1
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
2
|
Altunayar-Unsalan C. DSC and FTIR study on the interaction between pentacyclic triterpenoid lupeol and DPPC membrane. J Bioenerg Biomembr 2024; 56:553-561. [PMID: 38918323 PMCID: PMC11455703 DOI: 10.1007/s10863-024-10030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Natural products are a great resource for physiologically active substances. It is widely recognized that a major percentage of current medications are derived from natural compounds or their synthetic analogues. Triterpenoids are widespread in nature and can prevent cancer formation and progression. Despite considerable interest in these triterpenoids, their interactions with lipid bilayers still need to be thoroughly investigated. The aim of this study is to examine the interactions of lupeol, a pentacyclic triterpenoid, with model membranes composed of 1,2‑dipalmitoyl‑sn‑glycerol‑3‑phosphocholine (DPPC) by using non-invasive techniques such as differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The DSC study demonstrated that the incorporation of lupeol into DPPC membranes shifts the Lβ'-to-Pβ' and Pβ'-to-Lα phase transitions toward lower values, and a loss of main phase transition cooperativity is observed. The FTIR spectra indicated that the increasing concentration (10 mol%) of lupeol causes an increase in the molecular packing and membrane fluidity. In addition, it is found that lupeol's OH group preferentially interacts with the head group region of the DPPC lipid bilayer. These findings provide detailed information on the effect of lupeol on the DPPC head group and the conformation and dynamics of the hydrophobic chains. In conclusion, the effect of lupeol on the structural features of the DPPC membrane, specifically phase transition and lipid packing, has implications for understanding its biological function and its applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Cisem Altunayar-Unsalan
- Ege University Graduate School of Natural and Applied Sciences, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
3
|
Mohammadi M, Karimi M, Raofie F. Preparation irinotecan hydrochloride loaded PEGylated liposomes using novel method supercritical fluid and condition optimized by Box-Behnken design. DISCOVER NANO 2024; 19:141. [PMID: 39237795 PMCID: PMC11377383 DOI: 10.1186/s11671-024-04071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 09/07/2024]
Abstract
A semi-synthetic camptothecin derivative known as irinotecan hydrochloride is frequently used to treat colorectal cancer, including colorectal adenocarcinoma and lung cancers involving small cells. Irinotecan has a very short half-life; therefore, continuous infusions are required to keep the drug's blood levels at therapeutic levels, which could produce cumulative toxicities. Effective delivery techniques, including liposomes, have been developed to address these shortcomings. In this study, a continuous supercritical fluid approach dubbed Expansion Supercritical Fluid into an aqueous solution, in which the pressure decreases rapidly but remains over the critical pressure, is proposed to manufacture polyethylene glycolylated (PEGylated) liposomes carrying irinotecan hydrochloride. To accomplish this, PEGylated liposomes were created using a Box-Behnken design, and the operating parameters (flow rate, temperature, and pressure drop) were optimized. Encapsulation efficiency, mean size, and prepared liposome count were 94.6%, 55 nm, and 758 under ideal circumstances. Additionally, the stability of the PEGylated liposome was investigated during 8 weeks, and also PEGylated liposome-loaded irinotecan release profile was compared to conventional liposomes and free irinotecan, and a constant drug release was seen after the first burst release from liposomes.
Collapse
Affiliation(s)
- Misagh Mohammadi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Mehrnaz Karimi
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Farhad Raofie
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
4
|
Xiao S, Huang S, Yang X, Lei Y, Chang M, Hu J, Meng Y, Zheng G, Chen X. The development and evaluation of hyaluronic acid coated mitochondrial targeting liposomes for celastrol delivery. Drug Deliv 2023; 30:2162156. [PMID: 36600637 PMCID: PMC9828745 DOI: 10.1080/10717544.2022.2162156] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In order to precisely deliver celastrol into mitochondria of tumor cells, improve antitumor efficacy of celastrol and overcome its troublesome problems in clinical application, a novel multistage-targeted celastrol delivery system (C-TL/HA) was developed via electrostatic binding of hyaluronic acid (HA) to celastrol-loaded cationic liposomes composed of natural soybean phosphatidylcholine and cholesterol modified with mitochondrial targeting molecular TPP. Study results in this article showed that C-TL/HA successfully transported celastrol into mitochondria, effectively activated apoptosis of mitochondrial pathway, exerted higher tumor inhibition efficiency and lower toxic side effects compared with free celastrol. More importantly, HA coating not only enabled this delivery system to have good stability and safety in vivo, but also increased drug uptake and facilitated tumor targeting through recognizing CD44 receptors rich on the surface of tumor cells. Conclusively, this HA-coated mitochondrial targeting liposomes may provide a prospect for the clinical application of celastrol in tumor therapy.
