1
|
Wu T, Du Z, Li H, Jiang Z, Zheng M, Li Z, Hong T, Du X, Ni H, Zhu Y. A disulfide bond mutant of Pseudoalteromonas porphyrae κ-carrageenase conferred improved thermostability and catalytic activity and facilitated its utilization in κ-carrageenan industrial waste residues recycling. Int J Biol Macromol 2024; 280:135573. [PMID: 39270888 DOI: 10.1016/j.ijbiomac.2024.135573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
In this study, Discovery Studio was employed to predict the potential disulfide bond mutants of the catalytic domain of Pseudoalteromonas porphyrae κ-carrageenase to improve the catalytic activity and thermal stability. The mutant N205C-G239C was identified with significantly increased catalytic activity toward κ-carrageenan substrate, with activity 4.28 times that of WT. The optimal temperature of N205C-G239C was 55 °C, 15 °C higher than that of WT. For N205C-G239C, the t1/2 value at 50 °C was 52 min, 1.41 times that of WT. The microstructural analysis revealed that the introduced disulfide bond N205C-G239C could create a unique catalytic environment by promoting favorable interactions with κ-neocarratetraose. This interaction impacted various aspects such as product release, water molecule network, thermodynamic equilibrium, and tunnel size. Molecular dynamics simulations demonstrated that the introduced disulfide bond enhanced the overall structure rigidity of N205C-G239C. The results of substrate tunnel analysis showed that the mutation led to the widening of the substrate tunnel. The above structure changes could be the possible reasons responsible for the simultaneous enhancement of the catalytic activity and thermal stability of mutant N205C-G239C. Finally, N205C-G239C exhibited the effective hydrolysis of the κ-carrageenan industrial waste residues, contributing to the recycling of the oligosaccharides and perlite.
Collapse
Affiliation(s)
- Ting Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zeping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen 361008, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China.
| |
Collapse
|
2
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
3
|
Li X, Li C, Liu Y, Han G, Lin C, Chen X, Mao J. Rheological and Structural Characterization of Carrageenans during Depolymerization Conducted by a Marine Bacterium Shewanella sp. LE8. Gels 2024; 10:502. [PMID: 39195031 DOI: 10.3390/gels10080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Carrageenans were widely utilized as thickening and gelling agents in the food and cosmetic industries, and their oligosaccharides have been proven to possess enhanced physicochemical and biological properties. In this study, Shewanella sp. LE8 was utilized for the depolymerization of κ-, ι-, and λ-carrageenan under conditions of fermentation. During a 24-h fermentation at 28 °C, the apparent viscosity of κ-, ι-, and λ-carrageenan decreased by 53.12%, 84.10%, and 59.33%, respectively, accompanied by a decrease in storage modulus, and loss modulus. After a 72-h fermentation, the analysis of methylene blue and molecular weight distribution revealed that ι-carrageenan was extensively depolymerized into smaller polysaccharides by Shewanella sp. LE8, while exhibiting partial degradation on κ- and λ-carrageenan. However, the impact of Shewanella sp. LE8 on total sugars was found to be limited; nevertheless, a significant increase in reduced sugar content was observed. The ESIMS analysis results revealed that the purified components obtained through ι-carrageenan fermentation for 72 h were identified as tetrasaccharides, while the two purified components derived from λ-carrageenan fermentation consisted of a hexasaccharide and a tetrasaccharide, respectively. Overall, the present study first reported the depolymerization of ι-and λ-carrageenan by Shewanella and suggested that the Shewanella could be used to depolymerize multiple carrageenans, as well as complex polysaccharides derived from red algae, to further obtain their oligosaccharides.
Collapse
Affiliation(s)
- Xiong Li
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chuyi Li
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Gang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaoli Chen
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jian Mao
- Guangdong Engineering Research Center of High-Value Utilization and Equipment Development of Marine Biological Resources, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
4
|
Li X, Yao W, Hu C, Lin C, You L, Mao J. Comparative Analysis of Gracilaria chouae Polysaccharides Derived from Different Geographical Regions: Focusing on Their Chemical Composition, Rheological Properties, and Gel Characteristics. Gels 2024; 10:454. [PMID: 39057478 PMCID: PMC11275624 DOI: 10.3390/gels10070454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai (BH), and a wild source from Beihai (BHW). We conducted analyses on the chemical composition, viscosity, and rheological properties, as well as gel properties, to investigate the influence of chemical composition on variations in gel properties. The results revealed that the total sugar, sulfate content, and monosaccharide composition of G. chouae polysaccharides exhibit similarity; however, their anhydrogalactose content varies within a range of 15.31% to 18.98%. The molecular weight distribution of G. chouae polysaccharides ranged from 1.85 to 2.09 × 103 kDa. The apparent viscosity of the LYG and BHW polysaccharides was relatively high, whereas that of RZ and ND was comparatively low. The gel strength displayed a similar trend. BHW and LYG exhibited solid-like behavior, while ND, RZ, and BH demonstrated liquid-like characteristics at low frequencies. The redundancy analysis (RDA) analysis revealed a positive correlation between the texture profile analysis (TPA) characteristics and anhydrogalactose. The study could provide recommendations for the diverse applications of G. chouae polysaccharides derived from different geographical regions.
Collapse
Affiliation(s)
- Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Cebin Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Congyu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (W.Y.); (C.H.)
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (X.L.); (J.M.)
| |
Collapse
|
5
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
6
|
Lu Z, Jiang H, Yang D, Tang H, Hamouda HI, Wang T, Mao X. Characterization of a λ-Carrageenase Mutant with the Generation of Long-Chain λ-Neocarrageenan Oligosaccharides. Foods 2024; 13:1923. [PMID: 38928863 PMCID: PMC11202985 DOI: 10.3390/foods13121923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
λ-carrageenan oligosaccharides can be widely applied in the food, pharmaceutical, medicine and cosmetic industries due to their abundant bioactivities, and they are important products for the high-value utilization of λ-carrageenan. However, oligosaccharides with different degrees of polymerization have different properties, and the final products of λ-carrageenase reported so far are mainly λ-neocarrabiose, λ-neocarratetraose and λ-neocarrahexaose without longer-chain oligosaccharides. Further research is consequently required. Herein, a mutant λ-carrageenase was constructed by deleting the pyrroloquinoline quinone-like domain of OUC-CglA derived from Maribacter vaceletii. Interestingly, it was discovered that the majority of final products of the mutant OUC-CglA-DPQQ were long-chain oligosaccharides with a polymerization degree of 10-20, which underwent significant changes compared to that of OUC-CglA. Additionally, without the pyrroloquinoline quinone-like domain, fewer inclusion bodies were produced throughout the expression process, and the yield of the λ-carrageenase increased about five-fold. However, compared to its parental enzyme, significant changes were made to its enzymatic properties. Its optimal temperature and pH were 15 °C and pH 7.0, and its specific activity was 51.59 U/mg. The stability of the enzyme decreased. Thus, it was found that the deleting domain was related to the formation of inclusion bodies, the stability of the enzyme, the activity of the enzyme and the composition of the products.
