1
|
Wani NR, Dar AH, Dash KK, Pandey VK, Srivastava S, Jan SY, Deka P, Sabahi N. Recent advances in the production of bionanomaterials for development of sustainable food packaging: A comprehensive review. ENVIRONMENTAL RESEARCH 2023; 237:116948. [PMID: 37611789 DOI: 10.1016/j.envres.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/08/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Polymers originating from natural macromolecule based polymeric materials have gained popularity due to the demand for green resources to develop unique, eco-friendly, and high-quality biopolymers. The objective of this review is to address the utilization of bionanomaterials to improve food quality, safety, security, and shelf life. Bionanomaterials are synthesized by integrating biological molecules with synthetic materials at the nanoscale. Nanostructured materials derived from biopolymers such as cellulose, chitin, or collagen can be employed for the development of sustainable food packaging. Green materials are cost-effective, biocompatible, biodegradable, and renewable. The interaction of nanoparticles with biological macromolecules must be analyzed to determine the properties of the packaging film. The nanoparticles control the growth of bacteria that cause food spoiling by releasing distinctive chemicals. Bio-nanocomposites and nanoencapsulation systems have been used in antimicrobial bio-based packaging solutions to improve the efficiency of synergism. Nanomaterials can regulate gas and moisture permeability, screen UV radiation, and limit microbial contamination, keeping the freshness and flavor of the food. Food packaging based on nanoparticles embedded biopolymers can alleviate environmental concerns by lowering the amount of packaging materials required and enhancing packaging recyclability. This results in less waste and a more eco-sustainable approach to food packaging. The study on current advances in the production of bionanomaterials for development of sustainable food packaging involves a detailed investigation of the available data from existing literature, as well as the compilation and analysis of relevant research results using statistical approaches.
Collapse
Affiliation(s)
- Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190025, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, 192122, India.
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET), Malda, West Bengal, 732141, India.
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Shivangi Srivastava
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Suhaib Yousuf Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190025, India
| | - Pinky Deka
- Department of Applied Biology, University of Science & Technology Meghalaya, Techno City, 793200, India
| | - Najmeh Sabahi
- Department of Food Science and Technology, Tabriz University, Tabriz, Iran
| |
Collapse
|
2
|
Toiserkani H. Synthesis and characterization of nanocomposites based on polyimide bearing benzimidazole side groups filled with titania nanoparticles. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2192290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Hojjat Toiserkani
- Department of Polymer Engineering, College of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
3
|
Idumah CI. Recently emerging advancements in thermal conductivity and flame retardancy of MXene polymeric nanoarchitectures. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C. I. Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
4
|
Idumah CI. MXene polymeric nanoarchitectures mechanical, deformation, and failure mechanism: A review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C. I. Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
5
|
Casalini S, Giacinti Baschetti M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1021-1041. [PMID: 35396735 PMCID: PMC10084250 DOI: 10.1002/jsfa.11918] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, interest in sustainable food packaging systems with additional functionality, able to increase the shelf life of products, has grown steadily. Following this trend, the present review analyzes the state of the art of this active renewable packaging. The focus is on antimicrobial systems containing nanocellulose and chitosan, as support for the incorporation of essential oils. These are the most sustainable and readily available options to produce completely natural active packaging materials. After a brief overview of the different active packaging technologies, the main features of nanocellulose, chitosan, and of the different essential oils used in the field of active packaging are introduced and described. The latest findings about the nanocellulose- and chitosan-based active packaging are then presented. The antimicrobial effectiveness of the different solutions is discussed, focusing on their effect on other material properties. The effect of the different inclusion strategies is also reviewed considering both in vivo and in vitro studies, in an attempt to understand more promising solutions and possible pathways for further development. In general, essential oils are very successful in exerting antimicrobial effects against the most diffused gram-positive and gram-negative bacteria, and affecting other material properties (tensile strength, water vapor transmission rate) positively. Due to the wide variety of biopolymer matrices and essential oils available, it is difficult to create general guidelines for the development of active packaging systems. However, more attention should be dedicated to sensory analysis, release kinetics, and synergetic action of different essential oils to optimize the active packaging on different food products. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sara Casalini
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Materials Engineering‐DICAMUniversity of BolognaBolognaItaly
| |
Collapse
|
6
|
