1
|
Müller A, Meng J, Kuijpers R, Mäkelä MR, de Vries RP. Exploring the complexity of xylitol production in the fungal cell factory Aspergillus niger. Enzyme Microb Technol 2025; 183:110550. [PMID: 39591728 DOI: 10.1016/j.enzmictec.2024.110550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Production of xylitol from agricultural by-products offers a promising approach for the circular bioeconomy. This study investigates the roles of transcription factors XlnR and CreA in xylitol production from wheat bran in Aspergillus niger by generating strains with a constitutively active XlnR (XlnRc, V756F mutation) and/or deletion of creA, in a previously generated xylitol-producing strain. The XlnRc mutation increased the initial rate of xylitol production but lowered the overall accumulation. Deletion of creA in this strain significantly improved both the onset and rate of xylitol production, indicating an inhibitory role of CreA in the PCP. These results demonstrate the complexity of metabolic engineering to generate fungal cell factories for valuable biochemicals, such as xylitol, as not only metabolic but also multiple gene regulation aspects need to be considered.
Collapse
Affiliation(s)
- Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Robin Kuijpers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands
| | - Miia R Mäkelä
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Aalto FI-00076, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, Utrecht 3584 CT, the Netherlands.
| |
Collapse
|
2
|
Han J, Hamza F, Guo J, Sayed M, Pyo SH, Xu Y. Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products. Biotechnol Adv 2024; 79:108509. [PMID: 39732443 DOI: 10.1016/j.biotechadv.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.
Collapse
Affiliation(s)
- Jian Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Faqiha Hamza
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Jianming Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
3
|
Zhang XY, Zhao XM, Shi XY, Mei YJ, Ren XJ, Zhao XH. Research progress in the biosynthesis of xylitol: feedstock evolution from xylose to glucose. Biotechnol Lett 2024; 46:925-943. [PMID: 39340754 DOI: 10.1007/s10529-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Xylitol, as an important food additive and fine chemical, has a wide range of applications, including food, medicine, chemical, and feed. This review paper focuses on the research progress of xylitol biosynthesis, from overcoming the limitations of traditional chemical hydrogenation and xylose bioconversion, to the full biosynthesis of xylitol production using green and non-polluting glucose as substrate. In the review, the molecular strategies of wild strains to increase xylitol yield, as well as the optimization strategies and metabolic reconfiguration during xylitol biosynthesis are discussed. Subsequently, on the basis of existing studies, the paper further discusses the current status of research and future perspectives of xylitol production using glucose as a single substrate. The evolution of raw materials from xylose-based five-carbon sugars to glucose is not only cost-saving, but also safe and environmentally friendly, which brings new opportunities for the green industrial chain of xylitol.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China
| | - Xi-Min Zhao
- Zibo Occupational Disease Prevention and Control Hospital/Zibo Sixth People's Hospital, Shandong, China
| | - Xin-Yu Shi
- Zibo Product Quality Testing Research Institute, Shandong, China
| | - Ying-Jie Mei
- Zibo Institute for Food and Drug Control, Shandong, China
| | - Xiao-Jie Ren
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| | - Xin-He Zhao
- Food & Medicine Homology and Chinese Medicine Health Science Institute, Shandong University of Technology, Shandong, China.
