1
|
Gessner A, König J, Wenisch P, Heinrich MR, Stopfer P, Fromm MF, Müller F. New Biomarkers for Renal Transporter-Mediated Drug-Drug Interactions: Metabolomic Effects of Cimetidine, Probenecid, Verapamil, and Rifampin in Humans. Clin Pharmacol Ther 2025; 117:130-142. [PMID: 39148267 PMCID: PMC11652812 DOI: 10.1002/cpt.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
The inhibition of renal transport proteins organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATE1, MATE2-K), and organic anion transporters (OAT1, OAT3) causes clinically relevant drug-drug interactions (DDI). Endogenous biomarkers could be used to improve risk prediction of such renal DDIs. While a number of biomarkers for renal DDIs have been described so far, multiple criteria for valid biomarkers have frequently not been investigated, for example, specificity, metabolism, or food effects. Therefore, there is a need for novel biomarkers of renal DDIs. Here, we investigated the global metabolomic effects following the administration of two classical inhibitors of renal transport proteins [cimetidine (OCT2/MATEs), probenecid (OATs)] in human plasma and urine of healthy volunteers. Additionally, we investigated metabolomic effects of two inhibitors of other transporters [verapamil (P-glycoprotein), rifampin (organic anion transporting polypeptides)] as controls. This analysis shows that both cimetidine and probenecid affect compounds involved in caffeine metabolism, carnitines, and sulfates. Hierarchical cluster analysis of the effects of all four inhibitors on endogenous compounds identified multiple promising new sensitive and specific biomarker candidates for OCT2/MATE- or OAT-mediated DDIs. For OCT2/MATEs, 5-amino valeric acid betaine (median log2-fold change of estimated renal elimination: -3.62) presented itself as a promising candidate. For OATs, estimated renal elimination of 7-methyluric acid and cinnamoylglycine (median log2-fold changes -3.10 and -1.92, respectively) was both sensitive and specific. This study provides comprehensive information on metabolomic effects of transport protein inhibition in humans and identifies putative new sensitive and specific biomarkers for renal transporter-mediated DDIs.
Collapse
Affiliation(s)
- Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Markus R. Heinrich
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Department of Chemistry and Pharmacy, Pharmaceutical ChemistryFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- FAU NeW – Research Center New Bioactive CompoundsFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RissGermany
| |
Collapse
|
2
|
Iversen DB, Dunvald AD, Ernst MT, Abtahi S, Souverein P, Klungel O, Jeppesen GB, Nielsen F, Brøsen K, Hammer HS, Pötz O, Damkier P, Järvinen E, Pottegård A, Stage TB. Dicloxacillin is an inducer of intestinal P-glycoprotein but neither dicloxacillin nor flucloxacillin increases the risk of stroke/systemic embolism in direct oral anticoagulant users. Br J Clin Pharmacol 2024; 90:3252-3262. [PMID: 39160000 PMCID: PMC11602906 DOI: 10.1111/bcp.16190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024] Open
Abstract
AIM We aimed to assess if dicloxacillin/flucloxacillin reduces the therapeutic efficacy of direct oral anticoagulants (DOACs) and the underlying molecular mechanism. METHODS In a randomized, crossover study, we assessed whether dicloxacillin reduces oral absorption of drugs through P-glycoprotein (P-gp) during 10 and 28 days of treatment. To study the impact of dicloxacillin/flucloxacillin on intestinal and hepatic expression of P-gp in vitro, we usd LS174T cells and 3D spheroids of primary human hepatocytes. Finally, we used nationwide Danish health registries and the UK's Clinical Practice Research Datalink to estimate hazard ratios (HRs) for the risk of stroke and systemic embolism following dicloxacillin/flucloxacillin exposure among DOAC users, using phenoxymethylpenicillin and amoxicillin as active comparators. RESULTS Dicloxacillin reduced the area under the curve of dabigatran to a geometric mean ratio 10 days of 0.67 (95% confidence interval [CI]: 0.42-1.1) and geometric mean ratio 28 days of 0.72 (95% CI: 0.39-1.4), suggesting reduced oral absorption via increased P-gp expression. In vitro, dicloxacillin raised P-gp expression in both intestinal and liver cells, while flucloxacillin only affected liver cells. In the pharmacoepidemiologic study, dicloxacillin and flucloxacillin were not associated with increased risk of stroke/systemic embolism (dicloxacillin vs. phenoxymethylpenicillin HR: 0.93, 95% CI: 0.72-1.2; flucloxacillin vs. amoxicillin HR: 0.89, 95% CI: 0.51-1.5). CONCLUSIONS Dicloxacillin increases expression of intestinal P-gp, leading to reduced oral absorption of dabigatran. However, concomitant use of dicloxacillin/flucloxacillin was not associated with stroke and systemic embolism among DOAC users, suggesting no clinical impact from the drug-drug interaction between dicloxacillin/flucloxacillin and DOACs.