Idumah CI. Recent advancements in electromagnetic interference shielding of polymer and mxene nanocomposites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2089581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Faculty of Engineering, Department of Polymer Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
7
|
Idumah CI. Phosphorene polymeric nanocomposites for biomedical applications: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
8
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Nnamdi Azikiwe University, Faculty of Engineering, Awka, Nigeria
| |
Collapse
|
9
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
10
|
Idumah CI. Emerging advancements in MXene polysaccharide bionanoarchitectures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2098297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Anambra State, Nigeria
| |
Collapse
|
11
|
Idumah CI. Recently emerging advancements in polymeric cryogel nanostructures and biomedical applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University Awka, Awka, Nigeria
| |
Collapse
|
12
|
Manimekalai B, Arulmozhi R, Krishnan MA, Sivanesan S. Consequence of COVID-19 occurrences in wastewater with promising recognition and healing technologies: A review. ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY 2022; 42:e13937. [PMID: 35942312 PMCID: PMC9350101 DOI: 10.1002/ep.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Presently, the coronavirus (COVID-19) epidemic presents a major threat to global communal fitness also socio-financial development. Ignoring worldwide isolation as well as shutdown attempts, the occurrence of COVID-19 infected patients continues to be extremely large. Nonetheless, COVID-19's final course, combined with the prevalence of emerging contaminants (antibiotics, pharmaceuticals, nanoplastics, pesticides, and so forth) in wastewater treatment plants (WWTPs), presents a major problem in wastewater situations. The research, therefore, intends near examine an interdisciplinary as well as technical greet to succor COVID-19 with subsequent COVID cycles of an epidemic as a framework for wastewater treatment settings. This research investigated the potential for wastewater-based epidemiology to detect SARS-CoV-2 also the enzymes happening in wastewater conditions. In addition, a chance for the incorporation into the WWTPs of emerging and robust technologies such as mesmeric nanobiotechnology, electrochemical oxidation, microscopy, and membrane processes to enhance the overall likelihood of environmental consequences of COVID-19 also strengthen such quality of water is resolved.
Collapse
Affiliation(s)
- B. Manimekalai
- Centre for Environmental Studies, College of Engineering GuindyAnna UniversityChennaiIndia
| | - R. Arulmozhi
- Department of Applied Science and TechnologyAlagappa College of Technology, Anna UniversityChennaiIndia
| | | | - S. Sivanesan
- Department of Applied Science and TechnologyA.C.Tech, Anna UniversityChennaiIndia
| |
Collapse
|
13
|
Idumah CI. Recently Emerging Trends in Magnetic Polymer Hydrogel Nanoarchitectures. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
14
|
Development and characterization of antimicrobial and antioxidant whey protein-based films functionalized with Pecan (Carya illinoinensis) nut shell extract. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100710] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Idumah CI, Ezika AC. Recent advancements in hybridized polymer nano-biocomposites for tissue engineering. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1960344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Anthony Chidi Ezika
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and The Built Environment, Tshwane University of Technology, Pretoria, South Africa
| |
Collapse
|
16
|
Bellisario D, Quadrini F, Santo L, Montinaro N, Fustaino M, Pantano A. Hybrid nanocomposites with ultra-low filling content by nano-coating fragmentation. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1948060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Fabrizio Quadrini
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Santo
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Montinaro
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Mario Fustaino
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Antonio Pantano
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
17
|
El-Zahed MM, Baka ZA, Abou-Dobara MI, El-Sayed AK, Aboser MM, Hyder A. In vivo toxicity and antitumor activity of newly green synthesized reduced graphene oxide/silver nanocomposites. BIORESOUR BIOPROCESS 2021; 8:44. [PMID: 38650286 PMCID: PMC10992821 DOI: 10.1186/s40643-021-00400-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
A novel biosynthesis of dual reduced graphene oxide/silver nanocomposites (rGO/AgNC) using the crude metabolite of Escherichia coli D8 (MF06257) strain and sunlight is introduced in this work. Physicochemical analysis of these rGO/AgNC revealed that they are sheet-like structures having spherically shaped silver nanoparticles (AgNPs) with an average particle size of 8 to 17 nm, and their absorption peak ranged from 350 to 450 nm. The biosynthesized rGO/AgNC were characterized by UV-vis and FT-IR spectra, X-ray diffraction, Zeta potential and transmission electron microscopy. After the injection of these nanocomposites to mice, their uptake by the kidney and liver has been proven by the ultrastructural observation and estimation of the hepatic and renal silver content. These nanocomposites caused a moderate toxicity for both organs. Changes in the liver and kidney functions and histopathological effects had been observed. The rGO/AgNC revealed a remarkable antitumor effect. They showed a dose-dependent cytotoxic effect on Ehrlich ascites carcinoma (EAC) cells in vitro. Treatment of mice bearing EAC tumors intraperitoneally with 10 mg/kg rGO/AgNC showed an antiproliferative effect on EAC cells, reduced ascites volume, and maintained mice survival. The results indicate that this green synergy of silver nanoparticles with reduced graphene oxide may have a promising potential in cancer therapy.