Collapse
Affiliation(s)
- Zewei Lu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Dianqi Yang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengxin Tang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Hamed I. Hamouda
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Tao Wang
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China
| |
Collapse
|
7
|
Du Z, Huang X, Li H, Zheng M, Hong T, Li Z, Du X, Jiang Z, Ni H, Li Q, Zhu Y. Improvement of thermostability by increasing rigidity in the finger regions and flexibility in the catalytic pocket area of Pseudoalteromonas porphyrae κ-carrageenase. World J Microbiol Biotechnol 2024; 40:216. [PMID: 38802708 DOI: 10.1007/s11274-024-04029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Poor thermostability reduces the industrial application value of κ-carrageenase. In this study, the PoPMuSiC algorithm combined with site-directed mutagenesis was applied to improve the thermostability of the alkaline κ-carrageenase from Pseudoalteromonas porphyrae. The mutant E154A with improved thermal stability was successfully obtained using this strategy after screening seven rationally designed mutants. Compared with the wild-type κ-carrageenase (WT), E154A improved the activity by 29.4% and the residual activity by 51.6% after treatment at 50 °C for 30 min. The melting temperature (Tm) values determined by circular dichroism were 66.4 °C and 64.6 °C for E154A and WT, respectively. Molecular dynamics simulation analysis of κ-carrageenase showed that the flexibility decreased within the finger regions (including F1, F2, F3, F5 and F6) and the flexibility improved in the catalytic pocket area of the mutant E154A. The catalytic tunnel dynamic simulation analysis revealed that E154A led to enlarged catalytic tunnel volume and increased rigidity of the enzyme-substrate complex. The increasing rigidity within the finger regions and more flexible catalytic pocket of P. porphyrae κ-carrageenase might be a significant factor for improvement of the thermostability of the mutant κ-carrageenase E154A. The proposed rational design strategy could be applied to improve the enzyme kinetic stability of other industrial enzymes. Moreover, the hydrolysates of κ-carrageenan digested by the mutant E154A demonstrated increased scavenging activities against hydroxyl (OH) radicals and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radicals compared with the undigested κ-carrageenan.
Collapse
Affiliation(s)
- Zeping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaoyi Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361008, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiping Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
8
|
Geng H, Chen M, Guo C, Wang W, Chen D. Marine polysaccharides: Biological activities and applications in drug delivery systems. Carbohydr Res 2024; 538:109071. [PMID: 38471432 DOI: 10.1016/j.carres.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
The ocean is the common home of a large number of marine organisms, including plants, animals, and microorganisms. Researchers can extract thousands of important bioactive components from the oceans and use them extensively to treat and prevent diseases. In contrast, marine polysaccharide macromolecules such as alginate, carrageenan, Laminarin, fucoidan, chitosan, and hyaluronic acid have excellent physicochemical properties, good biocompatibility, and high bioactivity, which ensures their wide applications and strong therapeutic potentials in drug delivery. Drug delivery systems (DDS) based on marine polysaccharides and modified marine polysaccharide molecules have emerged as an innovative technology for controlling drug distribution on temporal, spatial, and dosage scales. They can detect and respond to external stimuli such as pH, temperature, and electric fields. These properties have led to their wide application in the design of novel drug delivery systems such as hydrogels, polymeric micelles, liposomes, microneedles, microspheres, etc. In addition, marine polysaccharide-based DDS not only have smart response properties but also can combine with the unique biological properties of the marine polysaccharide base to exert synergistic therapeutic effects. The biological activities of marine polysaccharides and the design of marine polysaccharide-based DDS are reviewed. Marine polysaccharide-based responsive DDS are expected to provide new strategies and solutions for disease treatment.
Collapse
Affiliation(s)
- Hongxu Geng
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Meijun Chen
- Yantai Muping District Hospital of Traditional Chinese Medicine, No.505, Government Street, Muping District, Yantai, 264110, PR China.
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao, 266003, PR China.
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
9
|
Sang Y, Huang X, Li H, Hong T, Zheng M, Li Z, Jiang Z, Ni H, Li Q, Zhu Y. Improving the thermostability of Pseudoalteromonas Porphyrae κ-carrageenase by rational design and MD simulation. AMB Express 2024; 14:8. [PMID: 38245573 PMCID: PMC10799840 DOI: 10.1186/s13568-024-01661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
The industrial applications of the κ-carrageenases have been restricted by their poor thermostability. In this study, based on the folding free energy change (ΔΔG) and the flexibility analysis using molecular dynamics (MD) simulation for the alkaline κ-carrageenase KCgCD from Pseudoalteromonas porphyrae (WT), the mutant S190R was identified with improved thermostability. After incubation at 50 °C for 30 min, the residual activity of S190R was 63.7%, 25.7% higher than that of WT. The Tm values determined by differential scanning calorimetry were 66.2 °C and 64.4 °C for S190R and WT, respectively. The optimal temperature of S190R was 10 °C higher than that of WT. The κ-carrageenan hydrolysates produced by S190R showed higher xanthine oxidase inhibitory activity compared with the untreated κ-carrageenan. MD simulation analysis of S190R showed that the residues (V186-M194 and P196-G197) in F5 and the key residue R150 in F3 displayed the decreased flexibility, and residues of T169-N173 near the catalytic center displayed the increased flexibility. These changed flexibilities might be the reasons for the improved thermostability of mutant S190R. This study provides a useful rational design strategy of combination of ΔΔG calculation and MD simulation to improve the κ-carrageenase's thermostability for its better industrial applications.
Collapse
Affiliation(s)
- Yuyan Sang
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
| | - Xiaoyi Huang
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
| | - Hebin Li
- Department of Pharmacy, Xiamen Medical College, 361008, Xiamen, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, 361021, Xiamen, China.
