1
|
Rapid Simultaneous Determination of 11 Synthetic Cannabinoids in Urine by Liquid Chromatography-Triple Quadrupole Mass Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10030203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids are a series of synthetic substances that mimic the effects of natural cannabinoids and produce a much stronger toxicity than natural cannabinoids, and they have become the most abused family of new psychoactive substances. A solid-phase extraction–liquid chromatography–triple quadrupole/linear ion trap mass spectrometry method has been developed to determine 11 synthetic cannabinoids in rat urine. Oasis HLB cartridge was selected to simultaneously extract synthetic cannabinoids for pretreatment. The effects of the loading solution and elution reagent volume on the recovery were investigated. The optimized acetonitrile proportion and elution reagent volume were determined by both high recovery and low solvent consumption. The results showed that the linear coefficients of determination of 11 types of synthetic cannabinoids ranged from 0.993 to 0.999, the limit of quantitation ranged from 0.01 to 0.1 ng/mL, and the spiked recoveries ranged from 69.90% to 118.39%. The research presented here provides a validated liquid chromatography tandem mass spectrometry method to accurately identify and quantitate synthetic cannabinoid metabolites in urine samples.
Collapse
|
2
|
Effects of the Phenethylamine 2-Cl-4,5-MDMA and the Synthetic Cathinone 3,4-MDPHP in Adolescent Rats: Focus on Sex Differences. Biomedicines 2022; 10:biomedicines10102336. [PMID: 36289598 PMCID: PMC9598216 DOI: 10.3390/biomedicines10102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects. Findings show that the two NPSs are not able to sustain reliable self-administration behavior in rats, with cumulatively earned injections of drugs being not significantly different from cumulatively earned injections of saline in control groups. Yet, at the end of the self-administration training, females (but not males) exhibited higher plasma corticosterone levels after chronic exposure to low levels of 3,4-MDPHP (but not of 2-Cl-4,5-MDMA). Finally, electrophysiological patch-clamp recordings in the rostral ventral tegmental area (rVTA) showed that both drugs are able to increase the firing rate of rVTA dopaminergic neurons in males but not in females, confirming the sex dimorphic effects of these two NPSs. Altogether, this study demonstrates that 3,4-MDPHP and 2-Cl-4,5-MDMA are unlikely to induce dependence in occasional users but can induce other effects at both central and peripheral levels that may significantly differ between males and females.
Collapse
|
3
|
Theunissen EL, Reckweg JT, Hutten NRPW, Kuypers KPC, Toennes SW, Neukamm MA, Halter S, Ramaekers JG. Psychotomimetic symptoms after a moderate dose of a synthetic cannabinoid (JWH-018): implications for psychosis. Psychopharmacology (Berl) 2022; 239:1251-1261. [PMID: 33501595 PMCID: PMC9110546 DOI: 10.1007/s00213-021-05768-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are the largest class of novel psychoactive substances (NPS) and are associated with an increased risk of overdosing and adverse events such as psychosis. JWH-018 is one of the earliest SCs and still widely available in large parts of the world. Controlled studies to assess the safety and behavioural profiles of SCs are extremely scarce. AIM The current study was designed to assess the psychotomimetic effects of a moderate dose of JWH-018. METHODS Twenty-four healthy participants (10 males, 14 females) entered a placebo-controlled, double blind, within-subjects trial and inhaled vapour of placebo or 75μg/kg bodyweight JWH-018. To ascertain a minimum level of intoxication, a booster dose of JWH-018 was administered on an as-needed basis. The average dose of JWH-018 administered was 5.52 mg. Subjective high, dissociative states (CADSS), psychedelic symptoms (Bowdle), mood (POMS) and cannabis reinforcement (SCRQ) were assessed within a 4.5-h time window after drug administration. RESULTS JWH-018 caused psychedelic effects, such as altered internal and external perception, and dissociative effects, such as amnesia, derealisation and depersonalisation and induced feelings of confusion. CONCLUSION Overall, these findings suggest that a moderate dose of JWH-018 induces pronounced psychotomimetic symptoms in healthy participants with no history of mental illness, which confirms that SCs pose a serious risk for public health.
