1
|
Yu X, Zhong G, Zhao G, Zhou T, Yu J, Zhang X, Gai Z, Xu Z, Lei H, Shen X. Enantioselectivity regulation of antibody against chiral herbicide metolachlor based on interaction at chiral center. Int J Biol Macromol 2024; 270:132471. [PMID: 38763235 DOI: 10.1016/j.ijbiomac.2024.132471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Enantioselective antibodies have emerged as great potential biomaterials in the fields of immunoassays and chiral separation. However, cross-reactivity of antibodies to the distomer may severely restrict the application. Comprehending the interaction mechanism between antibodies and enantiomers could be beneficial to produce superior enantioselective antibodies. In this study, a pair of recombinant antibodies (RAbs) against metolachlor enantiomers at chiral carbon (αSS-MET and αSR-MET) were generated and characterized. The αSS-MET-RAb and αSR-MET-RAb showed comparable sensitivity and specificity to the parental monoclonal antibodies by icELISA, with IC50 values of 3.45 and 223.77 ng/mL, respectively. Moreover, the complex structures of RAbs and corresponding eutomer were constructed and analyzed, and site-specific mutagenesis was utilized to verify the reliability of the enantioselective mechanism elucidated. It demonstrated that the strength of the interaction between the chiral center region of eutomer and the antibody was the key factor for the enantioselectivity of antibody. Increasing this interaction could limit the conformational adjustment of the distomer in a specific chiral recognition cavity, thus decreasing the affinity of the antibody to the distomer. This work provided the in-depth analysis of enantioselective mechanism for two RAbs and paved the way to regulate antibody enantioselective performance for immunoassays of chiral compounds.
Collapse
Affiliation(s)
- Xiaoting Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Gang Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayi Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xu Zhang
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zuoqi Gai
- College of Life Science and Engineering, Foshan University, Foshan 528225, China; Guangzhou Editgene Co., Ltd., Guangzhou 510642, China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Rodríguez-Nava C, Ortuño-Pineda C, Illades-Aguiar B, Flores-Alfaro E, Leyva-Vázquez MA, Parra-Rojas I, Del Moral-Hernández O, Vences-Velázquez A, Cortés-Sarabia K, Alarcón-Romero LDC. Mechanisms of Action and Limitations of Monoclonal Antibodies and Single Chain Fragment Variable (scFv) in the Treatment of Cancer. Biomedicines 2023; 11:1610. [PMID: 37371712 DOI: 10.3390/biomedicines11061610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Monoclonal antibodies are among the most effective tools for detecting tumor-associated antigens. The U.S. Food and Drug Administration (FDA) has approved more than 36 therapeutic antibodies for developing novel alternative therapies that have significant success rates in fighting cancer. However, some functional limitations have been described, such as their access to solid tumors and low interaction with the immune system. Single-chain variable fragments (scFv) are versatile and easy to produce, and being an attractive tool for use in immunotherapy models. The small size of scFv can be advantageous for treatment due to its short half-life and other characteristics related to the structural and functional aspects of the antibodies. Therefore, the main objective of this review was to describe the current situation regarding the mechanisms of action, applications, and limitations of monoclonal antibodies and scFv in the treatment of cancer.
Collapse
Affiliation(s)
- Cynthia Rodríguez-Nava
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Proteínas y Ácidos Nucleicos, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Berenice Illades-Aguiar
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Eugenia Flores-Alfaro
- Laboratorio de Investigación en Epidemiología Clínica y Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | | | - Amalia Vences-Velázquez
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Karen Cortés-Sarabia
- Laboratorio de Investigación en Inmunobiología y Diagnóstico Molecular, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| | - Luz Del Carmen Alarcón-Romero
- Laboratorio de Investigación en Citopatología e Histoquímica, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39070, Mexico
| |
Collapse
|
3
|
Liu M, Bai Y, Dou L, Kong Y, Wang Z, Wen K, Shen J. A highly salt-tolerant monoclonal antibody-based enzyme-linked immunosorbent assay for the rapid detection of phenylethanolamine A in urine. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2084043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yuchen Bai
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yihui Kong
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Li L, Wu S, Si Y, Li H, Yin X, Peng D. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Compr Rev Food Sci Food Saf 2022; 21:4354-4377. [PMID: 35904244 DOI: 10.1111/1541-4337.13018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 01/28/2023]
Abstract
Immunoassays are reliable, efficient, and accurate methods for the analysis of small-molecule harmful substances (such as pesticides, veterinary drugs, and biological toxins) that may be present in food. However, traditional polyclonal and monoclonal antibodies are limited by animal hosts and hinder further development of immunoassays. With the gradual application of phage display technology as an efficient in vitro selection technology, the single-chain fragment variable (scFv) now provides an exciting alternative to traditional antibodies. Efficiently constructed scFv source libraries and specifically designed biopanning schemes can now yield scFvs possessing specific recognition capabilities. A rational mutation strategy further enhances the affinity of scFv, and allows it to reach a level that cannot be achieved by immunization. Finally, appropriate prokaryotic expression measures ensure stable and efficient production of scFv. Therefore, when developing excellent scFvs, it is necessary to focus on three key aspects of this process that include screening, mutation, and expression. In this review, we analyze in detail the preparation and affinity improvement process for scFv and provide insights into the research progress and development trend of scFv-based immunoassay methods for monitoring small-molecule harmful substances.
