1
|
Espinosa JM, Quintero-Flórez A, Carrasquilla N, Montero E, Rodríguez-Rodríguez A, Castellano JM, Perona JS. Bioactive compounds in pomace olive oil modulate the inflammatory response elicited by postprandial triglyceride-rich lipoproteins in BV-2 cells. Food Funct 2023; 14:8987-8999. [PMID: 37740318 DOI: 10.1039/d3fo02460a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Modulation of microglial response could be a target to reduce neuroinflammation associated with Alzheimer's disease. In this study, we propose that lipophilic bioactive molecules present in pomace olive oil (POO), transported in triglyceride-rich lipoproteins (TRLs), are able to modulate microglial high-oleic sunflower oil (HOSO, points) or pomace olive oil (POO, stripes). In order to prove this hypothesis, a randomized crossover postprandial trial was performed in 18 healthy young women. POO was assayed in opposition to high-oleic sunflower oil (HOSO), a common dietary oil which shares with POO an almost identical fatty acid composition but lacks certain biomolecules with recognized antioxidant and anti-inflammatory activities. TRLs were isolated from blood at the baseline and 2 and 4 hours postprandially and used to treat BV-2 cells to assess their ability to modulate the microglial function. We found that the intake of POO leads to the constitution of postprandial TRLs that are able to modulate the inflammatory response in microglia compared to HOSO. TRL-derived POO reduced the release of pro-inflammatory cytokines (tumor necrosis factor-α, and interleukins 1β and 6) and nitric oxide and downregulated genes codifying for these cytokines and inducible nitric oxide synthase (iNOS) in BV-2 cells. Moreover, the ingestion of POO by healthy women slightly improved glycemic control and TRL clearance throughout the postprandial phase compared to HOSO. In conclusion, we demonstrated that consuming POO results in postprandial TRLs containing lipophilic bioactive compounds capable of regulating the inflammatory response prompted by microglial activation.
Collapse
Affiliation(s)
- Juan Manuel Espinosa
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | | | - Natalia Carrasquilla
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | - Emilio Montero
- University Hospital Virgen del Rocío, Andalusian Regional Health Service, Seville, Spain
| | | | - José María Castellano
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| | - Javier S Perona
- Instituto de la Grasa, Department of Food and Health, Spanish National Research Council (CSIC), Campus University Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
2
|
González-Rámila S, Sarriá B, Seguido MA, García-Cordero J, Mateos R, Bravo L. Olive pomace oil can improve blood lipid profile: a randomized, blind, crossover, controlled clinical trial in healthy and at-risk volunteers. Eur J Nutr 2023; 62:589-603. [PMID: 36153442 PMCID: PMC9941261 DOI: 10.1007/s00394-022-03001-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE This study aimed to assess the effect of dietary consumption of olive pomace oil (OPO) on blood lipids (primary outcome) and other cardiovascular disease (CVD) risk factors (blood pressure, inflammation and endothelial function as secondary outcomes). METHODS A randomized, controlled, blind, crossover intervention was carried out in healthy and at-risk (hypercholesterolemic) subjects. Participants consumed daily 45 g of OPO or high-oleic acid sunflower oil (HOSO) as control oil during 4 weeks. RESULTS OPO significantly reduced low-density lipoprotein cholesterol (LDL-C; P = 0.003) and apolipoprotein B (Apo B; P = 0.022) serum concentrations, and LDL/HDL ratio (P = 0.027) in healthy and at-risk volunteers. These effects were not observed with HOSO. Blood pressure, peripheral artery tonometry (PAT), endothelial function and inflammation biomarkers were not affected. CONCLUSIONS Regular consumption of OPO in the diet could have hypolipidemic actions in subjects at cardiovascular risk as well as in healthy consumers, contributing to CVD prevention. CLINICAL TRIAL REGISTRY NCT04997122, August 8, 2021, retrospectively registered.