Collapse
Affiliation(s)
- Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
4
|
Effects of Cannabinoid Exposure during Neurodevelopment on Future Effects of Drugs of Abuse: A Preclinical Perspective. Int J Mol Sci 2021; 22:ijms22189989. [PMID: 34576153 PMCID: PMC8472179 DOI: 10.3390/ijms22189989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The endocannabinoid system plays a central role in the earliest stages of embryonic, postnatal and adolescent neurodevelopment. Aberrant activity of this system at key developmental phases has been shown to affect neural development. The aim of this review is to synthesise and analyse preclinical insights within rodent populations, focusing on the effects that perinatal (embryonic, gestational and early postnatal developmental stages) and adolescent (postnatal day 21–60) cannabinoid exposure impose across time on the subsequent activity of various drugs of abuse. Results in rodents show that exposure to cannabinoids during the perinatal and adolescent period can lead to multifaceted behavioural and molecular changes. In the perinatal period, significant effects of Δ9-THC exposure on subsequent opiate and amphetamine reward-related behaviours were observed primarily in male rodents. These effects were not extended to include cocaine or alcohol. In adolescence, various cannabinoid agonists were used experimentally. This array of cannabinoids demonstrated consistent effects on opioids across sex. In contrast, no significant effects were observed regarding the future activity of amphetamines and cocaine. However, these studies focused primarily on male rodents. In conclusion, numerous gaps and limitations are apparent in the current body of research. The sparsity of studies analysing the perinatal period must be addressed. Future research within both periods must also focus on delineating sex-specific effects, moving away from a male-centric focus. Studies should also aim to utilise more clinically relevant cannabinoid treatments.
Collapse
|
5
|
Determination of synthetic cannabinoids in randomly urine samples collected from probationers in Turkey. Forensic Sci Int 2021; 322:110752. [PMID: 33735632 DOI: 10.1016/j.forsciint.2021.110752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Synthetic cannabinoids are a significant public health and safety problem that complicates drug tests with their ever-changing structures in our country and worldwide. The fact that most synthetic cannabinoids cannot be detected in biological samples by routine drug of abuse screening tests also causes an increase in the use of these substances in return. In this study, 500 urine samples of randomly selected probationers, analyzed with an enzymatic immunoassay test at Ege University Institute of Drug Addiction, Toxicology and Pharmaceutical Sciences (BATI) and tested negative, were then selected for retrospective analysis. Synthetic cannabinoids and their metabolites were quantitatively scanned in the collected urine samples via the liquid-liquid extraction method with the LC-MS/MS. Of the 500 studied urine samples, 108 (21.6%) were positive for 20 synthetic cannabinoids and their metabolites. The two most detected synthetic cannabinoids were 5F-NPB-22 (58%) and (S)-AB-FUBINACA (36%), and their mean concentrations were 72.94 ± 47.51 ng/mL and 5.84 ± 14.7 ng/mL, respectively. These results were also compared with national statistics from the general population. It resulted that immunoassay screening tests used in this study were insufficient, and urine samples should be studied in clinical and forensic cases with a validated chromatographic method.
Collapse
|
6
|
Robson H, Braund R, Glass M, Ashton J, Tatley M. Synthetic cannabis: adverse events reported to the New Zealand Pharmacovigilance Centre. Clin Toxicol (Phila) 2020; 59:472-479. [DOI: 10.1080/15563650.2020.1828592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hunter Robson
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Rhiannon Braund
- New Zealand Pharmacovigilance Centre, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Janelle Ashton
- New Zealand Pharmacovigilance Centre, University of Otago, Dunedin, New Zealand
| | - Michael Tatley
- New Zealand Pharmacovigilance Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
McClements DJ. Enhancing Efficacy, Performance, and Reliability of Cannabis Edibles: Insights from Lipid Bioavailability Studies. Annu Rev Food Sci Technol 2020; 11:45-70. [DOI: 10.1146/annurev-food-032519-051834] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The legal sale of cannabis-enriched foods and beverages for medical or recreational purposes is increasing in many states and countries, especially in North America and Europe. These food-based cannabis delivery systems vary considerably in their compositions and structures, ranging from low-viscosity watery beverages to solid fatty chocolates. The rate and extent of release of the bioactive components in cannabis within the human gastrointestinal tract (GIT) affect their health and psychoactive effects. Studies with other types of hydrophobic bioactives, such as nutraceuticals and vitamins, have shown that food composition and structure have a major impact on their bioaccessibility, transformation, and absorption within the GIT, thereby influencing their bioavailability and bioactivity. This review outlines how insights on the bioavailability of other lipophilic bioactives can be used to facilitate the design of more efficacious and consistent cannabis-enriched products intended for oral consumption. In particular, the importance of food-matrix composition (such as fat type and level) and structural organization (such as fat domain dimensions) are discussed.