Collapse
Affiliation(s)
- Long Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuangmin Wu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yu Si
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaming Li
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoyang Yin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dapeng Peng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei, China.,Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Li Y, Yu Q, Yu W, Zhang S, Wen K, Shen J, Wang Z, Yu X. Development of Fluorescence Polarization Immunoassay With scFv to Detect Fumonisin Bs in Maize and Simultaneous Study of Their Molecular Recognition Mechanism. Front Chem 2022; 10:829038. [PMID: 35265585 PMCID: PMC8900220 DOI: 10.3389/fchem.2022.829038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a fluorescence polarization immunoassay (FPIA) was developed based on the single-chain variable fragments (scFvs) for fumonisin Bs (FBs). The scFvs were prepared from FBs-specific monoclonal antibody secreting hybridomas (4F5 and 4B9). The established FPIA could determine the sum of fumonisin B1 (FB1) and fumonisin B2 (FB2) within a short time. The IC50 of FPIA for the detection of FB1 and FB2 were 29.36 ng/ml and 1,477.82 ng/ml with 4F5 scFv, and 125.16 ng/ml and 30.44 ng/ml with 4B9 scFv, so the 4B9 scFv was selected for detection of FB1 and FB2 in maize samples with a limit of detection of 441.54 μg/kg and 344.933 μg/kg. The recoveries ranged from 84.7 to 104.1% with a coefficient of variation less than 14.1% in spiked samples, and the result of the FPIA method was in good consistency with that of HPLC-MS/MS. To supply a better understanding of the immunoassay results, the interactions mechanism of scFvs-FBs was further revealed by the homology modelling, molecular docking, and molecular dynamic simulation. It was indicated that six complementarity-determining regions (CDRs) were involved in 4B9 scFv recognition, forming a narrow binding cavity, and FB1/FB2 could be inserted into this binding cavity stably through strong hydrogen bonds and other interactions. While in 4F5 scFv, only the FB1 stably inserted in the binding pocket formed by four CDRs through strong hydrogen bonds, and FB2 did not fit the binding cavity due to the lack of hydroxyl at C10, which is the key recognition site of 4F5 scFv. Also, the binding energy of FB2-4B9 scFv complex is higher than the FB2-4F5 scFv complex. This study established a FPIA method with scFv for the detection of FB1 and FB1 in maize, and systematically predicted recognition mechanism of FBs and scFvs, which provided a reference for the better understanding of the immunoassay mechanism.
Collapse
|
6
|
Wang F, Li N, Zhang Y, Sun X, Hu M, Zhao Y, Fan J. Preparation and Directed Evolution of Anti-Ciprofloxacin ScFv for Immunoassay in Animal-Derived Food. Foods 2021; 10:foods10081933. [PMID: 34441715 PMCID: PMC8394695 DOI: 10.3390/foods10081933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
An immunized mouse phage display scFv library with a capacity of 3.34 × 109 CFU/mL was constructed and used for screening of recombinant anti-ciprofloxacin single-chain antibody for the detection of ciprofloxacin (CIP) in animal-derived food. After four rounds of bio-panning, 25 positives were isolated and identified successfully. The highest positive scFv-22 was expressed in E. coli BL21. Then, its recognition mechanisms were studied using the molecular docking method. The result showed the amino acid residue Val160 was the key residue for the binding of scFv to CIP. Based on the results of virtual mutation, the scFv antibody was evolved by directional mutagenesis of contact amino acid residue Val160 to Ser. After the expression and purification, an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) based on the parental and mutant scFv was established for CIP, respectively. The IC50 value of the assay established with the ScFv mutant was 1.58 ng/mL, while the parental scFv was 26.23 ng/mL; this result showed highly increased affinity, with up to 16.6-fold improved sensitivity. The mean recovery for CIP ranged from 73.80% to 123.35%, with 10.46% relative standard deviation between the intra-assay and the inter-assay. The RSD values ranged between 1.49% and 9.81%. The results indicate that we obtained a highly sensitive anti-CIP scFv by the phage library construction and directional evolution, and the scFv-based IC-ELISA is suitable for the detection of CIP residue in animal-derived edible tissues.