Collapse
Affiliation(s)
- Ditte B. Iversen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Ann‐Cathrine Dalgård Dunvald
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Martin Thomsen Ernst
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Shahab Abtahi
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht Universitythe Netherlands
| | - Patrick Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht Universitythe Netherlands
| | - Olaf Klungel
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical SciencesUtrecht Universitythe Netherlands
| | - Glenn Brøde Jeppesen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Flemming Nielsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Kim Brøsen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | | | - Oliver Pötz
- Signatope GmbHReutlingenGermany
- NMI Natural and Medical Sciences Institute at the University of TuebingenReutlingenGermany
| | - Per Damkier
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Erkka Järvinen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Anton Pottegård
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Tore B. Stage
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Department of Clinical PharmacologyOdense University HospitalOdenseDenmark
| |
Collapse
|
3
|
Zhao D, Huang P, Yu L, He Y. Pharmacokinetics-Pharmacodynamics Modeling for Evaluating Drug-Drug Interactions in Polypharmacy: Development and Challenges. Clin Pharmacokinet 2024; 63:919-944. [PMID: 38888813 DOI: 10.1007/s40262-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Polypharmacy is commonly employed in clinical settings. The potential risks of drug-drug interactions (DDIs) can compromise efficacy and pose serious health hazards. Integrating pharmacokinetics (PK) and pharmacodynamics (PD) models into DDIs research provides a reliable method for evaluating and optimizing drug regimens. With advancements in our comprehension of both individual drug mechanisms and DDIs, conventional models have begun to evolve towards more detailed and precise directions, especially in terms of the simulation and analysis of physiological mechanisms. Selecting appropriate models is crucial for an accurate assessment of DDIs. This review details the theoretical frameworks and quantitative benchmarks of PK and PD modeling in DDI evaluation, highlighting the establishment of PK/PD modeling against a backdrop of complex DDIs and physiological conditions, and further showcases the potential of quantitative systems pharmacology (QSP) in this field. Furthermore, it explores the current advancements and challenges in DDI evaluation based on models, emphasizing the role of emerging in vitro detection systems, high-throughput screening technologies, and advanced computational resources in improving prediction accuracy.
Collapse
Affiliation(s)
- Di Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| |
Collapse
|
4
|
Hu Z, Wang W, Yang H, Zhao F, Sha C, Mi W, Yin S, Wang H, Tian J, Ye L. Metabolism, Disposition, Excretion, and Potential Transporter Inhibition of 7-16, an Improving 5-HT 2A Receptor Antagonist and Inverse Agonist for Parkinson's Disease. Molecules 2024; 29:2184. [PMID: 38792047 PMCID: PMC11124362 DOI: 10.3390/molecules29102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Compound 7-16 was designed and synthesized in our previous study and was identified as a more potential selective 5-HT2A receptor antagonist and inverse agonist for treating Parkinson's disease psychosis (PDP). Then, the metabolism, disposition, and excretion properties of 7-16 and its potential inhibition on transporters were investigated in this study to highlight advancements in the understanding of its therapeutic mechanisms. The results indicate that a total of 10 metabolites of 7-16/[14C]7-16 were identified and determined in five species of liver microsomes and in rats using UPLC-Q Exactive high-resolution mass spectrometry combined with radioanalysis. Metabolites formed in human liver microsomes could be covered by animal species. 7-16 is mainly metabolized through mono-oxidation (M470-2) and N-demethylation (M440), and the CYP3A4 isozyme was responsible for both metabolic reactions. Based on the excretion data in bile and urine, the absorption rate of 7-16 was at least 74.7%. 7-16 had weak inhibition on P-glycoprotein and no effect on the transport activity of OATP1B1, OATP1B3, OAT1, OAT3, and OCT2 transporters. The comprehensive pharmacokinetic properties indicate that 7-16 deserves further development as a new treatment drug for PDP.
Collapse
Affiliation(s)
- Zhengping Hu
- Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai 264003, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Huijie Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Fengjuan Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Chunjie Sha
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Wei Mi
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Shuying Yin
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (W.W.)
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd., Yantai 264003, China (F.Z.)
