1
|
Topuz F, Uyar T. Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1995. [PMID: 39480078 DOI: 10.1002/wnan.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024]
Abstract
Cyclodextrins (CDs) belong to a class of cyclic oligosaccharides characterized by their toroidal shape consisting of glucose units linked via α-1,4-glycosidic bonds. This distinctive toroidal shape exhibits a dual nature, comprising a hydrophobic interior and a hydrophilic exterior, making CDs highly versatile in various pharmaceutical products. They serve multiple roles: they act as solubilizers, stabilizers, controlled release promoters, enhancers of drug bioavailability, and effective means of masking undesirable tastes and odors. Taking advantage of these inherent benefits, CDs have been integrated into numerous nanoscale drug delivery systems. The resulting nanomaterials exploit the exceptional properties of CDs, including their ability to solubilize hydrophobic drugs for substantial drug loading, engage in supramolecular complexation for engineered nanomaterials, increase bioavailability for improved therapeutic efficacy, stabilize labile drugs, and exhibit biocompatibility and versatility. This paper compiles recent studies on CD functional nanoscale drug delivery platforms. First, we described the physicochemical and toxicological aspects of CDs, CD/drug inclusion complexation, and their impact on improving drug bioavailability. We then summarized applications for CD-functional nano delivery systems based on polymeric, hybrid, lipid-based nanoparticles, and CD-based nanofibers. Particular interest was in the targeted applications and the function of the CD molecules used. In most applications, CD molecules were used for drug solubilization and loading, while in some studies, CD molecules were employed for supramolecular complexation to construct nanoscale drug delivery systems. Finally, the review concludes with a thoughtful consideration of the current challenges and outlook.
Collapse
Affiliation(s)
- Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Roy A, Zenker S, Jain S, Afshari R, Oz Y, Zheng Y, Annabi N. A Highly Stretchable, Conductive, and Transparent Bioadhesive Hydrogel as a Flexible Sensor for Enhanced Real-Time Human Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404225. [PMID: 38970527 PMCID: PMC11407428 DOI: 10.1002/adma.202404225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Real-time continuous monitoring of non-cognitive markers is crucial for the early detection and management of chronic conditions. Current diagnostic methods are often invasive and not suitable for at-home monitoring. An elastic, adhesive, and biodegradable hydrogel-based wearable sensor with superior accuracy and durability for monitoring real-time human health is developed. Employing a supramolecular engineering strategy, a pseudo-slide-ring hydrogel is synthesized by combining polyacrylamide (pAAm), β-cyclodextrin (β-CD), and poly 2-(acryloyloxy)ethyltrimethylammonium chloride (AETAc) bio ionic liquid (Bio-IL). This novel approach decouples conflicting mechano-chemical effects arising from different molecular building blocks and provides a balance of mechanical toughness (1.1 × 106 Jm-3), flexibility, conductivity (≈0.29 S m-1), and tissue adhesion (≈27 kPa), along with rapid self-healing and remarkable stretchability (≈3000%). Unlike traditional hydrogels, the one-pot synthesis avoids chemical crosslinkers and metallic nanofillers, reducing cytotoxicity. While the pAAm provides mechanical strength, the formation of the pseudo-slide-ring structure ensures high stretchability and flexibility. Combining pAAm with β-CD and pAETAc enhances biocompatibility and biodegradability, as confirmed by in vitro and in vivo studies. The hydrogel also offers transparency, passive-cooling, ultraviolet (UV)-shielding, and 3D printability, enhancing its practicality for everyday use. The engineered sensor demonstratesimproved efficiency, stability, and sensitivity in motion/haptic sensing, advancing real-time human healthcare monitoring.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shea Zenker
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
3
|
Pedotti S, Ferreri L, Migliore R, Leotta CG, Pitari GM, D'Antona N, Petralia S, Aleo D, Sgarlata C, Consoli GML. A novel cationic β-cyclodextrin decorated with a choline-like pendant exhibits Iodophor, Mucoadhesive and bactericidal properties. Carbohydr Polym 2024; 328:121698. [PMID: 38220321 DOI: 10.1016/j.carbpol.2023.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Iodine is a vital microelement and a powerful antiseptic with a rapid and broad spectrum of action. The development of iodophor compounds to improve the solubility and stability of iodine is still challenging. Here, we report the synthesis of a novel cationic β-cyclodextrin bearing a choline-like pendant (β-CD-Chol) designed to complex and deliver iodine to bacterial cells. The characterization of β-CD-Chol and the investigation of the inclusion complex with iodine were performed by NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, isothermal titration calorimetry, and dynamic light scattering. The functionalization with the positively charged unit conferred improved water-solubility, mucoadhesivity, and iodine complexation efficiency to the β-CD scaffold. The water-soluble β-CD-Chol/iodine complex efficiently formed both in solution and by solid-vapor reaction. The solid complex exhibited a significant stability for months. Iodine release from the inclusion complex was satisfactory and the bactericidal activity was proved against a Staphylococcus epidermidis strain. The absence of cytotoxicity tested on human keratinocytes and the improved mucoadhesivity make β-CD-Chol a promising drug delivery system and an appealing iodophor candidate for iodine-based antisepsis including mucosa disinfection.