| |
Collapse
|
4
|
Queiroz SS, Campos IS, Silva TF, Felipe MDGA. Xylitol bioproduction by Candida tropicalis: effects of glucose/xylose ratio and pH on fermentation and gene expression. Braz J Microbiol 2024:10.1007/s42770-024-01564-y. [PMID: 39562490 DOI: 10.1007/s42770-024-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Xylitol is a highly demanded polyol in the food, pharmaceutical, and chemical industries. However, its current production methods are considered energy-intensive, require the use of hazardous chemical catalysts, and depend on complex and costly equipment. The biotechnological route of xylitol production is proposed as a sustainable alternative, but it still requires process improvements, such as enhanced fermentation capabilities, to be economically competitive. This study examined Candida tropicalis yeast to improve xylose-to-xylitol conversion via glucose: xylose ratio and pH modulation. Key parameters evaluated included xylose consumption rate (rS), xylose-to-xylitol yield (YP/S), and xylitol volumetric productivity (QP). Conditions with 50 g/L xylose at pH 3.5 exhibited superior xylitol production: 29.81 g/L, QP of 0.52 g/L/h, and YP/S of 0.54 g/g at 48 h. The statistical model demonstrated that the maximum YP/S and QP values have not yet been achieved. This could present an opportunity to be explored through yeast genetic engineering approaches. Additionally, the quantitative expression of the xylose transporter genes (XUT1 and STL2) and the xylose reductase gene (XYL1), previously identified in C. tropicalis, was evaluated under all tested conditions. Upregulation of the XUT1 was correlated with higher xylose concentrations, while STL2 was favored at lower xylose concentrations. The expression of XYL1 showed upregulation over time with higher xylose ratios. The high transcription levels and expression profile suggest that Xut1p-mediated xylose transport occurs through a proton symport mechanism. The results indicate that the pH factor indirectly influences XUT1 gene transcription, possibly as a compensatory response to the reduced transporter efficiency under high pH conditions. The present work underscores the influence of glucose ratios and pH in xylitol production, as well as the gene expression of xylose transporters and the key enzyme xylose reductase. Leveraging these insights can significantly enhance xylitol production from hemicellulosic hydrolysates through biotechnological pathways.
Collapse
Affiliation(s)
- Sarah S Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Isabela S Campos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Tatiane F Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil
| | - Maria das Graças A Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, 12602-810, Brazil.
| |
Collapse
|
5
|
Rüllke M, Schönrock V, Schmitz K, Oreb M, Tamayo E, Benz JP. Engineering of Aspergillus niger for efficient production of D-xylitol from L-arabinose. Microb Cell Fact 2024; 23:262. [PMID: 39367393 PMCID: PMC11452932 DOI: 10.1186/s12934-024-02526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks. Both pentoses D-xylose and L-arabinose are converted to D-xylitol as a common metabolic intermediate in the native fungal pentose catabolism.To engineer a strain capable of accumulating D-xylitol from arabinan-rich agricultural residues, pentose catabolism was stopped in the ascomycete filamentous fungus Aspergillus niger at the stage of D-xylitol by knocking out three genes encoding enzymes involved in D-xylitol degradation (ΔxdhA, ΔsdhA, ΔxkiA). Additionally, to facilitate its secretion into the medium, an aquaglyceroporin from Saccharomyces cerevisiae was tested. In S. cerevisiae, Fps1 is known to passively transport glycerol and is regulated to convey osmotic stress tolerance but also exhibits the ability to transport other polyols such as D-xylitol. Thus, a constitutively open version of this transporter was introduced into A. niger, controlled by multiple promoters with varying expression strengths. The strain expressing the transporter under control of the PtvdA promoter in the background of the pentose catabolism-deficient triple knock-out yielded the most favorable outcome, producing up to 45% D-xylitol from L-arabinose in culture supernatants, while displaying minimal side effects during osmotic stress. Due to its additional ability to extract D-xylose and L-arabinose from lignocellulosic material via the production of highly active pectinases and hemicellulases, A. niger emerges as an ideal candidate cell factory for D-xylitol production from lignocellulosic biomasses rich in both pentoses.In summary, we are showing for the first time an efficient biosynthesis of D-xylitol from L-arabinose utilizing a filamentous ascomycete fungus. This broadens the potential resources to include also arabinan-rich agricultural waste streams like sugar beet pulp and could thus help to make alternative sweetener production more environmentally friendly and cost-effective.