Collapse
Affiliation(s)
- Susana González-Rámila
- grid.4711.30000 0001 2183 4846Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Beatriz Sarriá
- grid.4711.30000 0001 2183 4846Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Miguel A. Seguido
- grid.4711.30000 0001 2183 4846Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Joaquín García-Cordero
- grid.4711.30000 0001 2183 4846Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Raquel Mateos
- grid.4711.30000 0001 2183 4846Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Laura Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Oleanolic Acid-Enriched Olive Oil Alleviates the Interleukin-6 Overproduction Induced by Postprandial Triglyceride-Rich Lipoproteins in THP-1 Macrophages. Nutrients 2021; 13:nu13103471. [PMID: 34684472 PMCID: PMC8537268 DOI: 10.3390/nu13103471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
Oleanolic acid (OA), a triterpene that is highly present in olive leaves, has been proposed as a component of functional foods for the prevention of metabolic syndrome, due to its anti-inflammatory activity. We analyzed the effects of OA on inflammatory parameters and signaling proteins in LPS-stimulated THP-1 macrophages. Thus, THP-1 macrophages were incubated with LPS for 48 h after pretreatment with OA at different concentrations. Pretreatment with OA was significantly effective in attenuating IL-6 and TNF-α overproduction induced by LPS in macrophages, and also improved the levels of AMPK-α. We also evaluated the effects of human triglyceride-rich lipoproteins (TRLs) derived from individuals consuming an OA-enriched functional olive oil. For this purpose, TRLs were isolated from healthy adolescents before, 2 and 5 h postprandially after the intake of a meal containing the functional olive oil or common olive oil, and were incubated with THP-1 macrophages. THP-1 macrophages incubated with TRLs isolated at 2 h after the consumption of the OA-enriched olive oil showed significant lower levels of IL-6 compared to the TRLs derived from olive oil. Our results suggest that OA might have potential to be used as a lipid-based formulation in functional olive oils to prevent inflammatory processes underlying metabolic syndrome in adolescents.
Collapse
|
4
|
Farràs M, Canyelles M, Fitó M, Escolà-Gil JC. Effects of Virgin Olive Oil and Phenol-Enriched Virgin Olive Oils on Lipoprotein Atherogenicity. Nutrients 2020; 12:nu12030601. [PMID: 32110861 PMCID: PMC7146215 DOI: 10.3390/nu12030601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
The atherogenicity of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins (TRLs) may be more significant than LDL cholesterol levels. Clinical trials which have led to increased high-density lipoprotein (HDL) cholesterol have not always seen reductions in cardiovascular disease (CVD). Furthermore, genetic variants predisposing individuals to high HDL cholesterol are not associated with a lower risk of suffering a coronary event, and therefore HDL functionality is considered to be the most relevant aspect. Virgin olive oil (VOO) is thought to play a protective role against CVD. This review describes the effects of VOO and phenol-enriched VOOs on lipoprotein atherogenicity and HDL atheroprotective properties. The studies have demonstrated a decrease in LDL atherogenicity and an increase in the HDL-mediated macrophage cholesterol efflux capacity, HDL antioxidant activity, and HDL anti-inflammatory characteristics after various VOO interventions. Moreover, the expression of cholesterol efflux-related genes was enhanced after exposure to phenol-enriched VOOs in both post-prandial and sustained trials. Improvements in HDL antioxidant properties were also observed after VOO and phenol-enriched VOO interventions. Furthermore, some studies have demonstrated improved characteristics of TRL atherogenicity under postprandial conditions after VOO intake. Large-scale, long-term randomized clinical trials, and Mendelian analyses which assess the lipoprotein state and properties, are required to confirm these results.
