1
|
Tomás M, Sousa LGV, Oliveira AS, Gomes CP, Palmeira-de-Oliveira A, Cavaleiro C, Salgueiro L, Cerca N, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Vaginal Sheets with Thymbra capitata Essential Oil for the Treatment of Bacterial Vaginosis: Design, Characterization and In Vitro Evaluation of Efficacy and Safety. Gels 2023; 9:gels9040293. [PMID: 37102907 PMCID: PMC10137747 DOI: 10.3390/gels9040293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
We aimed to incorporate Thymbra capitata essential oil (TCEO), a potent antimicrobial natural product against bacterial vaginosis (BV)-related bacteria, in a suitable drug delivery system. We used vaginal sheets as dosage form to promote immediate relief of the typical abundant vaginal discharge with unpleasant odour. Excipients were selected to promote the healthy vaginal environment reestablishment and bioadhesion of formulations, while the TCEO acts directly on BV pathogens. We characterized vaginal sheets with TCEO in regard to technological characterization, predictable in vivo performance, in vitro efficacy and safety. Vaginal sheet D.O (acid lactic buffer, gelatine, glycerine, chitosan coated with TCEO 1% w/w) presented a higher buffer capacity and ability to absorb vaginal fluid simulant (VFS) among all vaginal sheets with EO, showing one of the most promising bioadhesive profiles, an excellent flexibility and structure that allow it to be easily rolled for application. Vaginal sheet D.O with 0.32 µL/mL TCEO was able to significantly reduce the bacterial load of all in vitro tested Gardnerella species. Although vaginal sheet D.O presented toxicity at some concentrations, this product was developed for a short time period of treatment, so this toxicity can probably be limited or even reversed when the treatment ends.
Collapse
Affiliation(s)
- Mariana Tomás
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Lúcia G. V. Sousa
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Sofia Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Carolina P. Gomes
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Ana Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Labfit-HPRD Health Products Research and Development, Lda Edifício UBIMedical, Estrada Municipal 506, 6200-281 Covilhã, Portugal
| | - Carlos Cavaleiro
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-790 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3030-790 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - José Martinez-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Rita Palmeira-de-Oliveira
- CICS-UBI, Health Sciences Research Center, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Labfit-HPRD Health Products Research and Development, Lda Edifício UBIMedical, Estrada Municipal 506, 6200-281 Covilhã, Portugal
| |
Collapse
|
2
|
Aleanizy FS, Taha EI, Salem-Bekhit MM, Felimban AMJ, Al-Suwayeh SA, Al-Joufi FA, Muharram MM, Alqahtani FY, Shakeel F, Youssof AME, Bayomi M, Abouelela AEF. Formulation and in vitro and in vivo evaluation of surfactant-stabilized mucoadhesive nanogels for vaginal delivery of fluconazole. Drug Dev Ind Pharm 2022; 47:1935-1942. [PMID: 35537065 DOI: 10.1080/03639045.2022.2070760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Surfactant-stabilized mucoadhesive nanogels (NGs) for vaginal delivery of fluconazole (FLZ) were studied and evaluated in this work. FLZ-NG formulations were prepared using two different types of mucoadhesive polymers, Carbopol 934 (Ca934) and Pluronic F-127 (PF127). A rheology study revealed a non-Newtonian pseudoplastic flow behavior (shear thinning) in the prepared NGs. The viscosity of Ca934 NG (0.47 Pa s) was much lower compared to the PF127 NG (6.10 Pa s). The rheology study results correlated well with the in vitro FLZ release profile from the NG formulations. A pH study (pH = 3.90-4.90) revealed that the formulations were physiologically suitable for vaginal application, to avoid the irritation of the vaginal mucosa. Finally, in vitro and in vivo antimicrobial tests were performed. FLZ incorporated into the Ca934 gel had the strongest antimicrobial effect, with a mean inhibition zone of 24 ± 1.6 mm. Based on these results, it was concluded that the mucoadhesive NG incorporating FLZ resulted in a sustained release and enhanced antimicrobial effect, which would enhance and prolong the therapeutic effects of vaginally delivered FLZ.
Collapse
Affiliation(s)
- Fadilah Sfouq Aleanizy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab I Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mounir M Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology & Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Alaa M J Felimban
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Al-Suwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fakhria A Al-Joufi
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Saudi Arabia
| | - Magdy M Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.,Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fulwah Y Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M E Youssof
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsen Bayomi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal E F Abouelela
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Ward SA, Kirkwood RN, Song Y, Garg S, Plush KJ. Effect of Dexamethasone and Route of Administration on Sow Farrowing Behaviours, Piglet Delivery and Litter Performance. Animals (Basel) 2022; 12:ani12070847. [PMID: 35405838 PMCID: PMC8996896 DOI: 10.3390/ani12070847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022] Open
Abstract
The inflammatory pain and stress some crated sows experience during farrowing has attendant risks of piglet-directed aggression, reduced teat exposure and hindered post-partum recovery. To counter this, the steroidal anti-inflammatory compound, dexamethasone, can be administered. To measure the potential for mucosal absorption as an alternative to injection, the permeability of porcine vaginal mucosa to dexamethasone was demonstrated using Franz cell diffusion. These studies found dexamethasone treatment diffused through vaginal mucosa at a constant rate, with 52.37 ± 5.54% permeation in 6 h. To examine in vivo effects on farrowing outcomes, dexamethasone was administered to gilts and parity one sows on the day of expected farrowing. We hypothesized that it would provide relief from farrowing discomfort and reduce behaviours threatening piglet survival. Sows were randomly assigned to receive dexamethasone as an intramuscular injection (n = 23); dexamethasone applied topically into the vagina (n = 20), or to receive no dexamethasone (n = 23). Sows (n = 66) and piglets (n = 593) were monitored for performance indicators during farrowing and early lactation. A subset of sows (n = 24) was also video monitored continuously over 24 h for behaviours associated with pain, postural changes and piglet interactions. No differences were observed between treatment for farrowing performance, piglet survival or behavioural changes for sows experiencing their first or second farrowing (p > 0.05), rejecting the hypothesis that corticosteroid administration will improve sow farrowing performance. This investigation did, however, show that dexamethasone can permeate through porcine vaginal mucosa and so can be administered as a non-injectable treatment.