Collapse
|
8
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
9
|
Ozturk HM, Yetkin E, Ozturk S. Synthetic Cannabinoids and Cardiac Arrhythmia Risk: Review of the Literature. Cardiovasc Toxicol 2020; 19:191-197. [PMID: 31030341 DOI: 10.1007/s12012-019-09522-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic cannabinoids (SCBs) are widely used recreational substances especially among adults. Although they have been considered as safe during the marketing process, our knowledge about their adverse effects has evolved since years. SCBs are associated with various cardiac events including acute myocardial infarction and sudden cardiac death. There is also growing evidence that SCBs are associated with cardiac arrhythmia development both in acute and chronic exposure. SCBs have been shown to be associated with both supraventricular and ventricular arrhythmias. However, the exact mechanism of the SCB related arrhythmia remains unknown. Understanding the exact association and possible mechanisms may help us to identify high risk patients at an early stage and to develop treatment modalities to prevent or reverse the arrhythmic effects of SCBs.
Collapse
Affiliation(s)
| | - Ertan Yetkin
- Department of Cardiology, Istinye University Liv Hospital, Istanbul, Turkey
| | - Selcuk Ozturk
- Cardiology Clinic, Ankara Education and Research Hospital, Ankara, Turkey.
| |
Collapse
|
10
|
Wouters E, Walraed J, Robertson MJ, Meyrath M, Szpakowska M, Chevigné A, Skiniotis G, Stove C. Assessment of Biased Agonism among Distinct Synthetic Cannabinoid Receptor Agonist Scaffolds. ACS Pharmacol Transl Sci 2019; 3:285-295. [PMID: 32296768 DOI: 10.1021/acsptsci.9b00069] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Cannabinoid receptor 1 (CB1) is a key drug target for a number of diseases, including metabolic syndromes and neuropathic pain. Most of the typical cannabinoid ligands provoke psychotropic side effects that impair their therapeutic utility. As of today, it is not yet clearly known which structural features of cannabinoid ligands determine a preference toward specific signaling pathways. Distinct bioassays are typically used to elucidate signaling preferences. However, these are often based on different cell lines and use different principles and/or read-outs, which makes straightforward assessment of "ligand bias" difficult. Within this context, this study is the first to investigate ligand bias among synthetic cannabinoid receptor agonists (SCRAs) in as closely analogous conditions as possible, by applying a new functional complementation-based assay panel to assess the recruitment of Gαi protein or β-arrestin2 to CB1. In a panel of 21 SCRAs, chosen to cover a broad diversity in chemical structures, distinct, although often subtle, preferences toward specific signaling pathways were observed. Relative to CP55940, here considered as a "balanced" reference agonist, most of the selected SCRAs (e.g., 5F-APINACA, CUMYL-PEGACLONE, among others) displayed preferred signaling through the β-arrestin2 pathway, whereas MMB-CHMICA could serve as a potential "balanced" agonist. Interestingly, EG-018 was the only SCRA showing a significant (10-fold) preference toward G protein over β-arrestin2 recruitment. While it is currently unclear what this exactly means in terms of abuse potential and/or toxicity, the approach proposed here may allow construction of a knowledge base that in the end may allow better insight into the structure-"functional" activity relationship of these compounds. This may aid the development of new therapeutics with less unwanted psychoactive effects.