Collapse
Affiliation(s)
- Marta Farràs
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-935537595
| | - Marina Canyelles
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Fitó
- Cardiovascular Risk and Nutrition Research Group, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain;
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Madrid, Spain
| | - Joan Carles Escolà-Gil
- Molecular Bases of Cardiovascular Risk Group Institut de Recerca de l’Hospital Santa Creu i Sant Pau-Institut d’Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain; (M.C.); (J.C.E.-G.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
5
|
Abstract
Olive-pomace oil is rich in oleic acid, and thus it can be an interesting dietary fat alternative as it can allow reaching the recommendation of consuming 20% of total diet energy in the form of monounsaturated fatty acids. In addition, olive-pomace oil also contains a wide range of minor components that may contribute to its healthy properties. The major components identified with healthy properties are triterpenic dialcohols and acids, squalene, tocopherols, sterols, fatty alcohols and phenolic compounds. The refining process, that the crude pomace-oil must undergo for commercial purposes, significantly reduces the content of phenolic compounds, while the other minor components remain at concentrations which can induce positive health effects, especially on cardiovascular health, outstanding pentacyclic triterpenes and aliphatic fatty alcohols in olive-pomace oil. Numerous in vitro and preclinical studies support that mainly the pure compounds, or extracts isolated from plant sources, play an important role in preventing cardiovascular disease and risk factors. Likewise, tocopherols, squalene and phytosterols, in addition to the minor fraction of phenolic compounds, have shown high biological activity with particular association to the cardiovascular function. In the light of the foregoing, and taking into consideration the absence of clinical studies with olive-pomace oil, it would be of great interest to develop randomized, crossover, controlled, double-blind studies to extend the knowledge and understanding on the health effects of olive-pomace olive.
Collapse
Affiliation(s)
- Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Beatriz Sarria
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Laura Bravo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| |
Collapse
|
6
|
Hollstein T, Vogt A, Grenkowitz T, Stojakovic T, März W, Laufs U, Bölükbasi B, Steinhagen-Thiessen E, Scharnagl H, Kassner U. Treatment with PCSK9 inhibitors reduces atherogenic VLDL remnants in a real-world study. Vascul Pharmacol 2019; 116:8-15. [DOI: 10.1016/j.vph.2019.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/22/2019] [Indexed: 11/15/2022]
|
7
|
Perona JS, Cabello-Moruno R, Sinausia L, Montero E, Botham KM, Avella M. Minor components of pomace olive oil enhance VLDL-receptor expression in macrophages when treated with postprandial triglyceride-rich lipoproteins. GRASAS Y ACEITES 2015. [DOI: 10.3989/gya.0109151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Maraki MI, Sidossis LS. Physiology in Medicine: update on lifestyle determinants of postprandial triacylglycerolemia with emphasis on the Mediterranean lifestyle. Am J Physiol Endocrinol Metab 2015; 309:E440-9. [PMID: 26152767 DOI: 10.1152/ajpendo.00245.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/02/2015] [Indexed: 11/22/2022]
Abstract
This review updates the effect of lifestyle on plasma triacylglycerols (TAG) in the postprandial state, commonly reported as postprandial lipemia (PPL), an independent risk factor for cardiovascular diseases (CVD). Numerous studies have shown that Mediterranean diet may reduce PPL. However, most of these studies were focused on the type of fat (i.e., monounsaturated fat from olive oil), and the other components of the Mediterranean lifestyle were neglected. Physical activity, an integral part of this lifestyle, is widely investigated on its own and shown to reduce PPL. In addition, preliminary results of studies examining other Mediterranean "ingredients", such as legumes, fish, and herbs, showed additional benefits; however, data on the long-term effects are limited. More studies are needed to confirm short-term results and investigate the effects of the whole Mediterranean lifestyle on PPL and whether these effects mediate its protective role on CVD. Moreover, investigation of the effects in nonhealthy populations and the underlying mechanisms would be clinically helpful in individualizing the appropriate intervention.