Collapse
Affiliation(s)
- Sophia A. Ward
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia;
- Correspondence:
| | - Roy N. Kirkwood
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Yunmei Song
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (Y.S.); (S.G.)
| | - Sanjay Garg
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (Y.S.); (S.G.)
| | - Kate J. Plush
- Sunpork Group, 1/6 Eagleview Place, Eagle Farm, QLD 4009, Australia;
| |
Collapse
|
4
|
Villegas JAA, Reyes HM, Sánchez MA, Cruz Rosas MF, Sanchez Monroy R, Zamudio JEB, Palacios Rodriguez AP. Identification of Escherichia coli strains in the vaginal cultures of healthy women and their patterns of antibiotic resistance. MEDICAL SCIENCE PULSE 2021. [DOI: 10.5604/01.3001.0015.4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Bacterial vaginosis is the most common cause of vaginitis in women of childbearing age, and
it predominantly affects young sexually active women. Escherichia coli is one of the most common bacteria
found in the genital tract of non-pregnant (9–28%) and pregnant women (24–31%). E. coli strains can colonize
the vaginal and endocervical regions in pregnant women, and may lead to the development of urinary
tract, intra-amniotic or puerperal infections.
Aim of the study: Isolation and identification of the antibiotic resistance patterns of extended spectrum
beta-lactamase (ESBL)-producing and non-producing E. coli in the vaginal cultures of healthy women.
Material and methods: Vaginal samples were taken from 55 healthy women. For the bacterial identification
and resistance patterns, automated equipment from Beckman Coulter was used. Phenotypic techniques were
used to confirm the presence or absence of ESBL.
Results: Fifty-five cultures developed E. coli, with the rest of the strains corresponding to different bacteria.
Of the 55 E. coli cultures, 35 (63.63%) were ESBL-producing and 20 (36.36%) did not produce ESBL. There
was an 80% resistance to penicillin, and a 76.4% and 65.5% resistance to the first and fourth generation
cephalosporins, respectively. A 45.5% resistance was observed for the fluoroquinolones, 52.7% for trimethoprim/
sulfamethoxazole, and 100% sensitivity to carbapenemics and amikacin.
Conclusions: A large presence of vaginal ESBL-producing E. coli was observed in healthy women, which increases
the risk of therapeutic failure due to high levels of antibiotic resistance.
Collapse
Affiliation(s)
| | - Harold Mondragon Reyes
- School of Biological Pharmaceutical Chemistry, University of Ixtlahuaca CUI, Ixtlahuaca, Mexico
| | - Mariana Aguilar Sánchez
- School of Biological Pharmaceutical Chemistry, University of Ixtlahuaca CUI, Ixtlahuaca, Mexico
| | | | - Regina Sanchez Monroy
- School of Biological Pharmaceutical Chemistry, University of Ixtlahuaca CUI, Ixtlahuaca, Mexico
| | | | | |
Collapse
|
5
|
Ahmady A, Abu Samah NH. A review: Gelatine as a bioadhesive material for medical and pharmaceutical applications. Int J Pharm 2021; 608:121037. [PMID: 34438009 DOI: 10.1016/j.ijpharm.2021.121037] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022]
Abstract
Bioadhesive polymers offer versatility to medical and pharmaceutical inventions. The incorporation of such materials to conventional dosage forms or medical devices may confer or improve the adhesivity of the bioadhesive systems, subsequently prolonging their residence time at the site of absorption or action and providing sustained release of actives with improved bioavailability and therapeutic outcomes. For decades, much focus has been put on scientific works to replace synthetic polymers with biopolymers with desirable functional properties. Gelatine has been considered one of the most promising biopolymers. Despite its biodegradability, biocompatibility and unique biological properties, gelatine exhibits poor mechanical and adhesive properties, limiting its end-use applications. The chemical modification and blending of gelatine with other biomaterials are strategies proposed to improve its bioadhesivity. Here we discuss the classical approaches involving a variety of polymer blends and composite systems containing gelatine, and gelatine modifications via thiolation, methacrylation, catechol conjugation, amination and other newly devised strategies. We highlight several of the latest studies on these strategies and their relevant findings.
Collapse
Affiliation(s)
- Amina Ahmady
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia
| | - Nor Hayati Abu Samah
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Puncak Alam, Malaysia.
| |
Collapse
|
6
|
Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, Gralińska K, Ekert M, Puri V, Wrotyńska-Barczyńska J, Michniak-Kohn B. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021; 13:884. [PMID: 34203714 PMCID: PMC8232205 DOI: 10.3390/pharmaceutics13060884] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.
Collapse
Affiliation(s)
- Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Aleksandra Falana
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Kinga Gralińska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Michał Ekert
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Vinam Puri
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Joanna Wrotyńska-Barczyńska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
7
|
Design, fabrication and characterisation of drug-loaded vaginal films: State-of-the-art. J Control Release 2020; 327:477-499. [DOI: 10.1016/j.jconrel.2020.08.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
|