Collapse
Affiliation(s)
- Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jolien Walraed
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Michael Joseph Robertson
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States.,Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States.,Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
11
|
Abd-Elsalam WH, Alsherbiny MA, Kung JY, Pate DW, Löbenberg R. LC–MS/MS quantitation of phytocannabinoids and their metabolites in biological matrices. Talanta 2019; 204:846-867. [PMID: 31357374 DOI: 10.1016/j.talanta.2019.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022]
|
12
|
Sharp P, Hudson S, Hikin L, Smith PR, Morley SR. The changing pattern of synthetic cannabinoid use within England, April 2014 to March 2018. MEDICINE, SCIENCE, AND THE LAW 2019; 59:180-186. [PMID: 31068061 DOI: 10.1177/0025802419845796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
IntroductionSynthetic cannabinoids (SC), designed to mimic delta-9-tetrahydrocannabinol, the natural component of cannabis, have seen a rapid increase in popularity since 2008. Nearly 200 SC have been detected to date. However, there are limited data available reporting the changing trend in their use. Here, we report the temporal changes in SC use, as well as the demographic profile of users.MethodIn this retrospective study, case background and toxicology findings were collected from forensic toxicology reports dated between 1 April 2014 and 31 March 2018 that included a positive result for the presence of one or more SC and/or metabolites.ResultsA total of 113 cases were positive for SC; 103 (91.2%) of the individuals were male, with a median age of 40 years (range 15–80 years). Over the four-year time period, a total of 12 different SC were detected; seven of these SC were detected in more than six cases each. The most commonly detected SC had a lifetime of one to two years before being replaced. Discussion and conclusion: Our data show that SC were being used for approximately one to two years before they were superseded by newer structures. It is therefore extremely difficult to predict future patterns of SC use and is consequently not advisable to offer limited screening.
Collapse
Affiliation(s)
| | - Simon Hudson
- 2 Sport and Specialised Analytical Services LGC, UK
| | - Laura Hikin
- 3 Toxicology Unit, Leicester Royal Infirmary, UK
| | - Paul R Smith
- 3 Toxicology Unit, Leicester Royal Infirmary, UK
| | | |
Collapse
|
13
|
Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang GJ. Cannabis Addiction and the Brain: a Review. FOCUS: JOURNAL OF LIFE LONG LEARNING IN PSYCHIATRY 2019; 17:169-182. [PMID: 32021587 DOI: 10.1176/appi.focus.17204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
(©Zehra A, Liuck, Manza P, Wiers CE, Volkow ND Wergh J, 2018. Reprinted with permission from Journal of Neuroimmune Pharmacology (2018) 13:438-452).
Collapse
|
14
|
Zehra A, Burns J, Liu CK, Manza P, Wiers CE, Volkow ND, Wang GJ. Cannabis Addiction and the Brain: a Review. J Neuroimmune Pharmacol 2018; 13:438-452. [PMID: 29556883 PMCID: PMC6223748 DOI: 10.1007/s11481-018-9782-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Cannabis is the most commonly used substance of abuse in the United States after alcohol and tobacco. With a recent increase in the rates of cannabis use disorder (CUD) and a decrease in the perceived risk of cannabis use, it is imperative to assess the addictive potential of cannabis. Here we evaluate cannabis use through the neurobiological model of addiction proposed by Koob and Volkow. The model proposes that repeated substance abuse drives neurobiological changes in the brain that can be separated into three distinct stages, each of which perpetuates the cycle of addiction. Here we review previous research on the acute and long-term effects of cannabis use on the brain and behavior, and find that the three-stage framework of addiction applies to CUD in a manner similar to other drugs of abuse, albeit with some slight differences. These findings highlight the urgent need to conduct research that elucidates specific neurobiological changes associated with CUD in humans.