Collapse
Affiliation(s)
- Maria I Maraki
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece; and
| | - Labros S Sidossis
- Laboratory of Nutrition and Clinical Dietetics, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece; and Metabolism Unit, Shriners Hospital for Children, Departments of Internal Medicine and Surgery, University of Texas Medical Branch at Galveston, Texas
| |
Collapse
|
9
|
Rada M, Castellano JM, Perona JS, Guinda Á. GC-FID determination and pharmacokinetic studies of oleanolic acid in human serum. Biomed Chromatogr 2015; 29:1687-92. [PMID: 25943913 DOI: 10.1002/bmc.3480] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/27/2015] [Accepted: 03/20/2015] [Indexed: 12/31/2022]
Abstract
Analytical interest of OA determination in human serum has increased owing to the increasing interest in pharmaceutical research by pharmaceutical properties. A simple, specific, precise and accurate GC method with flame ionization detector (FID) developed and validated for the determination of oleanolic acid (OA) in human serum (HS). To an aliquot of HS, internal standard was added and a combination of liquid-liquid extraction with a mixture of diethyl ether-isopropyl alcohol, filtration and consecutive GC resulted in separation and quantification of OA. The organic phase was analyzed using a GC system equipped with a 30 × 0.25 mm i.d. Rtx-65TG capillary column and FID detection. Total chromatographic time was 10 min and no interfering peaks from endogenous components in blank serum were observed. The OA/internal standard peak area ratio was linearly fitted to the OA concentration (r = 0.992) over the range 10-1500 ng/mL. The mean serum extraction recovery of OA was 96.7 ± 1.0% and the lower limit of quantification based on 5 mL of serum was 10.7 ng/mL. The intra-day coefficient of variation ranged from 1.3 to 3.6% and inter-day varied from 1.4 to 4.5%. The developed method was used to study the pharmacokinetics of OA after oral administration in humans. The assay was simple, sensitive, precise and accurate for the use in the study of the mechanisms of absorption and distribution of OA in humans.
Collapse
Affiliation(s)
- Mirela Rada
- Food and Health Department, Instituto de la Grasa - CSIC, Avda Padre García Tejero, 4., 41012, Seville, Spain
| | - José María Castellano
- Food and Health Department, Instituto de la Grasa - CSIC, Avda Padre García Tejero, 4., 41012, Seville, Spain
| | - Javier S Perona
- Food and Health Department, Instituto de la Grasa - CSIC, Avda Padre García Tejero, 4., 41012, Seville, Spain
| | - Ángeles Guinda
- Food and Health Department, Instituto de la Grasa - CSIC, Avda Padre García Tejero, 4., 41012, Seville, Spain
| |
Collapse
|
10
|
Postprandial phase time influences the uptake of TAG from postprandial TAG-rich lipoproteins by THP-1 macrophages. Br J Nutr 2014; 112:1469-77. [DOI: 10.1017/s000711451400244x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Postprandial TAG-rich lipoproteins (TRL) can be taken up by macrophages, leading to the formation of foam cells, probably via receptor-mediated pathways. The present study was conducted to investigate whether the postprandial time point at which TRL are collected modulates this process. A meal containing refined olive oil was given to nine healthy young men and TRL were isolated from their serum at 2, 4 and 6 h postprandially. The lipid class and apoB compositions of TRL were determined by HPLC and SDS–PAGE, respectively. The accumulation of lipids in macrophages was determined after the incubation of THP-1 macrophages with TRL. The gene expression of candidate receptors was measured by real-time PCR. The highest concentrations of TAG, apoB48 and apoB100 in TRL were observed at 2 h after the consumption of the test meal. However, excessive intracellular TAG accumulation in THP-1 macrophages was observed in response to incubation with TRL isolated at 4 h, when their particle size (estimated as the TAG:apoB ratio) was intermediate. The abundance of mRNA transcripts in macrophages in response to incubation with TRL was down-regulated for LDL receptor (LDLR), slightly up-regulated for VLDL receptor and remained unaltered for LDLR-related protein, but no effect of the postprandial time point was observed. In contrast, the mRNA expression of scavenger receptors SRB1, SRA2 and CD36 was higher when cells were incubated with TRL isolated at 4 h after the consumption of the test meal. In conclusion, TRL led to excessive intracellular TAG accumulation in THP-1 macrophages, which was greater when cells were incubated with intermediate-sized postprandial TRL isolated at 4 h and was associated with a significant increase in the mRNA expression of scavenger receptors.