Collapse
Affiliation(s)
- Simeng Xiao
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Siying Huang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaojing Yang
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Yujie Lei
- Pharmacy Department, Wuxue No.1 People’s Hospital, Wuxue, China
| | - Mingxiang Chang
- Laboratory of Cell and Molecular Biology, Hubei Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Junjie Hu
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Yan Meng
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China,CONTACT Xinyan Chen Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan430065, China; Guohua Zheng Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan430065, China
| | - Xinyan Chen
- Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan, China,CONTACT Xinyan Chen Pharmacy Faculty, Hubei University of Chinese Medicine, Wuhan430065, China; Guohua Zheng Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan430065, China
| |
Collapse
|
5
|
Najib Ullah SNM, Afzal O, Altamimi ASA, Alossaimi MA, Almalki WH, Alzahrani A, Barkat MA, Almeleebia TM, Alshareef H, Shorog EM, Khan G, Singh T, Singh JK. Bedaquiline-Loaded Solid Lipid Nanoparticles Drug Delivery in the Management of Non-Small-Cell Lung Cancer (NSCLC). Pharmaceuticals (Basel) 2023; 16:1309. [PMID: 37765117 PMCID: PMC10534335 DOI: 10.3390/ph16091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) mortality and new case rates are both on the rise. Most patients have fewer treatment options accessible due to side effects from drugs and the emergence of drug resistance. Bedaquiline (BQ), a drug licensed by the FDA to treat tuberculosis (TB), has demonstrated highly effective anti-cancer properties in the past. However, it is difficult to transport the biological barriers because of their limited solubility in water. Our study developed a UPLC method whose calibration curves showed linearity in the range of 5 ng/mL to 500 ng/mL. The UPLC method was developed with a retention time of 1.42 and high accuracy and precision. Its LOQ and LOD were observed to be 10 ng/mL and 5 ng/mL, respectively, whereas in the formulation, capmul MCM C10, Poloxamer 188, and PL90G were selected as solid lipids, surfactants, and co-surfactants, respectively, in the development of SLN. To combat NSCLC, we developed solid lipid nanoparticles (SLNs) loaded with BQ, whereas BQ suspension is prepared by the trituration method using acacia powder, hydroxypropyl methylcellulose, polyvinyl acrylic acid, and BQ. The developed and optimized BQ-SLN3 has a particle size of 144 nm and a zeta potential of (-) 16.3 mV. whereas BQ-loaded SLN3 has observed entrapment efficiency (EE) and loading capacity (LC) of 92.05% and 13.33%, respectively. Further, BQ-loaded suspension revealed a particle size of 1180 nm, a PDI of 0.25, and a zeta potential of -0.0668. whereas the EE and LC of BQ-loaded suspension were revealed to be 88.89% and 11.43%, respectively. The BQ-SLN3 exhibited insignificant variation in particle size, homogeneous dispersion, zeta potential, EE, and LC and remained stable over 90 days of storage at 25 °C/60% RH, whereas at 40 °C/75% RH, BQ-SLN3 observed significant variation in the above-mentioned parameters and remained unstable over 90 days of storage. Meanwhile, the BQ suspension at both 25 °C (60% RH) and 40 °C (75% RH) was found to be stable up to 90 days. The optimized BQ-SLN3 and BQ-suspension were in vitro gastrointestinally stable at pH 1.2 and 6.8, respectively. The in vitro drug release of BQ-SLN3 showed 98.19% up to 12 h at pH 7.2 whereas BQ suspensions observed only 40% drug release up to 4 h at pH 7.2 and maximum drug release of >99% within 4 h at pH 4.0. The mathematical modeling of BQ-SLN3 followed first-order release kinetics followed by a non-Fickian diffusion mechanism. After 24 to 72 h, the IC50 value of BQ-SLN3 was 3.46-fold lower than that of the BQ suspension, whereas the blank SLN observed cell viability of 98.01% and an IC50 of 120 g/mL at the end of 72 h. The bioavailability and higher biodistribution of BQ-SLN3 in the lung tumor were also shown to be greater than those of the BQ suspension. The effects of BQ-SLN3 on antioxidant enzymes, including MDA, SOD, CAT, GSH, and GR, in the treated group were significantly improved and reached the level nearest to that of the control group of rats over the cancer group of rats and the BQ suspension-treated group of rats. Moreover, the pharmacodynamic activity resulted in greater tumor volume and tumor weight reduction by BQ-SLN3 over the BQ suspension-treated group. As far as we are aware, this is the first research to look at the potential of SLN as a repurposed oral drug delivery, and the results suggest that BQ-loaded SLN3 is a better approach for NSCLC due to its better action potential.