Collapse
Affiliation(s)
- Mohamed M El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Zakaria A Baka
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed I Abou-Dobara
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ahmed K El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Magy M Aboser
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Department of Zoology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
18
|
Versatile nanocellulose-based nanohybrids: A promising-new class for active packaging applications. Int J Biol Macromol 2021; 182:1915-1930. [PMID: 34058213 DOI: 10.1016/j.ijbiomac.2021.05.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
The food packaging industry is rapidly growing as a consequence of the development of nanotechnology and changing consumers' preferences for food quality and safety. In today's globalization of markets, active packaging has achieved many advantages with the capability to absorb or release substances for prolonging the food shelf life over the traditional one. Therefore, it is critical to developing multifunctional active packaging materials from biodegradable polymers with active agents to decrease environmental challenges. This review article addresses the recent advances in nanocelluloses (NCs)- baseds nanohybrids with new function features in packaging, focusing on the various synthesis methods of NCs-based nanohybrids, and their reinforcing effects as active agents on food packaging properties. The applications of NCs-based nanohybrids as antioxidants, antimicrobial agents, and UV blocker absorbers for prolonging food shelf-life are also reviewed. Overall, these advantages make the CNs-based nanohybrids with versatile properties promising in food and packaging industries, which will impact more readership with concern for future research.
Collapse
|
19
|
Affiliation(s)
- Christopher Igwe Idumah
- Faculty of Engineering, Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
20
|
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
- Enhanced Polymer Research Group, Universiti Teknologi Malaysia
| |
Collapse
|
21
|
Idumah CI, Ezeani E, Nwuzor I. A review: advancements in conductive polymers nanocomposites. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1850783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Nigeria
- EnPro, Universiti Teknologi Malaysia
| | - E.O Ezeani
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Nigeria
| | - I.C Nwuzor
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Nigeria
| |
Collapse
|
22
|
Idumah CI. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1857384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
23
|
Idumah CI, Obele CM, Emmanuel EO, Hassan A. Recently Emerging Nanotechnological Advancements in Polymer Nanocomposite Coatings for Anti-corrosion, Anti-fouling and Self-healing. SURFACES AND INTERFACES 2020; 21:100734. [PMID: 34957345 PMCID: PMC7531442 DOI: 10.1016/j.surfin.2020.100734] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 05/21/2023]
Abstract
Recent nanotechnological advancements have enabled novel innovations in protective polymer nanocomposites (PNC) coatings for anti-corrosion, anti-fouling and self-healing services on material surfaces. Nanotechnology encompases research, manufacturing, and application of nanoparticulate architectures, tubular structures, sheets or plates exhibiting sizes below 100 nanometers (nm) in at least a single dimension. Inclusions of nanoparticles into organic entities have demonstrated enhanced properties essential for attainiment of aesthetics, anti-corrosion, thermal stability for high-temperature performances, mechanical strength essential for resisting coating deterioration in harsh environments, nano-architectural cross-linking capable of hindering penetration of corrosive, and biofouling entities. Unlike previously published literature, this paper elucidates very recently emerging important advancements in novel techniques utilized in developing PNC coatings for applications in aerospace, packaging, automotive, biomedicine, maritime, and oil and gas industries for attaining superior anti-fouling, anti-corrosion, and self-healing behaviors on critical material surfaces. Emerging market structures and novel applications are also presented.