Collapse
|
11
|
Cabello-Moruno R, Martinez-Force E, Montero E, Perona JS. Minor components of olive oil facilitate the triglyceride clearance from postprandial lipoproteins in a polarity-dependent manner in healthy men. Nutr Res 2014; 34:40-7. [DOI: 10.1016/j.nutres.2013.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/04/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022]
|
12
|
Extra-virgin olive oil consumption reduces the age-related decrease in HDL and paraoxonase 1 anti-inflammatory activities. Br J Nutr 2013; 110:1272-84. [PMID: 23510814 DOI: 10.1017/s0007114513000482] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Paraoxonase 1 (PON1) is associated with HDL and modulates the antioxidant and anti-inflammatory role of HDL. The goals of the present study were to investigate the effect of ageing and the role of PON1 on the anti-inflammatory activity of HDL, and to determine whether extra-virgin olive oil (EVOO) consumption could improve the atheroprotective activity of HDL. HDL and PON1 were isolated from the plasma of ten young (Y-HDL and Y-PON1) and ten elderly (E-HDL and E-PON1) healthy volunteers before and after 12 weeks of EVOO consumption. Inflammation was assessed by measuring intracellular adhesion molecule 1 (ICAM-1) expression. THP-1 (human acute monocytic leukaemia cell line) monocyte chemotaxis was measured using a Boyden chamber. Oxidative damage to HDL was assessed by measuring conjugated diene formation and changes in electrophoretic migration. Y-HDL had more anti-inflammatory activity than E-HDL. The conjugated diene content and the electrophoretic mobility of E-HDL were higher than those of Y-HDL. Y-PON1 had significant anti-inflammatory activity, reducing ICAM-1 expression by 32·64 (SD 2·63)%, while E-PON1 had no significant effect. THP-1 chemotaxis measurements confirmed the ICAM-1 expression results. The 12 weeks of EVOO consumption significantly increased the anti-inflammatory activities of both HDL and PON1. The anti-inflammatory activity of HDL was modulated by PON1 and was lower in the elderly volunteers. EVOO consumption increased the anti-inflammatory effect of HDL and reduced the age-related decrease in anti-atherogenic activity.
Collapse
|
13
|
Antelo A, Perona JS. Evaluation of a method of preparation of lipid emulsions as a model for chylomicron-like particles. J Liposome Res 2013; 23:126-33. [DOI: 10.3109/08982104.2012.754464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Extra-virgin olive oil consumption improves the capacity of HDL to mediate cholesterol efflux and increases ABCA1 and ABCG1 expression in human macrophages. Br J Nutr 2012; 109:1844-55. [DOI: 10.1017/s0007114512003856] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study was aimed to investigate the effect of 12 weeks of extra-virgin olive oil (EVOO) consumption on the capacity of HDL to promote cholesterol efflux (CE) and to determine which CE pathways are modulated by EVOO consumption. Whole HDL and HDL2/HDL3 subclasses were isolated from the plasma of twenty-six healthy volunteers before and after 12 weeks of EVOO consumption (25 ml/d). EVOO consumption increased the capacity of serum and HDL to mediate CE from THP-1, J774 macrophages and Fu5AH cells by 9·8–24·57 %, depending on the cell type. The increase in CE was independent of both HDL concentration and subclass distribution. The three HDL-mediated CE pathways (ATP-binding cassette (ABC) A1, ABCG1 and scavenger receptor class B type I (SR-BI)) were modulated by EVOO consumption. The fluidity of the phospholipidic layer of HDL increased by 13 % (P< 0·001) following EVOO consumption compared with baseline. EVOO consumption also increased the release of excess cholesterol from human monocyte-derived macrophages (HMDM) by 44 % (P< 0·001), and ABCA1 and ABCG1 mRNA transcription by 16·08 % (P< 0·001) and 35·79 % (P< 0·01), respectively. The protein expression of these two cholesterol transporters also increased after EVOO consumption. In contrast, SR-BI mRNA and protein expression in HMDM were significantly lower after 12 weeks of EVOO consumption. Incubating J774 macrophages with EVOO polyphenol extracts induced a concentration-dependent up-regulation of ABCA1 and ABCG1 expression in macrophages. After 12 weeks of EVOO consumption, the capacity of HDL to mediate CE was improved and the ability of HMDM to release excess cholesterol was enhanced by increasing the expression of ABCA1 and ABCG1 transporters.