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, 361021, Xiamen, China.
- Research Center of Food Biotechnology of Xiamen City, 361021, Xiamen, China.
| |
Collapse
|
10
|
Zhu C, Mou M, Yang L, Jiang Z, Zheng M, Li Z, Hong T, Ni H, Li Q, Yang Y, Zhu Y. Enzymatic hydrolysates of κ-carrageenan by κ-carrageenase-CLEA immobilized on amine-modified ZIF-8 confer hypolipidemic activity in HepG2 cells. Int J Biol Macromol 2023; 252:126401. [PMID: 37597638 DOI: 10.1016/j.ijbiomac.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
κ-Carrageenase can degrade κ-carrageenan to produce bioactive κ-carrageenan oligosaccharides (KCOs) that have potential applications in pharmaceutical, food, agricultural, and cosmetics industries. Immobilized enzymes gain their popularity due to their good reusability, enhanced stability, and tunability. In this study, the previously characterized catalytic domain of Pseudoalteromonas purpurea κ-carrageenase was covalently immobilized on the synthesized amine-modified zeolitic imidazolate framework-8 nanoparticles with the formation of cross-linked enzyme aggregates, and the immobilized κ-carrageenase was further characterized. The immobilized κ-carrageenase demonstrated excellent pH stability and good reusability, and exhibited higher optimal reaction temperature, better thermostability, and extended storage stability compared with the free enzyme. The KCOs produced by the immobilized κ-carrageenase could significantly decrease the TC, TG, and LDL-C levels in HepG2 cells, increase the HDL-C level in HepG2 cells, and reduce the free fatty acids level in Caco-2 cells. Biochemical assays showed that the KCOs could activate AMPK activity, increase the ratios of p-AMPK/AMPK and p-ACC/ACC, and downregulate the expression of the lipid metabolism related proteins including SREBP1 and HMGCR in the hyperlipidemic HepG2 cells. This study provides a novel and effective method for immobilization of κ-carrageenase, and the KCOs produced by the immobilized enzyme could be a potential therapeutic agent to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Leilei Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
11
|
Jiang C, Secundo F, Mao X. Expanding the application range of the κ‑carrageenase OUC-FaKC16A when preparing oligosaccharides from κ-carrageenan and furcellaran. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:387-399. [PMID: 37637255 PMCID: PMC10449746 DOI: 10.1007/s42995-023-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/10/2023] [Indexed: 08/29/2023]
Abstract
Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food, medicine, and cosmetics industries. However, the specific structure-function relationships of carrageenan oligosaccharides are not clearly described due to the deficiency of high specific carrageenases. Here, a truncated mutant OUC-FaKC16Q based on the reported κ-neocarratetrose (Nκ4)-producing κ-carrageenase OUC-FaKC16A from Flavobacterium algicola was constructed and further studied. After truncating the C-terminal Por_Secre_tail (PorS) domain (responsible for substrate binding), the catalytic efficiency and temperature stability decreased to a certain extent. Surprisingly, this truncation also enabled OUC-FaKC16Q to hydrolyze Nκ4 into κ-neocarrabiose (Nκ2). The offset of Arg265 residue in OUC-FaKC16Q may explain this change. Moreover, the high catalytic abilities, the main products, and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated. Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)2 and DA-G-DA-G4S, respectively. As a result, the spectrum of products of κ-carrageenase OUC-FaKC16A has been fully expanded in this study, indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specific structures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00181-2.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Key Laboratory for Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266237 China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, 20131 Milan, Italy
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Key Laboratory for Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266237 China
| |
Collapse
|
12
|
Wei Y, Zhu B, Yao Z, Jiang L. Biochemical characterization and elucidation of the action mode of a GH16 family κ-carrageenase for efficient preparation of carrageenan oligosaccharides. World J Microbiol Biotechnol 2023; 39:222. [PMID: 37285044 DOI: 10.1007/s11274-023-03668-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
κ-Carrageenan oligosaccharides have a variety of biological activities. Degradation of κ-carrageenan by κ-carrageenase leads to degradation products with different degrees of polymerization (DPs). A novel gene (CecgkA) encoding a new κ-carrageenase was cloned from Colwellia echini and heterologously expressed in Escherichia coli BL21 (DE3). The enzyme is 1104 bp in length, encodes 367 amino acid residues and has a molecular weight of 41.30 kDa. Multiple alignment analysis showed that CeCgkA belongs to the glycoside hydrolase (GH16) family and has the highest homology with the κ-carrageenase of Rhodopirellula maiorica SM1, with 58% homology. The CeCgkA showed maximum activity (453.15 U/mg) at pH 8.0 and 35 °C. Determination of biochemical properties showed that CeCgkA was a thermal recovery enzyme, and 51.6% of the initial enzyme activity was recovered by immediately placing the sample at 35 °C for 60 min after enzymatic inactivation by boiling for 10 min. K+, Na+, and EDTA had an activating effect on the enzyme activity, while Ni2+, Cu2+, and Zn2+ inhibited the activity of the enzyme. In addition, TLC and ESI-MS analysis showed that the maximum recognition unit of CecgkA was decasaccharide and that the main degradation products were disaccharides, tetrasaccharides and hexasaccharides, indicating that the enzyme is an endo-type carrageenase.
Collapse
Affiliation(s)
- Yanshang Wei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| |
Collapse
|
13
|
Manseur C, Groult H, Porta M, Bodet PE, Mersni-Achour R, Petit R, Ali-Moussa S, Musnier B, Le Cerf D, Varacavoudin T, Haddad O, Sutton A, Leal CEY, Alencar-Filho EB, Piot JM, Bridiau N, Maugard T, Fruitier-Arnaudin I. A Screening Approach to Assess the Impact of Various Commercial Sources of Crude Marine λ-Carrageenan on the Production of Oligosaccharides with Anti-heparanase and Anti-migratory Activities. Mar Drugs 2023; 21:md21050295. [PMID: 37233489 DOI: 10.3390/md21050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
Oligosaccharides derived from λ-carrageenan (λ-COs) are gaining interest in the cancer field. They have been recently reported to regulate heparanase (HPSE) activity, a protumor enzyme involved in cancer cell migration and invasion, making them very promising molecules for new therapeutic applications. However, one of the specific features of commercial λ-carrageenan (λ-CAR) is that they are heterogeneous mixtures of different CAR families, and are named according to the thickening-purpose final-product viscosity which does not reflect the real composition. Consequently, this can limit their use in a clinical applications. To address this issue, six commercial λ-CARs were compared and differences in their physiochemical properties were analyzed and shown. Then, a H2O2-assisted depolymerization was applied to each commercial source, and number- and weight-averaged molar masses (Mn and Mw) and sulfation degree (DS) of the λ-COs produced over time were determined. By adjusting the depolymerization time for each product, almost comparable λ-CO formulations could be obtained in terms of molar masses and DS, which ranged within previously reported values suitable for antitumor properties. However, when the anti-HPSE activity of these new λ-COs was screened, small changes that could not be attributed only to their small length or DS changes between them were found, suggesting a role of other features, such as differences in the initial mixture composition. Further structural MS and NMR analysis revealed qualitative and semi-quantitative differences between the molecular species, especially in the proportion of the anti-HPSE λ-type, other CARs types and adjuvants, and it also showed that H2O2-based hydrolysis induced sugar degradation. Finally, when the effects of λ-COs were assessed in an in vitro migration cell-based model, they seemed more related to the proportion of other CAR types in the formulation than to their λ-type-dependent anti-HPSE activity.
