1
|
Kale MD, Kadam SP, Shravage BV, Nikam VS. From computational prediction to experimental validation: Hesperidin's anti-Urolithiatic activity in sodium oxalate-induced urolithiasis models in fruit flies and mice. Toxicol Appl Pharmacol 2024:117104. [PMID: 39276927 DOI: 10.1016/j.taap.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Kidney stones have been a long-standing health issue, contributing to renal failure, especially in co-morbid patients. There is an increasing interest in exploring natural compounds with anti-urolithiatic properties. Our study utilized in-silico techniques followed by in vivo experiments to evaluate the anti-urolithiatic potential of selected phytoconstituents. Molecular docking studies were conducted on 11 different targets, including inhibitors of kidney stone formation, antioxidant enzymes, and biomarkers of kidney injury, to explore the potential of antiurolithiatic effects of 38 phytoconstituents from medicinal plants possessing diuretic activity. Further, the antiurolithiatic activity of the phytoconstituent was evaluated using a sodium oxalate-induced urolithiatic fruit fly and mouse model. Hesperidin emerged as a promising candidate, exhibiting binding interactions with a specific set of 11 target proteins involved in crystal formation with minimal free energy. Hesperidin demonstrated promising antiurolithiatic potential in mitigating urolithiasis as evidenced by reduced crystal covered area of Malpighian tubules of fruit fly and reduced blood urea nitrogen (BUN), serum creatinine and serum sodium, potassium levels in mice. Moreover, it increased urine volume, preventing crystal deposition, and reduced urine urea nitrogen, creatinine, sodium, and potassium levels, enhancing urine flow and preventing crystal accumulation. Histopathological analysis further supported its efficacy by showing minimal crystal deposition and reduced kidney damage. Hesperidin exhibited superior effectiveness in reducing various serum and urine parameters, making it promising alternatives for urolithiasis management warranting further investigation to determine its safety and optimal dosages in human.
Collapse
Affiliation(s)
- Monika D Kale
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, India
| | - Sonal P Kadam
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, India
| | - Bhupendra V Shravage
- Developmental Biology Group, Agharkar Research Institute, Savitribai Phule Pune University, Pune, India.
| | - Vandana S Nikam
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune 411048, India.
| |
Collapse
|
2
|
Bawari S, Sah AN, Gupta P, Zengin G, Tewari D. Himalayan Citrus jambhiri juice reduced renal crystallization in nephrolithiasis by possible inhibition of glycolate oxidase and matrix metalloproteinases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116157. [PMID: 36646157 DOI: 10.1016/j.jep.2023.116157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrus fruits are a very rich source of electrolytes and citric acid. They have been used traditionally for treating urinary ailments and renal stones. Citrus jambhiri is indigenously used as a diuretic. AIM OF THE STUDY Present study aimed at establishing the antiurolithiatic potential of the juice of Citrus jambhiri fruits along with the elucidation of the mechanism involved in the urolithiasis disease defying activity. METHODS The antiurolithiatic activity was established by means of nucleation, growth and aggregation assay in the in vitro settings and by means of ethylene glycol mediated calcium oxalate urolithiasis in the male Wistar rats. Docking studies were performed in an attempt to determine the mechanism of the antiurolithiatic action. RESULTS Present study revealed the role of C. jambhiri fruit juice in reducing nucleation, growth and aggregation of calcium oxalate crystals by possible reduction in the urinary supersaturation relative to calcium oxalate and raising the zeta potential of the calcium oxalate crystals. C. jambhiri fruit juice treatment in experimental rats produced significant amelioration of hypercalciuria, hyperoxaluria, hyperphosphaturia, hyperproteinuria, hyperuricosuria, hypocitraturia and hypomagnesiuria and ion activity product of calcium oxalate. It exhibited nephroprotection against calcium oxalate crystals induced renal tubular dilation and renal tissue deterioration. Docking studies further revealed high binding potential of the phytoconstituents of C. jambhiri viz. narirutin, neohesperidin, hesperidin, rutin and citric acid with glycolate oxidase and matrix metalloproteinase-9. CONCLUSION C. jambhiri fruit juice possesses excellent antiurolithiatic activity. The study reveals antiurolithiatic mechanism that involves restoration of equilibrium between the promoters and inhibitors of stone formation; and inhibition of matrix metalloproteinases and glycolate oxidase.
Collapse
Affiliation(s)
- Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201313, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal, Kumaun University, Nainital, Uttarakhand, 263136, India.