Collapse
|
15
|
Effects of pomace olive oil-enriched diets on endothelial function of small mesenteric arteries from spontaneously hypertensive rats. Br J Nutr 2009; 102:1435-44. [DOI: 10.1017/s0007114509990754] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pomace olive oil (POM), an olive oil subproduct traditionally used in Spain, is a good source of minor components from the unsaponifiable fraction such as triterpenoids, mainly in the form of oleanolic acid, which induces vascular protection and vasodilatation. Our aim was to evaluate the effects of long-term intake of diets enriched in POM with high concentration in oleanolic acid on endothelial dysfunction associated to hypertension in small mesenteric arteries (SMA) from spontaneously hypertensive rats (SHR). During 12 weeks, rats (six rats per group) were fed either a control 2 % maize oil diet (BD), or high-fat diets containing 15 % refined olive oil (OL), pomace olive oil (POM), or pomace olive oil supplemented in oleanolic acid (POMO; up to 800 parts per million). Endothelial and vascular functions were assessed by relaxing or contracting responses to acetylcholine (ACh) or phenylephrine, respectively. The involvement of endothelium-derived relaxing factors in these responses was evaluated. In contrast to BD, SHR fed high-fat diets showed a biphasic response to ACh related to changes in eicosanoid metabolism. POM enhanced the endothelial function in SMA from SHR by increasing the endothelium-derived hyperpolarising factor (EDHF)-type component, whereas administration of POMO resulted in a similar contribution of NO/EDHF in the endothelial response to ACh. The present study shows that despite the lack of changes in blood pressure, consumption of POM improves endothelial function in SMA from SHR by improving the agonist-mediated EDHF/NO response. Thus, triterpenoids confer a protective role to POM against endothelial dysfunction in hypertension.
Collapse
|
16
|
Fernández-Arche A, Marquez-Martín A, Vazquez RDLP, Perona JS, Terencio C, Perez-Camino C, Ruiz-Gutierrez V. Long-chain fatty alcohols from pomace olive oil modulate the release of proinflammatory mediators. J Nutr Biochem 2009; 20:155-62. [DOI: 10.1016/j.jnutbio.2008.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/05/2008] [Accepted: 01/11/2008] [Indexed: 12/15/2022]
|
17
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Martínez-González J, Rodríguez-Rodríguez R, González-Díez M, Rodríguez C, Herrera MD, Ruiz-Gutierrez V, Badimon L. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J Nutr 2008; 138:443-8. [PMID: 18287347 DOI: 10.1093/jn/138.3.443] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oleanolic acid is a triterpenoid that may contribute to the cardio-protective effects of olive oil. Our goal was to assess whether oleanolic acid could modulate eicosanoid biosynthesis and to determine the mechanism involved in this effect. Human coronary smooth muscle cells (SMC) were treated with oleanolic acid, erythrodiol, or hydroxytyrosol and eicosanoid release was measured by enzyme immunoassay. Cyclooxygenase (Cox)-1 and Cox-2 protein and messenger sRNA levels were analyzed by Western blot and real-time PCR, respectively. Mitogen-activated protein kinase (MAPK) pathways were assessed using specific antibodies. Oleanolic acid induced prostaglandin I2 (PGI2) release by human coronary SMC, an effect that was prevented by celecoxib (a specific inhibitor of Cox-2). The increased PGI2 was time-and dose-dependent and was associated to the up-regulation of Cox-2. No effects were observed on thromboxane A2. Erythrodiol but not hydroxytyrosol upregulated Cox-2 expression and induced PGI2 synthesis. Oleanolic acid induced an early phosphorylation of p38 MAPK and p42/44 MAPK but not c-Jun N-terminal kinase-1 (JNK-1). SB203580 (p38MAPK inhibitor) and U0126 (MAPK kinase1/2 inhibitor) abrogated the upregulation of Cox-2 and PGI2 release induced by oleanolic acid. A peptide inhibitor of JNK-1 (L-JNKI1) did not produce any effect. The induction of Cox-2 was preceded by an early activation of cAMP regulatory element-binding protein, a key transcription factor involved in Cox-2 transcriptional upregulation. Therefore, oleanolic acid contributes to vascular homeostasis by inducing PGI2 release in a Cox-2-dependent manner. Oleanolic acid could be regarded as a bioactive molecule that may contribute to the beneficial effects of the Mediterranean diet.
Collapse
Affiliation(s)
- José Martínez-González
- Centro de Investigación Cardiovascular, Consejo Superior de Investigaciones Científicas/Institut Català de Ciències Cardiovasculars-Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|