Collapse
Affiliation(s)
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Abdulmalik Saleh Alfawaz Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.); (M.A.A.)
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq 65779-7738, Saudi Arabia;
| | - Md. Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia;
| | - Tahani M. Almeleebia
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (T.M.A.); (E.M.S.)
| | - Hanan Alshareef
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Eman M. Shorog
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (T.M.A.); (E.M.S.)
| | - Gyas Khan
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna 800020, India;
| | - J. K. Singh
- S.S Hospital and Research Institute, Kankarbagh, Patna 800020, India
| |
Collapse
|
6
|
Park JS, Rehman IU, Choe K, Ahmad R, Lee HJ, Kim MO. A Triterpenoid Lupeol as an Antioxidant and Anti-Neuroinflammatory Agent: Impacts on Oxidative Stress in Alzheimer's Disease. Nutrients 2023; 15:3059. [PMID: 37447385 DOI: 10.3390/nu15133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease illustrated by neuronal dysfunctions, leading to memory weaknesses and personality changes mostly in the aged population worldwide. The exact cause of AD is unclear, but numerous studies have addressed the involvement of oxidative stress (OS), induced by reactive oxygen species (ROS), to be one of the leading causes in developing AD. OS dysregulates the cellular homeostasis, causing abnormal protein and lipid metabolism. Nutrition plays a pivotal role in modulating the antioxidant system and decreases the neuronal ROS level, thus playing an important therapeutic role in neurodegenerative diseases, especially in AD. Hence, medicinal herbs and their extracts have received global attention as a commercial source of antioxidants Lupeol. Lupeol is a pentacyclic triterpenoid and has many biological functions. It is available in fruits, vegetables, and medicinal plants. It has shown effective antioxidant and anti-inflammatory properties, and higher blood-brain barrier permeability. Also, the binding and inhibitory potentials of Lupeol have been investigated and proved to be effective against certain receptor proteins and enzymes in AD studies by computational molecular docking approaches. Therefore, AD-related research has gained interest in investigating the therapeutic effects of Lupeol. However, despite its beneficial effects in AD, there is still a lack of research in Lupeol. Hence, we compiled in this analysis all preclinical research that looked at Lupeol as an antioxidant and anti-inflammatory agent for AD.
Collapse
Affiliation(s)
- Jun Sung Park
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyonghwan Choe
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
7
|
Pi C, Zhao W, Zeng M, Yuan J, Shen H, Li K, Su Z, Liu Z, Wen J, Song X, Lee RJ, Wei Y, Zhao L. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv 2022; 29:1878-1891. [PMID: 35748365 PMCID: PMC9246235 DOI: 10.1080/10717544.2022.2086938] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The main aim of this study was to improve the therapeutic potential of a paclitaxel (PTX) and curcumin (CU) combination regimen using solid lipid nanoparticles (SLNs). PTX and CU were successfully co-encapsulated at a predetermined ratio in SLNs (PC-SLNs) with high encapsulation efficiency (CU: 97.6%, PTX: 95.8%), appropriate particle size (121.8 ± 1.69 nm), small PDI (0.267 ± 0.023), and negative zeta potential (–30.4 ± 1.25 mV). Compared with PTX or the combination of CU and PTX (CU + PTX), PC-SLNs can greatly reduce the dose of PTX while still achieving the same therapeutic effect on four cancer cell lines, among which the inhibitory effect on A549 lung cancer cells was the strongest. PC-SLNs improved the area under the curve (CU: 1.40-fold; PTX: 2.88-fold), prolonged the residence time (CU: 6.94-fold; PTX: 2.51-fold), and increased the half-life (CU: 5.62-fold; PTX: 6.46-fold), achieving long circulation. PC-SLNs were used to treat lung cancer in a nude mouse xenograft tumor model and the tumor suppression rate reached 78.42%, while those of PTX and (CU + PTX) were 40.53% and 51.56%, respectively. As PC-SLNs can prevent P-glycoprotein efflux, reverse MDR and downregulate the NF-κB pathway. PC-SLNs are a potential antineoplastic agent that is more effective and less toxic in treating lung cancer.