Collapse
Affiliation(s)
- Chanez Manseur
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Hugo Groult
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Manon Porta
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Pierre-Edouard Bodet
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | | | - Raphaëlle Petit
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Samir Ali-Moussa
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Benjamin Musnier
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Didier Le Cerf
- Sciences & Technic Faculty, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Tony Varacavoudin
- Sciences & Technic Faculty, Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, 76000 Rouen, France
| | - Oualid Haddad
- Inserm U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Groupe Biothérapies et Glycoconjugués, 93000 Bobigny, France
| | - Angela Sutton
- Inserm U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, Groupe Biothérapies et Glycoconjugués, 93000 Bobigny, France
| | - Cíntia Emi Yanaguibashi Leal
- College of Pharmaceutical Sciences, Federal University of Vale do São Francisco (UNIVASF), Petrolina 56304-205, PE, Brazil
| | - Edilson Beserra Alencar-Filho
- College of Pharmaceutical Sciences, Federal University of Vale do São Francisco (UNIVASF), Petrolina 56304-205, PE, Brazil
| | - Jean-Marie Piot
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Nicolas Bridiau
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | - Thierry Maugard
- UMR CNRS 7266, LIENSs Laboratory, La Rochelle University, 17000 La Rochelle, France
| | | |
Collapse
|
14
|
Hong T, Long L, Sang Y, Jiang Z, Ni H, Zheng M, Li L, Li Q, Zhu Y. Simultaneous enhancement of thermostability and catalytic activity of κ-carrageenase from Pseudoalteromonas tetraodonis by rational design. Enzyme Microb Technol 2023; 167:110241. [PMID: 37060759 DOI: 10.1016/j.enzmictec.2023.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
κ-Carrageenase provides an attractive enzymatic approach to preparation of κ-carrageenan oligosaccharides. Pseudoalteromonas tetraodonis κ-carrageenase is active at the alkaline conditions but displays low thermostability. To further improve its enzymatic performance, two mutants of Q42V and I51H exhibiting both improved thermostability and enzyme activity were screened by the PoPMuSiC algorithm. Compared with the wild-type κ-carrageenase (WT), Q42V and I51H increased the enzyme activity by 20.9% and 25.4%, respectively. After treatment at 50 ℃ for 40 min, Q42V and I51H enhanced the residual activity by 31.1% and 25.9%, respectively. The Tm values of Q42V, I51H, and WT determined by differential scanning calorimetry were 58.2 ℃, 54.8 ℃, and 51.2 ℃, respectively. Compared with untreated and HCl-treated κ-carrageenans, Q42V-treated κ-carrageenan exhibited higher pancreatic lipase inhibitory activity. Molecular docking analysis indicated that the additional pi-sigma force and hydrophobic interaction in the enzyme-substrate complex could account for the increased catalytic activity of Q42V and I51H, respectively. Molecular dynamics analysis indicated that the improved thermostability of mutants Q42V and I51H could be attributed to the less structural deviation and the flexible changes of enzyme conformation at high temperature. This study provides new insight into κ-carrageenase performance improvement and identifies good candidates for their industrial applications.
Collapse
Affiliation(s)
- Tao Hong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Liufei Long
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yuyan Sang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qingbiao Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
15
|
Ren W, Li P, Wang X, Che Y, Long H, Zhang X, Cai X, Huang A, Zeng Y, Xie Z. Cross-habitat distribution pattern of Bacillus communities and their capacities of producing industrial hydrolytic enzymes in Paracel Islands: Habitat-dependent differential contributions of the environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116252. [PMID: 36126600 DOI: 10.1016/j.jenvman.2022.116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Bacillus as a predominant genus of enzyme-producing bacteria presents desirable features to fulfill the vast demand of specific industries, whereas the knowledge of the Bacillus communities and their capacities of producing industrial hydrolytic enzymes across the microhabitats of the Paracel Islands is limited. Herein, a total of 193 culturable Bacillus strains belonging to 19 species were isolated across the microhabitats of seawater, sediment, coral and seagrass, covering 39 stations of the Paracel Islands. Each microhabitat displayed its unique species, while the species of Bacillus paramycoides besides being the dominant species with an abundance of 54.94% also was the only species shared by all microhabitats of the Paracel Islands. Of the Bacillus communities, 97.41% of the isolates exhibited the capacity of producing one-or-more types of enzymes with comparatively higher and broader ranges of enzyme activities, including 163 protease-, 27 cellulase-, 118 alginate lyase-, 140 K-carrageenase- and 158 agarose-producing strains. By the correlation analyses of "Bacillus-environmental factors" and "Enzyme-producing Bacillus-environmental factors", the cross-habitat distribution and enzyme-producing capacity pattern of the Bacillus communities were strongly driven by habitat type, and the environmental factors made habitat-dependent differential contributions to that in the Paracel Islands. It's worth noting that the cellulase-producing strain wasn't detected in seagrass due to its survival strategy to prevent cellulose degradation by inhibiting cellulase-producing bacteria, while coral contained more stable microbial metabolic functions to protect against environmental fluctuations. These findings besides providing large quantities of promising enzyme-producing candidates for specific industrial desires, also facilitate the development and utilization of marine microbial resources and the environmental policy- and/or law-making according to environmental features across the microhabitats of the Paracel Islands.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Peiwei Li
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xinyi Wang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yuhan Che
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiang Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Xiaoni Cai
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Aiyou Huang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China
| | - Zhenyu Xie