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Gökhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India.
| |
Collapse
|
3
|
Tian L, Wang Y, Qing J, Zhou W, Sun L, Li R, Li Y. A review of the pharmacological activities and protective effects of Inonotus obliquus triterpenoids in kidney diseases. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Kidney diseases are common health problems worldwide. Various etiologies ultimately lead to the development of chronic kidney disease and end-stage renal disease. Natural compounds from herbs or medicinal plants are widely used for therapy and prevention of various ailments, among which is Inonotus obliquus. I. obliquus is rich in triterpenoids and the main active ingredients include betulinic acid, trametenolic acid, inotodiol, and ergosterol. New evidence suggests that I. obliquus triterpenes may be an effective drug for the treatment and protection of various kidney diseases. The aim of this review is to highlight the pharmacological activities and potential role of I. obliquus triterpenes in the kidney disease treatment and protection.
Collapse
Affiliation(s)
- Lingling Tian
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Yi Wang
- The Third Clinical College, Shanxi University of Chinese Medicine , Taiyuan , Shanxi, 030001 , China
| | - Jianbo Qing
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- The Fifth Clinical Medical College of Shanxi Medical University , Taiyuan , Shanxi, 030001 , China
| | - Wenjing Zhou
- School of Medical Sciences, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Lin Sun
- College of Taditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine , jinzhong , 030619 , China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University ; Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan, 030012 , Shanxi , China
| | - Yafeng Li
- Department of Nephrology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Shanxi Provincial Key Laboratory of Kidney Disease, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030012, Shanxi , China
- Core Laboratory, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University , Taiyuan , 030001 , China
- Academy of Microbial Ecology, Shanxi Medical University , Taiyuan , 030001 , China
| |
Collapse
|
4
|
Chemical Profiling and In Vitro Antiurolithiatic Activity of Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi Along with Its Antioxidant and Antibacterial Properties. Appl Biochem Biotechnol 2022; 194:5037-5059. [PMID: 35687306 DOI: 10.1007/s12010-022-04017-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
Pleurolobus gangeticus (L.) J. St.- Hil. ex H. Ohashi & K. Ohashi (Fabaceae) is an important medicinal plant used to treat various ailments. In this study, we report the antiurolithiatic, antioxidant, and antibacterial potential of chloroform fraction (CF) from P. gangeticus roots. For the chemical profiling, HPTLC, FT-IR, and GC-MS techniques of the CF were carried out, and phytochemical investigation was revealed that stigmasterol (45.06%) is one of the major components present in the fraction. The nucleation and aggregation assays were used to evaluate the in vitro antiurolithiatic activity at various concentration (2-10 mg/mL) of the CF. The results showed that the chloroform fraction had dose-dependent effects on Calcium Oxalate (CaOx) crystal formation. In both the assays, the maximum concentration of 10 mg/mL has shown better results. This concentration resulted significant increase in CaOx crystal nucleation along with the reduction of crystal size and the inhibition of crystal aggregation. Further, the CF showed stronger antioxidant (DPPH, NO, SOD, TRC) potential with an IC50 values of 415.9327, 391.729, 275.971, and 419.14 µg/mL, respectively. The antibacterial evaluation displayed effective results in the Agar well diffusion assay against selective urinary tract infection (UTI) pathogens (Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus). A maximum zone of inhibition (ZOI) 12.33 ± 1.05 mm for K pneumonia and minimum ZOI of 8.46 ± 0.27 mm for S. aureus were obtained. Further, the ADME-PK property of the stigmasterol was investigated, and it was found to pass the Lipinski and Ghose rules, supporting the drug-likeliness. This is the first record of the antiurolithiatic potential of P. gangeticus along with antioxidant and antibacterial activities. These findings give an insight into the effective drug development and treatment for kidney stones in future.
Collapse
|
5
|
Wu J, Wang J, Han Y, Lin Y, Wang J, Bu M. Synthesis and Cytotoxic Activity of Novel Betulin Derivatives Containing Hydrazide-Hydrazone Moieties. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of novel betulin derivatives containing hydrazide-hydrazone moieties were synthesized. All compounds were evaluated for their cytotoxicity against four human carcinoma cell lines (HepG2, A549, MCF-7 and HCT-116) and a normal human gastric epithelial cell line (GES-1). Among them, compound 6i was the most potent against HepG2 and MCF-7 cell lines, with IC50 values of 9.27 and 8.87 μM, respectively. The results suggest that the incorporation of a hydrazide-hydrazone side chain at the C-28 position of betulin is beneficial for compounds to display significant cytotoxicity. Compound 6i may be used as a promising skeleton for antitumor agents with improved efficacy.