Collapse
Affiliation(s)
- Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd, Luzhou, Sichuan, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Shapingba, P. R. China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, P. R. China.,Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
8
|
Ding Q, Chen K, Liu X, Ding C, Zhao Y, Sun S, Zhang Y, Zhang J, Liu S, Liu W. Modification of taxifolin particles with an enteric coating material promotes repair of acute liver injury in mice through modulation of inflammation and autophagy signaling pathway. Biomed Pharmacother 2022; 152:113242. [PMID: 35691160 DOI: 10.1016/j.biopha.2022.113242] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Taxifolin (TAX) is a flavanol compound with hepatoprotective effect, but its application is severely limited by its poor water solubility and low oral bioavailability. Therefore, it is important to urgently find a method to improve the oral bioavailability of TAX. METHODS In this study, hydroxypropyl methylcellulose acetate succinate modified taxifolin liposomes (HPMCAS-TAX-Lips) were prepared by a thin-film dispersion method, and a series of physicochemical properties of the liposomes were studied. The cumulative in vitro release rates of free TAX, taxifolin liposomes (TAX-Lips), and HPMCAS-TAX-Lips in the simulated gastrointestinal fluid were measured by in vitro release experiments, and the effect of HPMCAS-TAX-Lips on the human hepatoellular carcinomas (HepG2) cells was detected by MTT assay. Finally, the hepatoprotective mechanism of HPMCAS-TAX-Lips was explored through in vivo experiments. RESULTS The results showed that the particle size of HPMCAS-TAX-Lips was 100.44 ± 2.85 nm, the zeta potential was - 51.13 ± 0.57 mV, the PDI was 0.170 ± 0.088, and the EE was 87.9 ± 3.73%. The in vitro release results showed that the cumulative release rates of TAX-Lips and HPMCAS-TAX-Lips in simulated gastric fluid for 24 h were 92.60 ± 5.31% and 66.91 ± 1.20%, respectively. The cumulative release rates in simulated intestinal fluid for 24 h were 72.61 ± 4.38% and 53.94 ± 3.2%, respectively. The results of cytotoxicity experiments proved that HPMCAS-TAX-Lips had a significant inhibitory effect on HepG2 cells. In vivo experiments further showed that HPMCAS-TAX-Lips significantly improved the survival rate of lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury mice and exerted hepatoprotective effects by regulating the expression of autophagy proteins and inhibiting the activation of toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSION This study proved the significant hepatoprotective effect of HMPCAS-TAX-Lips and provided a new idea for the application of TAX.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Kecheng Chen
- Starsky Medical Research Center, 136001 Siping, Jilin, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Chuanbo Ding
- Jilin Agricultural Science and Technology College, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Yiwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China
| | - Shuang Liu
- Goldenwell Biotech, Inc, 50 West Liberty Street, Suite 880, Reno , NV 89501 USA.
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, 130118 Changchun, Jilin, China.