Collapse
Affiliation(s)
- Marcel Rüllke
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Veronika Schönrock
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Kevin Schmitz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
6
|
Guo Q, Zheng LJ, Zheng SH, Zheng HD, Lin XC, Fan LH. Enhanced Biosynthesis of d-Allulose from a d-Xylose-Methanol Mixture and Its Self-Inductive Detoxification by Using Antisense RNAs in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14821-14829. [PMID: 38897918 DOI: 10.1021/acs.jafc.4c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
d-Allulose, a C-3 epimer of d-fructose, has great market potential in food, healthcare, and medicine due to its excellent biochemical and physiological properties. Microbial fermentation for d-allulose production is being developed, which contributes to cost savings and environmental protection. A novel metabolic pathway for the biosynthesis of d-allulose from a d-xylose-methanol mixture has shown potential for industrial application. In this study, an artificial antisense RNA (asRNA) was introduced into engineered Escherichia coli to diminish the flow of pentose phosphate (PP) pathway, while the UDP-glucose-4-epimerase (GalE) was knocked out to prevent the synthesis of byproducts. As a result, the d-allulose yield on d-xylose was increased by 35.1%. Then, we designed a d-xylose-sensitive translation control system to regulate the expression of the formaldehyde detoxification operon (FrmRAB), achieving self-inductive detoxification by cells. Finally, fed-batch fermentation was carried out to improve the productivity of the cell factory. The d-allulose titer reached 98.6 mM, with a yield of 0.615 mM/mM on d-xylose and a productivity of 0.969 mM/h.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Shang-He Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Xiao-Cheng Lin
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| |
Collapse
|
7
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
8
|
Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Crit Rev Biotechnol 2024; 44:218-235. [PMID: 36592989 DOI: 10.1080/07388551.2022.2151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/13/2022] [Accepted: 11/07/2022] [Indexed: 01/04/2023]
Abstract
The pretreatment and the enzymatic saccharification are the key steps in the extraction of fermentable sugars for further valorization of lignocellulosic biomass (LCB) to biofuels and value-added products via biochemical and/or chemical conversion routes. Due to low density and high-water absorption capacity of LCB, the large volume of water is required for its processing. Integration of pretreatment, saccharification, and co-fermentation has succeeded and well-reported in the literature. However, there are only few reports on extraction of fermentable sugars from LCB with high biomass loading (>10% Total solids-TS) feasible to industrial reality. Furthermore, the development of enzymatic cocktails can overcome technology hurdles with high biomass loading. Hence, a better understanding of constraints involved in the development of technology with high biomass loading can result in an economical and efficient yield of fermentable sugars for the production of biofuels and bio-chemicals with viable titer, rate, and yield (TRY) at industrial scale. The present review aims to provide a critical assessment on the production of fermentable sugars from lignocelluloses with high solid biomass loading. The impact of inhibitors produced during both pretreatment and saccharification has been elucidated. Moreover, the limitations imposed by high solid loading on efficient mass transfer during saccharification process have been elaborated.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
| | - Poonam Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, India
| | | | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, Brazil
| |
Collapse
|
9
|
Singh S, Arya SK, Krishania M. Bioprocess optimization for enhanced xylitol synthesis by new isolate Meyerozyma caribbica CP02 using rice straw. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:31. [PMID: 38402217 PMCID: PMC10894501 DOI: 10.1186/s13068-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
The present work models the fermentation process parameters of the newly isolated, Meyerozyma caribbica CP02 for enhanced xylitol production and its fermentability study on rice straw hydrolysate. The study examined the impact of each of the process variables by one variable at a time optimization followed by statistical validation. Temperature of 32 °C, pH of 3.5, agitation of 200 rpm, 1.5% (v/v) inoculum, 80 gL-1 initial xylose was optimized. Subsequently, a sequential two-stage agitation approach was adopted for fermentation. At these optimized conditions, xylitol yield of 0.77 gg-1 and 0.64 gg-1 was achieved using media containing commercial and rice straw derived xylose, respectively. For scale up, in 3L batch bioreactor, the highest xylitol yield (0.63 gg-1) was attained at 72 h with rice straw hydrolysate media containing initial xylose (59.48 ± 0.82 gL-1) along with inhibitors (1.55 ± 0.10 gL-1 aliphatic acids, 0.0.048 ± 0.11 gL-1 furans, 0.64 ± 0.23 gL-1 total phenols). The results imply that even under circumstances characterized by an acidic pH and elevated initial xylose level, M. caribbica CP02, as an isolate, displays robustness and shows favorable fermentability of rice straw hydrolysate. Therefore, isolate CP02 has potential to be used in bio-refineries for high yield xylitol production with minimal hydrolysate processing requirements.