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, 570228, Hainan Province, China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, 570228, Hainan Province, China; College of Marine Sciences, Hainan University, Haikou, 570228, Hainan Province, China; Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
16
|
Li Z, Du Z, Li H, Chen Y, Zheng M, Jiang Z, Du X, Ni H, Zhu Y. Characterisation of marine bacterium Microbulbifer sp. ALW1 with Laminaria japonica degradation capability. AMB Express 2022; 12:139. [DOI: 10.1186/s13568-022-01482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022] Open
Abstract
AbstractMarine bacterium Microbulbifer sp. ALW1 was revealed to be able to effectively degrade Laminaria japonica thallus fragments into fine particles. Polysaccharide substrate specificity analysis indicated that ALW1 could produce extracellular alginate lyase, laminarinase, fucoidanase and cellulase. Based on alignment of the 16 S rRNA sequence with other reference relatives, ALW1 showed the closest relationship with Microbulbifer aggregans CCB-MM1T. The cell morphology and some basic physiological and biochemical parameters of ALW1 cells were characterised. ALW1 is a Gram-negative, rod- or oval-shaped, non-spore-forming and non-motile bacterium. The DNA–DNA relatedness values of ALW1 with type strains of M. gwangyangensis (JCM 17,800), M. aggregans (JCM 31,875), M. maritimus (JCM 12,187), M. okinawensis (JCM 16,147) and M. rhizosphaerae (DSM 28,920) were 28.9%, 43.3%, 41.2%, 35.4% and 45.6%, respectively. The major cell wall sugars of ALW1 were determined to be ribose and galactose, which differed from other closely related species. These characteristics indicated that ALW1 could be assigned to a separate species of the genus Microbulbifer. The complete genome of ALW1 contained one circular chromosome with 4,682,287 bp and a GC content of 56.86%. The putative encoded proteins were categorised based on their functional annotations. Phenotypic, physiological, biochemical and genomic characterisation will provide insights into the many potential industrial applications of Microbulbifer sp. ALW1.Key points.
Collapse
|
17
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
18
|
Lu Z, Jiang H, Hamouda HI, Wang T, Dong Y, Mao X. Biochemical Characterization of a Cold-Adapted λ-Carrageenase OUC-CglA from Maribacter vaceletii: An Efficient Tool for λ-Carrageenan Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12135-12142. [PMID: 36112087 DOI: 10.1021/acs.jafc.2c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
λ-Carrageenase with high activity is an effective and environmentally friendly tool enzyme for the preparation of λ-carrageenan oligosaccharides with various biological activities. Herein, a novel GH150 (glycoside hydrolases family 150) λ-carrageenase OUC-CglA from Maribacter vaceletii was heterologously expressed, purified, and characterized. The recombinant OUC-CglA performs strict selectivity toward λ-carrageenan with a specific activity of 418.7 U/mg under its optimal reaction conditions of 20 °C and pH 7.0. Additionally, OUC-CglA is a typical cold-adapted λ-carrageenase because it unfolds 90% and 63% of its maximum activity at 15 and 10 °C, respectively. The hydrolysis process suggests that OUC-CglA is an endotype λ-carrageenase with the final products consisting of λ-neocarrabiose, λ-neocarratetraose, λ-neocarrahexaose, and other long-chain λ-neocarrageenan oligosaccharides. As a result, high activity, cold-adaptation, and principal products of OUC-CglA make it a potential biocatalyst for the effective preparation of λ-carrageenan oligosaccharides.
Collapse
Affiliation(s)
- Zewei Lu
- College of Food Science and Engineering, Ocean University of China, Qingdao266003, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao266003, China
- Sanya Ocean Institute, Ocean University of China, Sanya572024, China
| | - Hamed I Hamouda
- College of Food Science and Engineering, Ocean University of China, Qingdao266003, China
- Processes Design and Development Department, Egyptian Petroleum Research Institute, Cairo11727, Egypt
| | - Tao Wang
- Sanya Ocean Institute, Ocean University of China, Sanya572024, China
| | - Yueyang Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao266237, China
- Sanya Ocean Institute, Ocean University of China, Sanya572024, China
| |
Collapse
|
19
|
A Novel Carrageenan Metabolic Pathway in Flavobacterium algicola. Appl Environ Microbiol 2022; 88:e0110022. [PMID: 36036580 PMCID: PMC9499021 DOI: 10.1128/aem.01100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbohydrate-active enzymes are important components of the polysaccharide metabolism system in marine bacteria. Carrageenase is indispensable for forming carrageenan catalytic pathways. Here, two GH16_13 carrageenases showed likely hydrolysis activities toward different types of carrageenans (e.g., κ-, hybrid β/κ, hybrid α/ι, and hybrid λ), which indicates that a novel pathway is present in the marine bacterium Flavobacterium algicola to use κ-carrageenan (KC), ι-carrageenan (IC), and λ-carrageenan (LC). A comparative study described the different features with another reported pathway based on the specific carrageenans (κ, ι, and λ) and expanded the carrageenan metabolic versatility in F. algicola. A further comparative genomic analysis of carrageenan-degrading bacteria indicated different distributions of carrageenan metabolism-related genes in marine bacteria. The crucial core genes encoding the GH127 α-3,6-anhydro-d-galactosidase (ADAG) and 3,6-anhydro-d-galactose (d-AHG)-utilized cluster have been conserved during evolution. This analysis further revealed the horizontal gene transfer (HGT) phenomenon of the carrageenan polysaccharide utilization loci (CarPUL) from Bacteroidetes to other bacterial phyla, as well as the versatility of carrageenan catalytic activities in marine bacteria through different metabolic pathways. IMPORTANCE Based on the premise that the specific carrageenan-based pathway involved in carrageenan use by Flavobacterium algicola has been identified, another pathway was further analyzed, and it involved two GH16_13 carrageenases. Among all the characterized carrageenases, the members of GH16_13 accounted for only a small portion. Here, the functional analysis of two GH16_13 carrageenases suggested their hydrolysis effects on different types of carrageenans (e.g., κ, hybrid β/κ, hybrid α/ι-, and hybrid λ-), which led to the identification of another pathway. Further exploration enabled us to elucidate the novel pathway that metabolizes KC and IC in F. algicola successfully. The coexistence of these two pathways may provide improved survivability by F. algicola in the marine environment.