Collapse
Affiliation(s)
- Sonia Pedotti
- Institute of Biomolecular Chemistry, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Loredana Ferreri
- Institute of Biomolecular Chemistry, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Rossella Migliore
- Institute of Biomolecular Chemistry, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy
| | | | | | - Nicola D'Antona
- Institute of Biomolecular Chemistry, CNR, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Danilo Aleo
- MEDIVIS S.r.l., Via Carnazza 34C, Tremestieri Etneo, 95030 Catania, Italy
| | - Carmelo Sgarlata
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | |
Collapse
|
4
|
saleh DI, Mahmoud SF, Etaiw SEH. Ultrasound-assisted synthesis and biological activity of nanosized supramolecular coordination polymers of silver(I) with chloride, thiocyanate, and 4,4′-bipyridine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Hoque MJ, Toda M, Mase N. Comparative study of inclusion complex formation between β-cyclodextrin (host) and aromatic diamines (guests) by mixing in hot water, co-precipitation, and solid-state grinding methods. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2068026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammed Jabedul Hoque
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Mitsuo Toda
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Nobuyuki Mase
- Department of Optoelectronics and Nanostructure Science, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|
6
|
Gao B, Li B, Wu L. Layered supramolecular network of cyclodextrin triplets with azobenzene-grafting polyoxometalate for dye degradation and partner-enhancement. Chem Commun (Camb) 2021; 57:10512-10515. [PMID: 34550136 DOI: 10.1039/d1cc04566k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A tri-β-cyclodextrin-armed host compound is synthesized to construct layered supramolecular network co-assembly with a doubly azobenzene-decorated polyoxometalate cluster through host-guest interaction. The porous hybrid assembly displays automatic degradation of selective dyes and the acceleration of the partner dye in both water and dichloromethane in the air.
Collapse
Affiliation(s)
- Bo Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
7
|
Hoy R, Grell T, Lönnecke P, Hey-Hawkins E. Selective formation of a supramolecular coordination complex in the nanometre scale with a ferrocene-based phospholane ligand. Chem Commun (Camb) 2021; 57:9200-9203. [PMID: 35225989 DOI: 10.1039/d1cc03755b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A straightforward synthesis of the tetradentate phospholane ligand 1 is reported. The 2 : 1 [M : L] reaction of 1 with [AuCl(tht)] (tht = tetrahydrothiophene) resulted in the 4 : 2 [M : L] supramolecular coordination complex 2 where two ligands 1 are bridging four gold(I) cations. The formation of 2 can be rationalised via a geometrical analysis of the ligand. The coordination mode of the gold atoms was evaluated based on a CSD search, revealing the geometrical changes for a transition from linear to trigonal planar coordination environment.
Collapse
Affiliation(s)
- Reinhard Hoy
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, Milano 20133, Italy
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| |
Collapse
|
8
|
Recent advances and applications of cyclodextrins in magnetic solid phase extraction. Talanta 2021; 229:122296. [PMID: 33838782 DOI: 10.1016/j.talanta.2021.122296] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins (CDs) as a family of cyclic oligosaccharides are toroidal with a hydrophobic interior and a hydrophilic exterior. They are well-known for their ability to form host-guest inclusion complexes with different compounds. They are used as chiral stationary phases in high performance liquid chromatography (HPLC) and gas chromatography (GC) or as chiral reagents in the background electrolyte of capillary electrophoresis (CE). In recent years, they have been used for modification of sorbents or as sorbents in solid phase extraction (SPE) procedures. Magnetic solid-phase extraction (MSPE), as a new type of SPE procedure, has received considerable attention due to its rapid phase separation process as compared to traditional extraction mode. This review covers the synthesis of CD-based magnetic sorbents (such as immobilization of CDs onto the different supports, production of nanosponges, and making hybrid substances with nanomaterials) and the use of these compounds in MSPE of different analytes from biological, environmental, and food samples. Also, prospects of CD-based sorbents for sample pre-treatment are also proposed.
Collapse
|
9
|
Przybyla MA, Yilmaz G, Becer CR. Natural cyclodextrins and their derivatives for polymer synthesis. Polym Chem 2020. [DOI: 10.1039/d0py01464h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A toolbox of cyclodextrin derivatives, synthetic strategies for the preparation of cyclodextrin-polymer conjugates using various polymerisation techniques and representative applications of such conjugates are discussed.
Collapse
Affiliation(s)
| | - Gokhan Yilmaz
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|