| |
Collapse
|
9
|
Ding Q, Liu W, Liu X, Ding C, Zhao Y, Dong L, Chen H, Sun S, Zhang Y, Zhang J, Wu M. Polyvinylpyrrolidone-Modified Taxifolin Liposomes Promote Liver Repair by Modulating Autophagy to Inhibit Activation of the TLR4/NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 10:860515. [PMID: 35721857 PMCID: PMC9199375 DOI: 10.3389/fbioe.2022.860515] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Taxifolin (TAX) is a hepatoprotective flavanol compound, which is severely limited by poor solubility and low bioavailability. Liposomes (Lips) are used as well-recognized drug carrier systems that improve the water solubility and bioavailability of drugs, but are easily damaged by gastric juice after oral administration, resulting in the release of drugs in the gastric juice. Therefore, it is important to find materials that modify liposomes and avoid the destruction of the liposomal phospholipid bilayer structure by the gastrointestinal environment. Taxifolin liposomes (TAX-Lips) were modified by polyvinylpyrrolidone-k30 (PVP-TAX-Lips) and manufactured using a thin-film hydration technique. Particle size (109.27 ± 0.50 nm), zeta potential (−51.12 ± 3.79 mV), polydispersity coefficient (PDI) (0.189 ± 0.007), and EE (84.7 ± 0.2%) of PVP-TAX-Lips were studied. In addition, the results of in vitro release experiments indicated that the cumulative release rates of TAX-Lips and PVP-TAX-Lips were 89.73 ± 5.18% and 65.66 ± 4.86% in the simulated gastric fluid after 24 h, respectively, while the cumulative release rates were 68.20 ± 4.98% and 55.66 ± 3.92% in the simulated intestinal fluid after 24 h, respectively. Moreover, PVP-TAX-Lips were able to reverse lipopolysaccharide and D-galactosamine (LPS/D-GalN)-induced acute liver injury (ALI) by inducing autophagy to inhibit the expression levels of the TLR4/NF-κB signaling pathway and inflammatory factors, which suggested that PVP-TAX-Lips played an important role in the prevention of ALI and also provided a promising drug delivery system for the application of TAX.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Xinglong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Yingchun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Ling Dong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Huiying Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Yiwen Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Jinping Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Jilin, China
| | - Ming Wu
- College of Life Science, Jilin Agricultural University, Jilin, China
- *Correspondence: Ming Wu,
| |
Collapse
|
10
|
Sohag AAM, Hossain MT, Rahaman MA, Rahman P, Hasan MS, Das RC, Khan MK, Sikder MH, Alam M, Uddin MJ, Rahman MH, Tahjib-Ul-Arif M, Islam T, Moon IS, Hannan MA. Molecular pharmacology and therapeutic advances of the pentacyclic triterpene lupeol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154012. [PMID: 35286936 DOI: 10.1016/j.phymed.2022.154012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Plant triterpenoids are major sources of nutraceuticals that provide many health benefits to humans. Lupeol is one of the pentacyclic dietary triterpenoids commonly found in many fruits and vegetables, which is highly investigated for its pharmacological effect and benefit to human health. PURPOSE This systematic review critically discussed the potential pharmacological benefits of lupeol and its derivatives as evidenced by various cellular and animal model studies. To gain insight into the pharmacological effects of lupeol, the network pharmacological approach is applied. Pharmacokinetics and recent developments in nanotechnology-based approaches to targeted delivery of lupeol along with its safety use are also discussed. METHODS This study is dependent on the systematic and non-exhaustive literature survey for related research articles, papers, and books on the chemistry, pharmacological benefits, pharmacokinetics, and safety of lupeol published between 2011 and 2021. For online materials, the popular academic search engines viz. Google Scholar, PubMed, Science Direct, Scopus, ResearchGate, Springer, as well as official websites were explored with selected keywords. RESULTS Lupeol has shown promising benefits in the management of cancer and many other human diseases such as diabetes, obesity, cardiovascular diseases, kidney and liver problems, skin diseases, and neurological disorders. The pharmacological effects of lupeol primarily rely on its capacity to revitalize the cellular antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Network pharmacological approach revealed some prospective molecular targets and pathways and presented some significant information that could help explain the pharmacological effects of lupeol and its derivatives. Despite significant progress in molecular pharmacology, the clinical application of lupeol is limited due to poor bioavailability and insufficient knowledge on its mode of action. Structural modification and nanotechnology-guided targeted delivery of lupeol improve the bioavailability and bioactivity of lupeol. CONCLUSION The pentacyclic triterpene lupeol possesses numerous human health-benefiting properties. This review updates current knowledge and critically discusses the pharmacological effects and potential applications of lupeol and its derivatives in human health and diseases. Future studies are needed to evaluate the efficacies of lupeol and its derivatives in the management and pathobiology of human diseases.