Collapse
|
20
|
Enzymatic Verification and Comparative Analysis of Carrageenan Metabolism Pathways in Marine Bacterium Flavobacterium algicola. Appl Environ Microbiol 2022; 88:e0025622. [PMID: 35293779 DOI: 10.1128/aem.00256-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine bacteria usually contain polysaccharide utilization loci (PUL) for metabolizing red algae polysaccharides. They are of great significance in the carbon cycle of the marine ecosystem, as well as in supporting marine heterotrophic bacterial growth. Here, we described the whole κ-carrageenan (KC), ι-carrageenan (IC), and partial λ-carrageenan (LC) catabolic pathways in a marine Gram-negative bacterium, Flavobacterium algicola, which is involved carrageenan polysaccharide hydrolases, oligosaccharide sulfatases, oligosaccharide glycosidases, and the 3,6-anhydro-d-galactose (d-AHG) utilization-related enzymes harbored in the carrageenan-specific PUL. In the pathways, the KC and IC were hydrolyzed into 4-sugar-unit oligomers by specific glycoside hydrolases. Then, the multifunctional G4S sulfatases would remove their nonreducing ends' G4S sulfate groups, while the ι-neocarratetrose (Nι4) product would further lose the nonreducing end of its DA2S group. Furthermore, the neocarrageenan oligosaccharides (NCOSs) with no G4S and DA2S groups in their nonreducing ends would completely be decomposed into d-Gal and d-AHG. Finally, the released d-AHG would enter the cytoplasmic four-step enzymatic process, and an l-rhamnose-H+ transporter (RhaT) was preliminarily verified for the function for transportation of d-AHG. Moreover, comparative analysis with the reported carrageenan metabolism pathways further implied the diversity of microbial systems for utilizing the red algae carrageenan. IMPORTANCE Carrageenan is the main polysaccharide of red macroalgae and is composed of d-AHG and d-Gal. The carrageenan PUL (CarPUL)-encoded enzymes exist in many marine bacteria for decomposing carrageenan to provide self-growth. Here, the related enzymes in Flavobacterium algicola for metabolizing carrageenan were characterized for describing the catabolic pathways, notably, although the specific polysaccharide hydrolases existed that were like previous studies. A multifunctional G4S sulfatase also existed, which was devoted to the removal of G4S or G2S sulfate groups from three kinds of NCOSs. Additionally, the transformation of three types of carrageenans into two monomers, d-Gal and d-AHG, occurred outside the cell with no periplasmic reactions that existed in previously reported pathways. These results help to clarify the diversity of marine bacteria using macroalgae polysaccharides.
Collapse
|
21
|
Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr Polym 2022; 278:118952. [PMID: 34973769 DOI: 10.1016/j.carbpol.2021.118952] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023]
Abstract
Polysaccharide hydrogels have been widely utilized in tissue engineering. They interact with the organismal environments, modulating the cargos release and realizing of long-term survival and activations of living cells. In this review, the potential strategies for modification of polysaccharides were introduced firstly. It is not only used to functionalize the polysaccharides for the consequent formation of hydrogels, but also used to introduce versatile side groups for the regulation of cell behavior. Then, techniques and underlying mechanisms in inducing the formation of hydrogels by polysaccharides or their derivatives are briefly summarized. Finally, the applications of polysaccharide hydrogels in vivo, mainly focus on the performance for alleviation of foreign-body response (FBR) and as cell scaffolds for tissue regeneration, are exemplified. In addition, the perspectives and challenges for further research are addressed. It aims to provide a comprehensive framework about the potentials and challenges that the polysaccharide hydrogels confronting in tissue engineering.
Collapse
|
22
|
Guo Z, Wei Y, Zhang Y, Xu Y, Zheng L, Zhu B, Yao Z. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zhao D, Pu Z, Su Q, Zhang Y, Sun W, Bao Y. Self-assembled κ-carrageenase-inorganic hybrid nanoflowers exerting high catalytic efficiency with stable and recyclable properties. Enzyme Microb Technol 2021; 153:109957. [PMID: 34847438 DOI: 10.1016/j.enzmictec.2021.109957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 01/14/2023]
Abstract
κ-Carrageenan oligosaccharides from κ-carrageenan hydrolysis are important biochemicals with more bioactivity. Enzyme engineering plays a key role in improving κ-carrageenase catalytic efficiency for production of κ-carrageenan oligosaccharides. Effect of metal ions on enzyme activity, especially stability and efficiency, is main factor in catalytic process, but metal ions addition leads to gelation of κ-carrageenan solution. In this study, molecular dynamics simulation was used to explore the interaction between κ-carrageenase CgkPZ and Ca2+, and Ca2+ bonded to D164 and E167 in the catalytic center resulting in the catalytic efficiency increase. Circular dichroism analysis indicated that the secondary structure of κ-carrageenase could change in the presence of Ca2+. Therefore, a novel self-assembly κ-carrageenase-inorganic hybrid nanoflowers CaNF@CgkPZ was synthesized and systematically characterized. The catalytic efficiency (kcat/Km) of CaNF@CgkPZ was 382.1 mL·mg-1·s-1, increased by 292% compared with free κ-carrageenase. Notably, the enzyme activity of CaNF@CgkPZ was not reduced significantly after 19 cycles use, and 70-100% relative activity was still retained when stored at 4-25 ℃ for 15 days. This work provides an efficient approach for κ-carrageenase immobilization with good storage stability, reusability and enhanced catalytic efficiency, which is of great significance in practical applications.