Collapse
Affiliation(s)
- Jiale Wu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jiafeng Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yinglong Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Yu Lin
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
6
|
Litholytic Activities of Natural Bioactive Compounds and Their Mechanism Insights. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urolithiasis is a disease characterized by the formation of stones, which are crystalline accretions that form in the urinary tract from minerals dissolved in the urine. Moreover, it is considered to be a complex and multifactorial disease, requiring treatment. Unfortunately, current treatments are insufficient or may induce several side effects. In fact, medicinal plants are among the anti-litholytic treatments that are strongly recommended by many studies. Indeed, these natural resources contain bioactive molecules of different natures, such as flavonoids, terpenoids, alkaloids, and phenolic acids, which have recently demonstrated very important anti-litholytic effects. The molecular mechanisms involved are multiple and variable, and can reach cellular and molecular levels. In this review, we have discussed in depth the work that has studied the bioactive molecules of medicinal plants and their major potential against urolithiasis. Scientific databases, including Web of Science, PubMed, and Google Scholar, were searched from their inception until April 2021.The cellular and molecular mechanisms are presented and discussed. Some mechanisms of action related to these bioactive compounds are highlighted. This review could provide a scientific starting point for further studies on urolithiasis and natural bioactive compounds, especially flavonoids.
Collapse
|
7
|
Lobine D, Ahmed S, Aschner M, Khan H, Mirzaei H, Mahomoodally MF. Antiurolithiatic effects of pentacyclic triterpenes: The distance traveled from therapeutic aspects. Drug Dev Res 2020; 81:671-684. [PMID: 32314397 DOI: 10.1002/ddr.21670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Globally, approximately 12% of the population is inflicted by various types of urolithiasis. Standard treatments are available both to avert and treat urolithiasis, but with significant adverse side effects. Pentacyclic triterpenes represent a group of naturally occurring compounds which holds immense potential as therapeutic for treating kidney stone. This review aims to provide an integrative description on how pentacyclic triterpenes can effectively treat calcium oxalate urolithiasis through various mechanisms such as antioxidant, anti-inflammatory, diuretic, and angiotensin-converting enzyme inhibition. Some of the pentacylic triterpenes which shows promising activities include lupeol, oleanolic acid, betulin, and taraxasterol. Moreover, future perspectives in the development of pentacyclic triterpenes in formulations/drugs for urinary stone prevention are highlighted. It is anticipated that compiled information would serve as a scientific baseline to advocate further investigations on the potential of pentacyclic triterpenes in urolithiasis remediation.
Collapse
Affiliation(s)
- Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius.,Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
8
|
Chen H, Xiao H, Pang J. Parameter Optimization and Potential Bioactivity Evaluation of a Betulin Extract from White Birch Bark. PLANTS 2020; 9:plants9030392. [PMID: 32210064 PMCID: PMC7154890 DOI: 10.3390/plants9030392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 01/05/2023]
Abstract
Owing to its pharmacological potential, betulin has attracted substantial attention in the past two decades. The present work attempts to extract betulin from Betula platyphylla Suk. bark by the ultrasonic-assisted ethanol method and to evaluate its potential bioactivities. The critical process variables affecting the yield were optimized by a four-factor, three-level, central composite response surface methodology (RSM). A betulin yield of 92.67% was achieved under the optimum conditions: 65% ethanol concentration, 1:25 ratio of white birch bark to solvent, an extraction temperature of 30 °C, and an extraction time of 30 min. The ratio of solid to solvent is the most significant parameter in terms of yield. The optimal conditions were validated through experiments, and the observed value (92.67 ± 2.3%) was interrelated with the predicted value (92.86 ± 1.5%). The betulin extract was analyzed quantitatively by HPLC and quantitatively by LC/MS, before its potential biological activities were evaluated. Bioactivity surveys confirmed that the betulin extract showed not only no embryo deformity through zebrafish administration experiments, but also no cytotoxicity through MTT assays. Furthermore, the betulin extract had strong antioxidant activities in vitro by scavenging ferric reducing power (FRAP), 1,1-diphenyl-2-picryl hydrazyl(DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and chelating metal ions. This study demonstrates that ultrasonic-assisted ethanol extraction may be a green, efficient method for the extraction of betulin from white birch bark, and that betulin extracts are potentially useful in cosmetics, food supplements, or pharmaceutical applications.
Collapse
Affiliation(s)
- Haiyan Chen
- Changchun Sci-Tech University, Changchun 130600, Jilin, China;
- College of Food Science and Engineering, Jilin Agriculture University, Changchun 130118, Jilin, China;
- Correspondence: ; Tel.: +86-01-366-443-4499
| | - Han Xiao
- College of Food Science and Engineering, Jilin Agriculture University, Changchun 130118, Jilin, China;
| | - Jiwei Pang
- Changchun Sci-Tech University, Changchun 130600, Jilin, China;
| |
Collapse
|