| | - Liang Ye
- School of Public Health, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
5
|
Gessner A, Müller F, Wenisch P, Heinrich MR, König J, Stopfer P, Fromm MF. A Metabolomic Analysis of Sensitivity and Specificity of 23 Previously Proposed Biomarkers for Renal Transporter-Mediated Drug-Drug Interactions. Clin Pharmacol Ther 2023; 114:1058-1072. [PMID: 37540045 DOI: 10.1002/cpt.3017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Endogenous biomarkers are discussed as tools for detection of drug-drug interactions (DDIs) mediated by renal transport proteins, such as organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATE1 and MATE2-K) and organic anion transporters (OAT1 and OAT3). Whereas sensitivity of some endogenous biomarkers against at least one clinical transporter inhibitor has frequently been shown, intra-study comparisons of the extent of effects of inhibitors on different biomarkers are frequently lacking. Moreover, in vivo specificity of such discussed biomarkers has frequently not been studied. We therefore investigated changes of 10 previously described putative biomarkers for inhibition of OCT2/MATEs, as well as 15 previously described putative biomarkers for OATs in human plasma and urine samples of healthy volunteers in response to treatment with 4 inhibitors of transport proteins [verapamil (P-glycoprotein), rifampin (organic anion transporting polypeptides), cimetidine (OCT2/MATEs), and probenecid (OATs)]. Two of the putative biomarkers had been suggested for both OCT2/MATEs and OATs. All substances were unequivocally identified in an untargeted metabolomics assay. The OCT2/MATE biomarkers choline and trimethylamine N-oxide were both sensitive and specific (median log2-fold changes -1.18 in estimated renal elimination and -0.85 in urinary excretion, respectively). For renal OATs, indoleacetyl glutamine and indoleacetic acid (median log2-fold changes -3.77 and -2.85 in estimated renal elimination, respectively) were the candidates for sensitive and specific biomarkers with the most extensive change, followed by taurine, indolelactic acid, and hypoxanthine. This comprehensive study adds further knowledge on sensitivity and specificity of 23 previously described biomarkers of renal OCT2/MATE- and OAT-mediated DDIs.
Collapse
Affiliation(s)
- Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Pia Wenisch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Lin K, Kong X, Tao X, Zhai X, Lv L, Dong D, Yang S, Zhu Y. Research Methods and New Advances in Drug-Drug Interactions Mediated by Renal Transporters. Molecules 2023; 28:5252. [PMID: 37446913 DOI: 10.3390/molecules28135252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Kong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
7
|
Takubo H, Bessho K, Watari R, Shigemi R. Quantitative prediction of OATP1B-mediated drug-drug interactions using endogenous biomarker coproporphyrin I. Xenobiotica 2022; 52:397-404. [PMID: 35638858 DOI: 10.1080/00498254.2022.2085210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
1. Evaluation of the organic anion transporting polypeptide (OATP) 1B-mediated drug-drug interaction (DDI) potential is important for drug development. The focus of this study was coproporphyrin I (CP-I), an endogenous OATP1B biomarker.2. We investigated a new approach to OATP1B-mediated DDI prediction based on the mechanistic static pharmacokinetics (MSPK) model.3. The ratio of the area under the plasma concentration-time curve (AUCR) with and without co-administration of rifampicin (a typical OATP1B inhibitor) was found for CP-I and OATP1B substrate, respectively, and was then used to derive the correlation curve equation. The AUCR with and without co-administration of another OATP1B inhibitor than rifampicin was then predicted for the OATP1B substrates by substituting the AUCR of CP-I in the correlation curve equation to verify the predictability of the AUCR of the OATP1B substrates.4. The derived correlation curve equation between CP-I and the OATP1B substrates of the AUCRs with and without co-administration of rifampicin matched the observed AUCRs well. Regarding pitavastatin, rosuvastatin and pravastatin, 92.9% of the predicted AUCR values were within a two-fold range of the observed values, indicating that this approach may be a good way to quantitatively predict DDI potential.
Collapse
Affiliation(s)
- Hiroaki Takubo
- Japan Pharmaceutical Manufacturers Association.,Torii Pharmaceutical Co., Ltd., Osaka, Japan
| | - Koji Bessho
- Japan Pharmaceutical Manufacturers Association.,Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Ryosuke Watari
- Japan Pharmaceutical Manufacturers Association.,Shionogi & Co., Ltd., Osaka, Japan
| | - Ryota Shigemi
- Japan Pharmaceutical Manufacturers Association.,Bayer Yakuhin, Ltd., Osaka, Japan
| |
Collapse
|
8
|
Li Y, Talebi Z, Chen X, Sparreboom A, Hu S. Endogenous Biomarkers for SLC Transporter-Mediated Drug-Drug Interaction Evaluation. Molecules 2021; 26:5500. [PMID: 34576971 PMCID: PMC8466752 DOI: 10.3390/molecules26185500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism, and excretion of xenobiotic substrates, as well as endogenous compounds. The evaluation of transporter-mediated drug-drug interactions (DDIs) is an important consideration during the drug development process and can guide the safe use of polypharmacy regimens in clinical practice. In recent years, several endogenous substrates of drug transporters have been identified as potential biomarkers for predicting changes in drug transport function and the potential for DDIs associated with drug candidates in early phases of drug development. These biomarker-driven investigations have been applied in both preclinical and clinical studies and proposed as a predictive strategy that can be supplanted in order to conduct prospective DDIs trials. Here we provide an overview of this rapidly emerging field, with particular emphasis on endogenous biomarkers recently proposed for clinically relevant uptake transporters.
Collapse
Affiliation(s)
| | | | | | | | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; (Y.L.); (Z.T.); (X.C.); (A.S.)
| |
Collapse
|