations and reduced whole body tissue metabolism. The ATV-inhibition of HMGCR function altered transcript abundance of muscle atrophy markers (atrogen-1, murf) and the mitochondrial biogenesis marker (pgc-1α). Furthermore, ATV-induced reduction in larval response to tactile stimuli was reversed with treatment of CoQ10. Together, the implication of our results contributes to the understanding of the mechanisms of action of the statin-induced damage in this model fish species.
Collapse
Affiliation(s)
- Rand Pasha
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Thomas W Moon
- Department of Biology, Centre for Advanced Research in Environmental Genomics and the Collaborative Program in Chemical and Environmental Toxicology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5.
| |
Collapse
|
12
|
Santos MM, Ruivo R, Lopes-Marques M, Torres T, de los Santos CB, Castro LFC, Neuparth T. Statins: An undesirable class of aquatic contaminants? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:1-9. [PMID: 26896816 DOI: 10.1016/j.aquatox.2016.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Emerging pollutants, such as pharmaceuticals, may pose a considerable environment risk. Hypocholesterolaemic drugs such as statins are among the most prescribed human pharmaceuticals in western European countries. In vertebrates, this therapeutic class disrupts the cholesterol synthesis by inhibiting the enzyme 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR), responsible for the limiting step in the mevalonate pathway. Recently, functional studies have shown that statins competitively inhibit HMGR in vertebrates and arthropods, two taxa that have diverged over 450 million years ago. Importantly, chronic simvastatin exposure disrupts crustacean reproduction and development at environmentally relevant concentrations. Hence, a fundamental question emerges: what is the taxonomic scope of statins-induced HMGR inhibition across metazoans? Here, we address this central question in a large sampling of metazoans using comparative genomics, homology modelling and molecular docking. Sequence alignment of metazoan HMGRs allowed the annotation of highly conserved catalytic, co-factor and substrate binding sites, including residues highjacked for statin binding. Furthermore, molecular docking shows that the catalytic domains of metazoan HMGRs are highly conserved regarding interactions, not only with HMG-CoA, but also with both simvastatin and atorvastatin, the top prescribed statins in Europe and USA. Hence, the data indicates that both statins are expected to competitively inhibit metazoan's HMGRs, and therefore all metazoan taxa might be at risk. The environmental relevance of these findings are discussed and research priorities established. We believe that the conceptual framework used in this study can be applied to other emerging pollutants and assist in the design of toxicity testing and risk assessment.
Collapse
Affiliation(s)
- Miguel M Santos
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Raquel Ruivo
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Mónica Lopes-Marques
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
| | - Tiago Torres
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - Carmen B de los Santos
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal; FCUP-Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR, LA-Interdisciplinary Centre of Marine and Environmental Research, Groups of Endocrine Disruptors and Emerging Contaminants and Animal Genetics and Evolution, University of Porto, Rua dos Bragas 177, 4050-123 Porto, Portugal
| |
Collapse
|
13
|
Vidal-Liñán L, Bellas J, Fumega J, Beiras R. Bioaccumulation of BDE-47 and effects on molecular biomarkers acetylcholinesterase, glutathione-S-transferase and glutathione peroxidase in Mytilus galloprovincialis mussels. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:292-300. [PMID: 25373544 DOI: 10.1007/s10646-014-1377-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 06/04/2023]
Abstract
Mussels, Mytilus galloprovincialis, showed a high bioaccumulation ability when exposed to waterborne tetrabromodiphenyl ether (BDE-47), with a bioconcentration factor of 10,900 L Kg(-1) wet weight, and slow depuration rates in clean seawater. Kinetic and concentration-response experiments were performed measuring in the exposed mussel the activities of three molecular biomarkers: glutathione S-transferase (GST), glutathione peroxidase (GPx) and acetylcholinesterase (AChE). The long term (30 days) exposure of mussels to all concentrations (2-15 µg L(-1)) of BDE-47 significantly inhibited the AChE and GST activities, a result that supports the suitability of these biomarkers in marine pollution monitoring programs. However, GPx activity showed a less consistent pattern of response depending on the concentration and the duration of exposure.
Collapse
Affiliation(s)
- Leticia Vidal-Liñán
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Estrada Colexio Universitario s/n, 36310, Vigo, Galicia, Spain,
| | | | | | | |
Collapse
|
14
|
Boxall ABA, Keller VDJ, Straub JO, Monteiro SC, Fussell R, Williams RJ. Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals. ENVIRONMENT INTERNATIONAL 2014; 73:176-85. [PMID: 25127044 DOI: 10.1016/j.envint.2014.07.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 05/10/2023]
Abstract
In order to establish the environmental impact of an active pharmaceutical ingredient (API), good information on the level of exposure in surface waters is needed. Exposure concentrations are typically estimated using information on the usage of an API as well as removal rates in the patient, the wastewater system and in surface waters. These input data are often highly variable and difficult to obtain, so model estimates often do not agree with measurements made in the field. In this paper we present an approach which uses inverse modelling to estimate overall removal rates of pharmaceuticals at the catchment scale using a hydrological model as well as prescription and monitoring data for a few representative sites for a country or region. These overall removal rates are then used to model exposure across the broader landscape. Evaluation of this approach for APIs in surface waters across England and Wales showed good agreement between modelled exposure distributions and available monitoring data. The use of the approach, alongside estimates of predicted no-effect concentrations for the 12 study compounds, to assess risk of the APIs across the UK landscape, indicated that, for most of the compounds, risks to aquatic life were low. However, ibuprofen was predicted to pose an unacceptable risk in 49.5% of the river reaches studied. For diclofenac, predicted exposure concentrations were also compared to the Environmental Quality Standard previously proposed by the European Commission and 4.5% of river reaches were predicted to exceed this concentration. While the current study focused on pharmaceuticals, the approach could also be valuable in assessing the risks of other 'down the drain' chemicals and could help inform our understanding of the important dissipation processes for pharmaceuticals in the pathway from the patient to ecological receptors.