Collapse
Affiliation(s)
- Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo institute, Dalian University of Technology, Ningbo 315016, China
| | - Zhongji Pu
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Qiao Su
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| | - Yue Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; Ningbo institute, Dalian University of Technology, Ningbo 315016, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
24
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
25
|
de Oliveira BFR, Lopes IR, Canellas ALB, Muricy G, Jackson SA, Dobson ADW, Laport MS. Genomic and in silico protein structural analyses provide insights into marine polysaccharide-degrading enzymes in the sponge-derived Pseudoalteromonas sp. PA2MD11. Int J Biol Macromol 2021; 191:973-995. [PMID: 34555402 DOI: 10.1016/j.ijbiomac.2021.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Active heterotrophic metabolism is a critical metabolic role performed by sponge-associated microorganisms, but little is known about their capacity to metabolize marine polysaccharides (MPs). Here, we investigated the genome of the sponge-derived Pseudoalteromonas sp. strain PA2MD11 focusing on its macroalgal carbohydrate-degrading potential. Carbohydrate-active enzymes (CAZymes) for the depolymerization of agar and alginate were found in PA2MD11's genome, including glycoside hydrolases (GHs) and polysaccharide lyases (PLs) belonging to families GH16, GH50 and GH117, and PL6 and PL17, respectively. A gene potentially encoding a sulfatase was also identified, which may play a role in the strain's ability to consume carrageenans. The complete metabolism of agar and alginate by PA2MD11 could also be predicted and was consistent with the results obtained in physiological assays. The polysaccharide utilization locus (PUL) potentially involved in the metabolism of agarose contained mobile genetic elements from other marine Gammaproteobacteria and its unusual larger size might be due to gene duplication events. Homology modelling and structural protein analyses of the agarases, alginate lyases and sulfatase depicted clear conservation of catalytic machinery and protein folding together with suitable industrially-relevant features. Pseudoalteromonas sp. PA2MD11 is therefore a source of potential MP-degrading biocatalysts for biorefinery applications and in the preparation of pharmacologically-active oligosaccharides.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil; School of Microbiology, University College Cork, T12 Y960 Cork, Ireland
| | - Isabelle Rodrigues Lopes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Anna Luiza Bauer Canellas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n°, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Stephen Anthony Jackson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, T12 Y960 Cork, Ireland; Environmental Research Institute, University College Cork, T23 XE10 Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar Drugs 2021; 19:md19100552. [PMID: 34677451 PMCID: PMC8539943 DOI: 10.3390/md19100552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
The interest in seaweeds for cosmetic, cosmeceutics, and nutricosmetics is increasing based on the demand for natural ingredients. Seaweeds offer advantages in relation to their renewable character, wide distribution, and the richness and versatility of their valuable bioactive compounds, which can be used as ingredients, as additives, and as active agents in the formulation of skin care products. Bioactive compounds, such as polyphenols, polysaccharides, proteins, peptides, amino acids, lipids, vitamins, and minerals, are responsible for the biological properties associated with seaweeds. Seaweed fractions can also offer technical features, such as thickening, gelling, emulsifying, texturizing, or moistening to develop cohesive matrices. Furthermore, the possibility of valorizing industrial waste streams and algal blooms makes them an attractive, low cost, raw and renewable material. This review presents an updated summary of the activities of different seaweed compounds and fractions based on scientific and patent literature.
Collapse
|
27
|
Andrew M, Jayaraman G. Marine sulfated polysaccharides as potential antiviral drug candidates to treat Corona Virus disease (COVID-19). Carbohydr Res 2021; 505:108326. [PMID: 34015720 PMCID: PMC8091805 DOI: 10.1016/j.carres.2021.108326] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
The viral infection caused by SARS-CoV-2 has increased the mortality rate and engaged several adverse effects on the affected individuals. Currently available antiviral drugs have found to be unsuccessful in the treatment of COVID-19 patients. The demand for efficient antiviral drugs has created a huge burden on physicians and health workers. Plasma therapy seems to be less accomplishable due to insufficient donors to donate plasma and low recovery rate from viral infection. Repurposing of antivirals has been evolved as a suitable strategy in the current treatment and preventive measures. The concept of drug repurposing represents new experimental approaches for effective therapeutic benefits. Besides, SARS-CoV-2 exhibits several complications such as lung damage, blood clot formation, respiratory illness and organ failures in most of the patients. Based on the accumulation of data, sulfated marine polysaccharides have exerted successful inhibition of virus entry, attachment and replication with known or unknown possible mechanisms against deadly animal and human viruses so far. Since the virus entry into the host cells is the key process, the prevention of such entry mechanism makes any antiviral strategy effective. Enveloped viruses are more sensitive to polyanions than non-enveloped viruses. Besides, the viral infection caused by RNA virus types embarks severe oxidative stress in the human body that leads to malfunction of tissues and organs. In this context, polysaccharides play a very significant role in providing shielding effect against the virus due to their polyanionic rich features and a molecular weight that hinders their reactive surface glycoproteins. Significantly the functional groups especially sulfate, sulfate pattern and addition, uronic acids, monosaccharides, glycosidic linkage and high molecular weight have greater influence in the antiviral activity. Moreover, they are very good antioxidants that can reduce the free radical generation and provokes intracellular antioxidant enzymes. Additionally, polysaccharides enable a host-virus immune response, activate phagocytosis and stimulate interferon systems. Therefore, polysaccharides can be used as candidate drugs, adjuvants in vaccines or combination with other antivirals, antioxidants and immune-activating nutritional supplements and antiviral materials in healthcare products to prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
28
|
Module function analysis of a full-length κ-carrageenase from Pseudoalteromonas sp. ZDY3. Int J Biol Macromol 2021; 182:1473-1483. [PMID: 34019922 DOI: 10.1016/j.ijbiomac.2021.05.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 05/16/2021] [Indexed: 11/20/2022]
Abstract
κ-Carrageenan oligosaccharides with many excellent biological properties could be produced by κ-carrageenases selectively. In this study, based on the encoding gene of full length κ-carrageenase obtained from Pseudoalteromonas sp. ZDY3 and the reported mature secreted κ-carrageenase composed of 275 amino acid residues (N26-T300), CgkPZ_GH16 was expressed in E. coli, but no soluble active protein could be detected. Fortunately, the signal peptide of wild-type κ-carrageenase was recognized, and cleaved in the soluble and folding form in E. coli, the Km and kcat values of CgkPZ_SP_GH16 was 1.007 mg/mL and 362.8 s-1. By molecular dynamics simulations, it was showed that YjdB domain might affect the activity of κ-carrageenase. Due to the absence of mature processing modification system in E. coli, YjdB was remained in recombinant full length κ-carrageenase, and the lost catalytic efficiency of CgkPZ was compensated by expression level and thermal stability. Interestingly, CgkPZ_GH16_YjdB was expressed soluble without the signal peptide, which indicated that YjdB could contribute to the expression and folding of κ-carrageenase. These results provide new insight into the effects of different modules of κ-carrageenase on the expression and properties of enzyme.