Collapse
Affiliation(s)
- Saumya Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81 (Knowledge City), Mohali, 140306, India.
| |
Collapse
|
10
|
Jain V, Ghosh S. Xylitol biosynthesis enhancement by Candida tropicalis via medium, process parameter optimization, and co-substrate supplementation. Prep Biochem Biotechnol 2024; 54:207-217. [PMID: 37184497 DOI: 10.1080/10826068.2023.2209897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The present study examines the impact of nitrogen sources (yeast extract, ammonium sulfate peptone, ammonium nitrate, urea, and sodium nitrate), salt solution (0.5 g/L MgSO4, 0.5 g/L KH2PO4, 0.3 g/L CaCl2), trace elements solution (0.1 g/L CuSO4, 0.1 g/L FeSO4, 0.02 g/L MnCl2, 0.02 g/L ZnSO4), operational parameters (temperature, aeration, agitation, initial pH and xylose concentration) and co- substrate supplementation (glucose, fructose, maltose, sucrose, and glycerol) on xylitol biosynthesis by Candida tropicalis ATCC 13803 using synthetic xylose. The significant medium components were identified using the Plackett Burman design followed by central composite designs to obtain the optimal concentration for the critical medium components in shaker flasks. Subsequently, the effect of operational parameters was examined using the One Factor At a Time method, followed by the impact of five co-substrates on xylitol biosynthesis in a 1 L bioreactor. The optimal media components and process parameters are as follows: peptone: 12.68 g/L, yeast extract: 6.62 g/L, salt solution (0.5 g/L MgSO4, 0.5 g/L KH2PO4, and 0.3 g/L CaCl2): 1.23 X (0.62 g/L, 0.62 g/L, and 0.37 g/L respectively), temperature: 30 °C, pH: 6, agitation: 400 rpm, aeration: 1 vvm, and xylose: 50 g/L. Optimization studies resulted in xylitol yield and productivity of 0.71 ± 0.004 g/g and 1.48 ± 0.018 g/L/h, respectively. Glycerol supplementation (2 g/L) further improved xylitol yield (0.83 ± 0.009 g/g) and productivity (1.87 ± 0.020 g/L/h) by 1.66 and 3.12 folds, respectively, higher than the unoptimized conditions thus exhibiting the potential of C. tropicalis ATCC 13803 being used for commercial xylitol production.
Collapse
Affiliation(s)
- Vasundhara Jain
- Biochemical Engineering Lab, Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| | - Sanjoy Ghosh
- Biochemical Engineering Lab, Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, India
| |
Collapse
|
11
|
Hazal F, Özbek HN, Göğüş F, Yanık DK. The green novel approach in hydrolysis of pistachio shell into xylose by microwave-assisted high-pressure CO 2 /H 2 O. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:116-124. [PMID: 37549219 DOI: 10.1002/jsfa.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Pistachio shell is a valuable lignocellulosic biomass because almost 90% of its hemicellulose fraction is xylan, which can be converted into high value-added compounds such as xylooligosaccarides, xylose, xylitol and furfural. The present study represents a green and novel approach to produce xylose from lignocellulosic biomass. Microwave-assisted high-pressure CO2 /H2 O hydrolysis (MW-HPCO2 ) comprising a combination never previously used was performed to produce xylose from pistachio shell. RESULTS Response surface methodology with a Box-Behnken design was implemented to optimize microwave-assisted high-pressure CO2 /H2 O hydrolysis (MW-HPCO2 ). The effect of temperature, time and liquid-to-solid ratio was studied in the ranges of 180-210 °C, 10-30 min and 5-30 mL g-1 , respectively. A maximum xylose yield of 61.39% and minimum degradation compounds (5-hydroxymethyl furfural and furfural) of 11.07% were attained under reaction conditions of 190 °C, 30 min and 18 mL g-1 . CONCLUSION The results showed that hydrolysis temperature, time and liquid-to-solid ratio had a strong influence on the xylose yield, as well as on the formation of degradation compounds. MW-HPCO2 significantly increased accessibility to cellulose-derived products in the subsequent enzymatic hydrolysis. The results of the present study reveal that MW-HPCO2 can be a promising green technique for the hydrolysis of lignocellulosic biomass. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Filiz Hazal