Collapse
Affiliation(s)
- A B A Boxall
- Environment Department, University of York, Heslington, York YO10 5DD, UK.
| | - V D J Keller
- Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| | - J O Straub
- F.Hoffmann-La Roche Ltd, CH-4070 Basle, Switzerland
| | - S C Monteiro
- Food and Environment Research Agency, Sand Hutton, York YO41 1Z, UK
| | - R Fussell
- Food and Environment Research Agency, Sand Hutton, York YO41 1Z, UK
| | - R J Williams
- Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK
| |
Collapse
|
15
|
Liang B, Wang L, He T, Liu W, Li Q, Li M. In vitro reactive oxygen species production by mitochondria from the rabbitfish Siganus fuscessens livers and the effects of Irgarol-1051. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:154-160. [PMID: 23328116 DOI: 10.1016/j.etap.2012.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 06/01/2023]
Abstract
In this study, the mitochondria from the livers of Siganus fuscessens were exposed to the Irgarol-1051with or without respiratory chain inhibitors using succinate or malate as the substrate, and the effects on mitochondrial ROS production were tested. The mitochondrial ROS production was significantly enhanced by antimycin A with an increase of more than three folds but not by rotenone and NaN3, and this may suggest complex III is the major ROS-producing site. Irgarol-1051 treatments gave a somewhat contradictory result: this chemical can inhibit the mitochondrial ROS production but the inhibition decreased with the increase of doses. These contradictory data about Irgarol-1051 may be explained by the balance between the effects of inhibition through the opening of small-size pores and stimulation through blocking electron transfer, but the mechanism laid behind needs more evidence to support. As Irgarol-1051 was continuously used in antifouling and its bio-concentration factor is up to 160 in fish, the toxic effect of Irgarol-1051 on aquatic animals should be paid more attention to.
Collapse
Affiliation(s)
- Bo Liang
- Marine Biology Institute, Shantou University, Shantou, Guangdong 515063, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Chiu KH, Lin CR, Huang HW, Shiea J, Liu LL. Toxic effects of two brominated flame retardants BDE-47 and BDE-183 on the survival and protein expression of the tubificid Monopylephorus limosus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:46-53. [PMID: 22818847 DOI: 10.1016/j.ecoenv.2012.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
The toxic effects of two brominated diphenyl ethers (BDE), BDE-47, and BDE-183, on a benthic oligochaete tubificid, Monopylephorus limosus were studied under laboratory conditions. Investigated responses included survival, growth, and protein expression profiles, at BDE concentrations of 1, 10, 100, and 700 ng/g on a dry soil weight basis, with isooctane as the carrier solvent. Body weight losses among treatments were insignificant after 8 weeks of exposure. The 8-wk LC(50) of BDE-47 and -183 were 2311 and 169 ng/g, respectively. By applying multivariate analysis techniques, protein expression patterns were compared and correlated with stressful sources of long-term culture, carrier solvent, BDE-47 and -183. The treatment of 8-wk 100 ng/g BDE-47 was most closely clustered to the 10 ng/g BDE-183 treatment, based on the 40 examined protein spots. This indicated that BDE-183 was more potent to M. limosus, than was BDE-47. The 2-wk and 8-wk controls clustered into different groups indicating the occurrence of physiological changes due to long-term laboratory culture. Additionally, solvent effect was shown by grouping the isooctane carrier to different clusters. With further characterization by principle component analysis, it was found that the separation was mainly contributed by the 2nd principal-component. And, the primarily inhibitory variation was at spots 2 (UMP-CMP kinase) and 40 (plasma retinol-binding protein precursor) in the 8-wk groups. On the contrary, protein spots 16 (cell division control protein 2 homolog) and 24 (mitochondrial DNA mismatch repair protein) showed stimulatory variation. In all, the observed proteomic responses suggest that BDEs disrupted metabolic function in M. limosus and multivariate analysis tool offers significant potential for the assessment of various stress sources at biochemical level.
Collapse
Affiliation(s)
- K H Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung 811, Taiwan, ROC
| | | | | | | | | |
Collapse
|
17
|
Toxicity of the brominated flame retardant tris-(2,3-dibromopropyl) isocyanurate in zebrafish (Danio rerio). ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4471-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Lotufo GR, Pickard SW. Benthic bioaccumulation and bioavailability of polybrominated diphenyl ethers from surficial Lake Ontario sediments near Rochester, New York, USA. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 85:348-351. [PMID: 20658224 DOI: 10.1007/s00128-010-0088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 07/09/2010] [Indexed: 05/29/2023]
Abstract
Polybrominated diphenyl ethers in Lake Ontario watershed sediments were assessed for benthic bioavailability through the use of biota-sediment accumulation factors. Sediments from lake and Rochester Harbor (lower Genesee River) areas were investigated. Congeners 47, 66, 85, 99 and 100 were detected in tissues of the oligochaete Lumbriculus variegatus. Biota-sediment accumulation factors ranged from 3.95 (congener 154) to 19.5 (congener 28) and were higher at the Lake Ontario area. The lower biota-sediment accumulation factors for the Rochester Harbor sediment may result from a higher fraction of black carbon generally expected in highly urbanized rivers. Degree of bromination may reduce bioavailability.
Collapse
Affiliation(s)
- G R Lotufo
- US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | | |
Collapse
|