Collapse
Affiliation(s)
- Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Md Arifur Rahaman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Papia Rahman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | | - Rakhal Chandra Das
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Kibria Khan
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; Division of Chemistry and Biotechnology, Dongguk University, Gyeongju, 780-714, Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka-1230, Bangladesh; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 03760, Korea
| | - Md Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh.
| |
Collapse
|
11
|
Wei Y, Li K, Zhao W, He Y, Shen H, Yuan J, Pi C, Zhang X, Zeng M, Fu S, Song X, Lee RJ, Zhao L. The Effects of a Novel Curcumin Derivative Loaded Long-Circulating Solid Lipid Nanoparticle on the MHCC-97H Liver Cancer Cells and Pharmacokinetic Behavior. Int J Nanomedicine 2022; 17:2225-2241. [PMID: 35607705 PMCID: PMC9123937 DOI: 10.2147/ijn.s363237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Yingmeng He
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Department of Pharmacy, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People’s Republic of China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, People’s Republic of China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, the Ohio State University, Columbus, OH, 43210, USA
- Correspondence: Robert J Lee, The Ohio State University, 500 W 12th Ave, Columbus, OH, 43210, USA, Tel +1-614-292-4172, Fax +1-614-292-4172, Email
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, 646000, People’s Republic of China
- Ling Zhao, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, Sichuan, 646000, People’s Republic of China, Tel +86 830 3160093, Fax +86 830 3160093, Email
| |
Collapse
|
12
|
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The Optimized Delivery of Triterpenes by Liposomal Nanoformulations: Overcoming the Challenges. Int J Mol Sci 2022; 23:1140. [PMID: 35163063 PMCID: PMC8835305 DOI: 10.3390/ijms23031140] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The last decade has witnessed a sustained increase in the research development of modern-day chemo-therapeutics, especially for those used for high mortality rate pathologies. However, the therapeutic landscape is continuously changing as a result of the currently existing toxic side effects induced by a substantial range of drug classes. One growing research direction driven to mitigate such inconveniences has converged towards the study of natural molecules for their promising therapeutic potential. Triterpenes are one such class of compounds, intensively investigated for their therapeutic versatility. Although the pharmacological effects reported for several representatives of this class has come as a well-deserved encouragement, the pharmacokinetic profile of these molecules has turned out to be an unwelcomed disappointment. Nevertheless, the light at the end of the tunnel arrived with the development of nanotechnology, more specifically, the use of liposomes as drug delivery systems. Liposomes are easily synthesizable phospholipid-based vesicles, with highly tunable surfaces, that have the ability to transport both hydrophilic and lipophilic structures ensuring superior drug bioavailability at the action site as well as an increased selectivity. This study aims to report the results related to the development of different types of liposomes, used as targeted vectors for the delivery of various triterpenes of high pharmacological interest.
Collapse
Affiliation(s)
- Andreea Milan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Alexandra Prodea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Buzatu
- Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania
| | - Roxana Ghiulai
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Street, 300041 Timişoara, Romania;
| | - Codruţa Şoica
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 E. Murgu Sq., 300041 Timişoara, Romania; (A.M.); (A.M.); (A.P.); (R.G.); (R.R.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timişoara, Romania
| |
Collapse
|
13
|
Qu Y, Mu S, Song C, Zheng G. Preparation and in vitro/ in vivo evaluation of a self-microemulsifying drug delivery system containing chrysin. Drug Dev Ind Pharm 2021; 47:1127-1139. [PMID: 34590933 DOI: 10.1080/03639045.2021.1988092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To prepare a self-microemulsifying drug delivery system (SMEDDS) to increase the solubility and oral bioavailability of chrysin. METHODS The preparation conditions were determined using factor analysis method. Preliminarily screening was conducted using compatibility tests and pseudo-ternary phase diagram studies. The central composite design-response surface methodology was used to determine the maximum drug loading and optimize SMEDDS formation, as characterized by surface morphology, pH, diameter, polydispersity index (PDI), zeta potential, and phase type. In vitro release of chrysin-suspension and chrysin-SMEDDS was investigated using the bulk-equilibrium reverse dialysis bag technique. Short-term stability of chrysin-SMEDDS at high and low temperatures was assessed. Pharmacokinetic behaviors were evaluated after intragastric and intravenous administration to rats. RESULTS The final optimal formulation was medium chain triglyceride:oleic acid:Cremophor RH40: Transcutol HP (w/w) (12%:12%:32%:44%), with a drug loading capacity of 5 mg/g. Diluted chrysin-SMEDDS was characterized as an oil-in-water type and spherical, with a diameter, pH, PDI, and zeta potential of 28.26 ± 0.83 nm, 5.60 ± 0.84, 0.18 ± 0.01, and -23.13 ± 0.95 mV, respectively. The release speed of chrysin-SMEDDS was significantly higher than that of chrysin-suspension, and the release process was not affected by the media pH. In vivo pharmacokinetic data revealed that the oral bioavailability of chrysin-SMEDDS was 2.7-fold higher than that of chrysin suspension, compared with the chrysin microemulsion. CONCLUSION The optimal SMEDDS formulation increased the dissolution and oral bioavailability of chrysin and may be useful for investigating chrysin efficacy in animal disease models and toxicokinetic studies.