Collapse
Affiliation(s)
- Christopher Igwe Idumah
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Anambra State, Nigeria
| | - Chizoba May Obele
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Anambra State, Nigeria
| | - Ezeani O Emmanuel
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Anambra State, Nigeria
| | - Azman Hassan
- Faculty of Chemical and Energy Engineering, Enhanced Polymer Research Group, Department of Polymer Engineering, Universiti Teknologi Malaysia
| |
Collapse
|
24
|
Barra A, Santos JDC, Silva MRF, Nunes C, Ruiz-Hitzky E, Gonçalves I, Yildirim S, Ferreira P, Marques PAAP. Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2077. [PMID: 33096705 PMCID: PMC7589102 DOI: 10.3390/nano10102077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Collapse
Affiliation(s)
- Ana Barra
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Jéssica D. C. Santos
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Mariana R. F. Silva
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Cláudia Nunes
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - Idalina Gonçalves
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (C.N.); (I.G.)
| | - Selçuk Yildirim
- Institute of Food and Beverage Innovation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paula Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.B.); (J.D.C.S.); (M.R.F.S.)
| | - Paula A. A. P. Marques
- Department of Mechanical Engineering, TEMA—Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Fate of COVID-19 Occurrences in Wastewater Systems: Emerging Detection and Treatment Technologies—A Review. WATER 2020. [DOI: 10.3390/w12102680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The coronavirus (COVID-19) pandemic is currently posing a significant threat to the world’s public health and social-economic growth. Despite the rigorous international lockdown and quarantine efforts, the rate of COVID-19 infectious cases remains exceptionally high. Notwithstanding, the end route of COVID-19, together with emerging contaminants’ (antibiotics, pharmaceuticals, nanoplastics, pesticide, etc.) occurrence in wastewater treatment plants (WWTPs), poses a great challenge in wastewater settings. Therefore, this paper seeks to review an inter-disciplinary and technological approach as a roadmap for the water and wastewater settings to help fight COVID-19 and future waves of pandemics. This study explored wastewater–based epidemiology (WBE) potential for detecting SARS-CoV-2 and its metabolites in wastewater settings. Furthermore, the prospects of integrating innovative and robust technologies such as magnetic nanotechnology, advanced oxidation process, biosensors, and membrane bioreactors into the WWTPs to augment the risk of COVID-19’s environmental impacts and improve water quality are discussed. In terms of the diagnostics of COVID-19, potential biosensors such as sample–answer chip-, paper- and nanomaterials-based biosensors are highlighted. In conclusion, sewage treatment systems, together with magnetic biosensor diagnostics and WBE, could be a possible way to keep a surveillance on the outbreak of COVID-19 in communities around the globe, thereby identifying hotspots and curbing the diagnostic costs of testing. Photocatalysis prospects are high to inactivate coronavirus, and therefore a focus on safe nanotechnology and bioengineering should be encouraged.
Collapse
|
26
|
Idumah CI, Obele CM, Ezeani EO. Understanding interfacial dispersions in ecobenign polymer nano-biocomposites. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1811312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Chizoba May Obele
- Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | | |
Collapse
|
27
|
Idumah CI, Nwuzor I, Odera SR. Recent advancements in self-healing polymeric hydrogels, shape memory, and stretchable materials. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1767615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
- Enhanced Polymer Research Group (EnPRO), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Iheoma Nwuzor
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - Stone R. Odera
- Department of Polymer and Textile Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
- Department of Chemical Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
28
|
Idumah CI, Odera SR. Recent advancement in self-healing graphene polymer nanocomposites, shape memory, and coating materials. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1725816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Faculty of Engineering, Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
- Enhanced Polymer Research Group, EnPro, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - S. R. Odera
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| |
Collapse
|
29
|
The Quality Control of the Automatic Manipulating Process of a Flexible Container When Bulk Materials are Packaged. MACHINES 2019. [DOI: 10.3390/machines7040062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The quality control of a flexible container (FC) gripped and held by a gripping device during the entire cycle of packaging is an important task in the packaging process of bulk materials in a soft package. Noncontact optical methods of control have been developed and researched for the diagnostics of the automatic manipulating process of a flexible container when bulk materials are packaged in a soft package. Diagnostics of the FC gripping and opening accuracy was carried out herein with the help of machine vision. Processing of the image obtained when the neck of the FC was photographed was carried out by a neural network algorithm, which was made according to a scheme of a perceptron. An automated diagnostics system of the FC gripping and opening accuracy was developed in terms of the obtained algorithm. A control technique based on the algorithm of comparison with a reference was used to reveal the FC gripping and opening defects. This technique consists of preliminary processing of the image obtained from the camera and automatic search for deviations in FC gripping and opening. As a result, a report of defects in the process of FC gripping and opening was obtained.
Collapse
|