Collapse
Affiliation(s)
- Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
- Correspondence:
| | - Ning Li
- Department of Food Nutrition and Health, College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou 450000, China; (N.L.); (Y.Z.)
| | - Yunshang Zhang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
| | - Xuefeng Sun
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
| | - Man Hu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, Zhengzhou 450002, China; (Y.Z.); (X.S.); (M.H.)
| | - Yali Zhao
- Department of Food Nutrition and Health, College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, Zhengzhou 450000, China; (N.L.); (Y.Z.)
| | - Jianming Fan
- China College of Public Health, Zhengzhou University, 100#Kexue Avenue, Zhengzhou 450001, China;
| |
Collapse
|
7
|
Li Y, Xu X, Liu L, Kuang H, Xu L, Xu C. Rapid detection of 21 β-lactams using an immunochromatographic assay based on the mutant BlaR-CTD protein from Bacillus Licheniformis. Analyst 2020; 145:3257-3265. [DOI: 10.1039/d0an00421a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, a gold immunochromatographic assay (GICA) based on a penicillin receptor protein (PBP) is proposed to simultaneously detect penicillin, cephalosporin, and carbapenem antibiotics in milk and chicken.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection
| |
Collapse
|
8
|
Lu Q, Hou YY, Liu XX, Wang H, Hou JJ, Wei JL, Zhou SS, Liu XY. Construction, expression and functional analysis of anti-clenbuterol codon-optimized scFv recombinant antibody. Food Chem Toxicol 2019; 135:110973. [PMID: 31738983 DOI: 10.1016/j.fct.2019.110973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023]
Abstract
The construction, expression and functional analysis of codon-optimized single-chain variable fragment (coscFv) against clenbuterol (CBL) prepared from the Escherichia coli system is described. First, the ionic concentration for coscFv expression was optimized through single-factor experiments. Then, the extraction conditions of inclusion bodies were optimized, and coscFv was affinity-purified. Finally, the functional analysis of coscFv was elucidated by indirect competitive enzyme-linked immunosorbent assay (icELISA) and molecular docking. After optimizing the ionic concentration, the yield of coscFv increased from 21.69% to 23.26%. The molecular weight of coscFv was determined to be approximately 27 kDa according to the SDS-PAGE and Western blot assay. The percentage of coscFv was as high as 43.9% after the inclusion bodies were extracted, washed, and dissolved. Functional analysis indicated that the coscFv recognized CBL, and the 50% inhibition average concentration of CBL (IC50) was 4.22 ± 0.01 (n = 3) ng/mL. The binding site between coscFv and CBL consisted of Asp33H, Met34H, Ser50H, Arg52H, Tyr57H, Leu59H, Asp99H, and Tyr93L. Our study confirms that coscFv can bind with CBL through the key amino acid residues and can be used to sensitively detect CBL.
Collapse
Affiliation(s)
- Qi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China
| | - Yao-Yao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China
| | - Xi-Xia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian-Jun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China
| | - Jing-Li Wei
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China
| | - Shan-Shan Zhou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China
| | - Xin-Ya Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China; National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
9
|
Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H, Wang Z, Sun X, Shen YD, Yang JY, Xu ZL. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
He X, Duan CF, Qi YH, Dong J, Wang GN, Zhao GX, Wang JP, Liu J. Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk. Anal Biochem 2017; 517:9-17. [DOI: 10.1016/j.ab.2016.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
|
11
|
Wang JP, Dong J, Duan CF, Zhang HC, He X, Wang GN, Zhao GX, Liu J. Production and Directional Evolution of Antisarafloxacin ScFv Antibody for Immunoassay of Fluoroquinolones in Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7957-7965. [PMID: 27718569 DOI: 10.1021/acs.jafc.6b03356] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A recombinant antisarafloxacin ScFv antibody was produced by direct transformation of its gene into Rosetta-gami(DE3) for expression, and then its recognition mechanisms for 12 fluoroquinolones were studied using the molecular docking method. On the basis of the results of virtual mutation, the ScFv antibody was evolved by directional mutagenesis of contact amino acid residue Tyr99 to His. The ScFv mutant showed highly increased affinity for the 12 drugs with up to sevenfold improved sensitivity. Finally, the mutant was used to develop an indirect competitive enzyme linked immunosorbent assay for determination of the 12 drugs in milk. The limits of detection were in the range of 0.3-8.0 ng/mL; the ties were in the range of 5-106%, and the recoveries from the standard fortified blank milk were in the range of 62.0-89.3%. This is the first study reporting the evolution of an ScFv antibody using a directional mutagenesis strategy based on virtual mutation.
Collapse
Affiliation(s)
- Jian Ping Wang
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Jun Dong
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Chang Fei Duan
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Hui Cai Zhang
- College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Xin He
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Geng Nan Wang
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Guo Xian Zhao
- College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei, China 071000
| | - Jing Liu
- College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei, China 071000
| |
Collapse
|