Collapse
|
29
|
Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. ACTA ACUST UNITED AC 2020; 13:100623. [PMID: 33521606 PMCID: PMC7836841 DOI: 10.1016/j.biteb.2020.100623] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
Marine-derived sulfated polysaccharides possess various antiviral activities against a broad range of enveloped and non-enveloped viruses. It has become the potential source of antiviral drugs for pharmaceutical development. In this review, we will discuss the different types of sulfated polysaccharides and their structural classification. Some of the major sulfated polysaccharides with potent antiviral activity, including carrageenan, agar, ulvan, fucoidan, and alginates, are considered in this review. The mechanism of these sulfated polysaccharides in inhibiting the different stages of the viral infection process inside the host cell is also demonstrated. It involves blocking the initial entry of the virus or inhibiting its transcription and translation by modulating the immune response of the host cell. In addition, we explore the potential of sulfated polysaccharides as antiviral agents in preventing recent Corona Virus Disease-2019 (COVID-19).
Collapse
Affiliation(s)
- Nidhi Hans
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Anushree Malik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyanarayan Naik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
30
|
Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Zhao D, Jiang B, Zhang Y, Sun W, Pu Z, Bao Y. Purification and characterization of a cold-adapted κ-carrageenase from Pseudoalteromonas sp. ZDY3. Protein Expr Purif 2020; 178:105768. [PMID: 33035660 DOI: 10.1016/j.pep.2020.105768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/27/2022]
Abstract
κ-Carrageenase (EC3.2.1.83) is a class of glycoside hydrolase, which can be used for hydrolysis of κ-carrageenan to κ-carrageenan oligosaccharides. In this study, a bacterium, identified as Pseudoalteromonas sp. ZDY3 isolated from rotten algae, was capable to degrade κ-carrageenan. The κ-carrageenase produced by Pseudoalteromonas sp. ZDY3 was purified to homogeneity and named as CgkZDY3. The accurate molecular mass of CgkZDY3 was determined through LC-HRMS, and a posttranslational removal of C-terminal end of the protein was discovered. CgkZDY3 had strict hydrolysis specificity to κ-carrageenan, the values of Km and kcat/Km of CgkZDY3 were 3.67 mg mL-1 and 53.0 mL mg-1 s-1, respectively. CgkZDY3 was a cold-adapted κ-carrageenase with excellent storage stability of both the temperature below 35 °C and a wide pH range, and was an endo-type κ-carrageenase with high hydrolysis rate, oligosaccharides with different degrees of polymerization can be obtained by controlling the hydrolysis time, and the final products were κ-neocarrabiose and κ-neocarratetraose. These properties are of great significance for production of κ-carrageenan oligosaccharides with different polymerization degrees under process control.
Collapse
Affiliation(s)
- Dongying Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Bo Jiang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yue Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wenhui Sun
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhongji Pu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
32
|
de Oliveira BFR, Carr CM, Dobson ADW, Laport MS. Harnessing the sponge microbiome for industrial biocatalysts. Appl Microbiol Biotechnol 2020; 104:8131-8154. [PMID: 32827049 DOI: 10.1007/s00253-020-10817-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.
Collapse
Affiliation(s)
- Bruno Francesco Rodrigues de Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,School of Microbiology, University College Cork, Cork, Ireland.
| | - Clodagh M Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Dogaru BI, Simionescu B, Popescu MC. Synthesis and characterization of κ-carrageenan bio-nanocomposite films reinforced with bentonite nanoclay. Int J Biol Macromol 2020; 154:9-17. [DOI: 10.1016/j.ijbiomac.2020.03.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
|
34
|
Zhu B, Ni F, Xiong Q, Yao Z. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications. Crit Rev Food Sci Nutr 2020; 61:60-74. [PMID: 31968996 DOI: 10.1080/10408398.2020.1716207] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine polysaccharides originated from seaweeds, including agar, alginate, carrageenan, and fucoidan, possess various kinds of physiological activities and have been widely used in food, agricultural and medical areas. However, the application has been greatly limited by their poor solubility and low bioavailability. Thus marine oligosaccharides, as the degradation products of those polysaccharides, have drawn increasing attentions due to their obvious biological activities, good solubility and excellent bioavailability. This review will summarize the recent advances on the source, molecular structure and physiological activity of marine oligosaccharides, emphasizing their application as functional food additives. Furthermore, the relationship between the structure and the physiological activity of marine oligosaccharides is also elucidated and highlighted. The review concludes with an outlook toward potential applications for preparing the functional oligosaccharides in food biotechnology and agriculture fields.
Collapse
Affiliation(s)
- Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| | - Qiang Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P R China
| |
Collapse
|
35
|
Sun Y, Cui X, Duan M, Ai C, Song S, Chen X. In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
36
|
Zhang Y, Lang B, Zeng D, Li Z, Yang J, Yan R, Xu X, Lin J. Truncation of κ‑carrageenase for higher κ‑carrageenan oligosaccharides yield with improved enzymatic characteristics. Int J Biol Macromol 2019; 130:958-968. [DOI: 10.1016/j.ijbiomac.2019.02.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
37
|
Popescu MC, Dogaru BI, Sun D, Stoleru E, Simionescu BC. Structural and sorption properties of bio-nanocomposite films based on κ-carrageenan and cellulose nanocrystals. Int J Biol Macromol 2019; 135:462-471. [PMID: 31150669 DOI: 10.1016/j.ijbiomac.2019.05.194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 02/06/2023]
Abstract
There is an increased interest on changing the synthetic based materials to biodegradable ones, especially with natural polymers, polysaccharides or proteins. In this research we prepared bio-nanocomposite formulations with different component concentrations and investigated their structural features, with focus on the interactions, sorption properties, and how the combination between them influences these properties. By infrared spectroscopy, principal component analysis (PCA) and two-dimensional correlation spectroscopy (2DCOS) was identified that in the blending process are involved the -SO4 and C(4)-O-S groups of β-d-galactose, CO groups, (O=S=O) of carrageenan and -OH and CO groups from CNCs. The water uptake and water sorption properties decrease with increasing the CNCs content in the formulations from about 15% for κ to 10% for κC15 and from about 128% for κ to 115% for κC15, respectively. The increase of the CNCs content induced an increase of the water contact angle from 47° for κ to 90° for κC15, indicating once again the involvement of the free hydroxyl groups in the hydrogen bonded interactions.
Collapse
Affiliation(s)
- Maria-Cristina Popescu
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania.
| | - Bianca-Ioana Dogaru
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania
| | - Dongyang Sun
- School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK
| | - Elena Stoleru
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania
| | - Bogdan C Simionescu
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Iasi, Romania
| |
Collapse
|