Collapse
Affiliation(s)
- Yong Qu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Shunda Mu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res 2020; 164:105373. [PMID: 33316380 DOI: 10.1016/j.phrs.2020.105373] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Lupeol is a natural triterpenoid that widely exists in edible fruits and vegetables, and medicinal plants. In the last decade, a plethora of studies on the pharmacological activities of lupeol have been conducted and have demonstrated that lupeol possesses an extensive range of pharmacological activities such as anticancer, antioxidant, anti-inflammatory, and antimicrobial activities. Pharmacokinetic studies have indicated that absorption of lupeol by animals was rapid despite its nonpolar characteristics, and lupeol belongs to class II BCS (biopharmaceutics classification system) compounds. Moreover, the bioactivities of some isolated or synthesized lupeol derivatives have been investigated, and these results showed that, with modification to C-3 or C-19, some derivatives exhibit stronger activities, e.g., antiprotozoal or anticancer activity. This review aims to summarize the advances in pharmacological and pharmacokinetic studies of lupeol in the last decade with an emphasis on its anticancer and anti-inflammatory activities, as well as the research progress of lupeol derivatives thus far, to provide researchers with the latest information, point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Jia Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
15
|
Wang J, Zhu G, Wang X, Cai J, Xie L, Zheng W, Feng Y, Guo Q, Chen H, Cai L. An injectable liposome for sustained release of icariin to the treatment of acute blunt muscle injury. J Pharm Pharmacol 2020; 72:1152-1164. [PMID: 32567690 DOI: 10.1111/jphp.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/23/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Icariin, extracted from Epimedium, is a kind of flavonoid and possesses osteogenesis and antioxidant. This study aimed to evaluate the therapeutic effects of icariin liposome on acute blunt skeletal muscle injury in rats. METHODS Icariin liposome was prepared by the thin-film dispersion method. After muscle injury, the corresponding treatment measures were given every day for two weeks. Recovery and mechanism of muscle injury were evaluated by QRT-PCR, HE, immunohistochemistry, malondialdehyde, superoxide dismutase and serological tests. KEY FINDINGS The particle size, polydispersity index, zeta potential, encapsulation efficiency and drug loading of icariin liposomes were 171.37 ± 38.23 nm, 0.27 ± 0.01, -5.59 ± 1.36 mV, 78.15 ± 2.04% and 15.62%, respectively. The QRT-PCR showed that icariin liposome significantly promoted the expression of MHCIIB and vimentin. Through HE, immunohistochemistry, ELISA and serological tests, we found that icariin liposome effectively promoted desmin expression, reduced collagen I expression and inhibited the production of pro-inflammatory factors, including TNF-α and IL-6. Icariin liposome therapy significantly reduced the level of malondialdehyde and increased the activity of superoxide dismutase. CONCLUSIONS Icariin liposome has excellent therapeutic effects on acute blunt muscle injury in rats by improving immunity, repairing cytoskeleton and cellular integrity, anti-inflammation, anti-fibrosis and antioxidant stress.
Collapse
Affiliation(s)
- Jinwu Wang
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Gaosheng Zhu
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Jie Cai
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Linzhen Xie
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Wenhao Zheng
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Yongzeng Feng
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Qiang Guo
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Hua Chen
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| | - Leyi Cai
- Department of Orthopaedics, Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China.,Wenzhou Medical University, Wenzhou, China
| |
Collapse
|