Collapse
Affiliation(s)
- Amna Zehra
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Jamie Burns
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Christopher Kure Liu
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive 31, Room B2L124, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Struik D, Sanna F, Fattore L. The Modulating Role of Sex and Anabolic-Androgenic Steroid Hormones in Cannabinoid Sensitivity. Front Behav Neurosci 2018; 12:249. [PMID: 30416437 PMCID: PMC6212868 DOI: 10.3389/fnbeh.2018.00249] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/05/2018] [Indexed: 02/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide. Although its use is associated with multiple adverse health effects, including the risk of developing addiction, recreational and medical cannabis use is being increasing legalized. In addition, use of synthetic cannabinoid drugs is gaining considerable popularity and is associated with mass poisonings and occasional deaths. Delineating factors involved in cannabis use and addiction therefore becomes increasingly important. Similarly to other drugs of abuse, the prevalence of cannabis use and addiction differs remarkably between males and females, suggesting that sex plays a role in regulating cannabinoid sensitivity. Although it remains unclear how sex may affect the initiation and maintenance of cannabis use in humans, animal studies strongly suggest that endogenous sex hormones modulate cannabinoid sensitivity. In addition, synthetic anabolic-androgenic steroids alter substance use and further support the importance of sex steroids in controlling drug sensitivity. The recent discovery that pregnenolone, the precursor of all steroid hormones, controls cannabinoid receptor activation corroborates the link between steroid hormones and the endocannabinoid system. This article reviews the literature regarding the influence of endogenous and synthetic steroid hormones on the endocannabinoid system and cannabinoid action.
Collapse
Affiliation(s)
- Dicky Struik
- Department of Biomedical Sciences, University of Cagliari - Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari - Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| |
Collapse
|
16
|
Miliano C, Margiani G, Fattore L, De Luca MA. Sales and Advertising Channels of New Psychoactive Substances (NPS): Internet, Social Networks, and Smartphone Apps. Brain Sci 2018; 8:E123. [PMID: 29966280 PMCID: PMC6071095 DOI: 10.3390/brainsci8070123] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
In the last decade, the trend of drug consumption has completely changed, and several new psychoactive substances (NPS) have appeared on the drug market as legal alternatives to common drugs of abuse. Designed to reproduce the effects of illegal substances like cannabis, ecstasy, cocaine, or ketamine, NPS are only in part controlled by UN conventions and represent an emerging threat to global public health. The effects of NPS greatly differ from drug to drug and relatively scarce information is available at present about their pharmacology and potential toxic effects. Yet, compared to more traditional drugs, more dangerous short- and long-term effects have been associated with their use, and hospitalizations and fatal intoxications have also been reported after NPS use. In the era of cyberculture, the Internet acts as an ideal platform to promote and market these compounds, leading to a global phenomenon. Hidden by several aliases, these substances are sold across the web, and information about consumption is shared by online communities through drug fora, YouTube channels, social networks, and smartphone applications (apps). This review intends to provide an overview and analysis of social media that contribute to the popularity of NPS especially among young people. The possibility of using the same channels responsible for their growing diffusion to make users aware of the risks associated with NPS use is proposed.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-SP 8, Km 0.700-09042, Monserrato, 09121 Cagliari, Italy.
| | - Giulia Margiani
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-SP 8, Km 0.700-09042, Monserrato, 09121 Cagliari, Italy.
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cittadella Universitaria di Monserrato-SP 8, Km 0.700-09042, Monserrato, 09100 Cagliari, Italy.
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato-SP 8, Km 0.700-09042, Monserrato, 09121 Cagliari, Italy.
| |
Collapse
|
17
|
Banister SD, Connor M. The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonist New Psychoactive Substances: Evolution. Handb Exp Pharmacol 2018; 252:191-226. [PMID: 30105473 DOI: 10.1007/164_2018_144] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are the largest and most structurally diverse class of new psychoactive substances (NPS). Although the earliest SCRA NPS were simply repurposed from historical academic manuscripts or pharmaceutical patents describing cannabinoid ligands, recent examples bear hallmarks of rational design. SCRA NPS manufacturers have applied traditional medicinal chemistry strategies (such as molecular hybridization, bioisosteric replacement, and scaffold hopping) to existing cannabinoid templates in order to generate new molecules that circumvent structure-based legislation. Most SCRAs potently activate cannabinoid type 1 and type 2 receptors (CB1 and CB2, respectively), with the former contributing to the psychoactivity of these substances. SCRAs are generally more toxic than the Δ9-tetrahydrocannabinol (Δ9-THC) found in cannabis, and this may be due to ligand bias, metabolism, or off-target activity. This chapter will chart the evolution of recently identified SCRA NPS chemotypes, as well as their putative manufacturing by-products and thermolytic degradants, and describe structure-activity relationships within each class.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| | - Mark Connor
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|