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Hatice Neval Özbek
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Fahrettin Göğüş
- Department of Food Engineering, Engineering Faculty, University of Gaziantep, Gaziantep, Turkey
| | - Derya Koçak Yanık
- Department of Food Engineering, Faculty of Agriculture, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
12
|
Singh AK, Pandey AK, Kumar M, Paul T, Gaur NA. Improved xylitol production by the novel inhibitor-tolerant yeast Candida tropicalis K2. ENVIRONMENTAL TECHNOLOGY 2024; 45:1-15. [PMID: 35762251 DOI: 10.1080/09593330.2022.2095227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Production of potential value-added products from different lignocellulosic biomass is becoming more common due to the availability of the feedstocks in abundance and the environment- friendly nature of the microbial production process. Due to the large array of its applications in the pharmaceutical and food sectors, xylitol is considered as potential value-added compound for production. In this study, organic waste samples were collected from various habitats and screened for potential yeast isolates for xylitol production. Among 124 tested isolates, Candida tropicalis K2 showed the highest potential for xylitol production as well as inhibitors tolerance (Furfural, 5-hydroxymethyl furfural and acetic acid) phenotypes. C. tropicalis K2 produced 90 g/L of xylitol in batch fermentation (100 g/L xylose supplemented with 20 g/L of glycerol as co-substrate) with the yield and productivity of 0.90 g/g and 1.5 g/L.h, respectively, at pH 5.5 and 30°C temperature. Together, >10% higher xylitol yield was achieved when glycerol was used as a co-substrate with pure xylose. Moreover, with non-detoxified corncob and Albizia pod hydrolysates, C. tropicalis K2 isolate produced 0.62 and 0.69 g/g of xylitol yields and 1.04 and 0.75 g/L.h xylitol productivities, respectively. Thus, C. tropicalis K2 isolate could be considered as promising candidate for xylitol production from different lignocellulosic biomass.HIGHLIGHTS Candia tropicalis K2 isolate was screened from natural sites of biomass degradation and characterized for xylitol production.Non-detoxified Albizia pod and corncob hydrolysates were explored for xylitol production using selected C. tropicalis K2 isolate.A maximum of 0.90 g/g yield and 1.07 g/L.h xylitol productivity was achieved with pure xylose.A >10% increase in xylitol yield was achieved using glycerol as a co-substrate.
Collapse
Affiliation(s)
- Anup Kumar Singh
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ajay Kumar Pandey
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Life Sciences and Biotechnology, School of Biological Sciences and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Tanushree Paul
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Naseem A Gaur
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
13
|
Vardhan H, Sasamal S, Mohanty K. Xylitol Production by Candida tropicalis from Areca Nut Husk Enzymatic Hydrolysate and Crystallization. Appl Biochem Biotechnol 2023; 195:7298-7321. [PMID: 36995656 DOI: 10.1007/s12010-023-04469-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Lignocellulosic biomasses are extensively used by researchers to produce a variety of renewable bioproducts. This research described an environment-friendly technique of xylitol production by an adapted strain of Candida tropicalis from areca nut hemicellulosic hydrolysate, produced through enzymatic hydrolysis. To enhance the activity of xylanase enzymes, lime and acid pretreatment was conducted to make biomass more amenable for saccharification. To improve the efficiency of enzymatic hydrolysis, saccharification parameters like xylanase enzyme loading were varied. Results exposed that the highest yield (g/g) of reducing sugar, about 90%, 83%, and 15%, were achieved for acid-treated husk (ATH), lime-treated husk (LTH), and raw husk (RH) at an enzyme loading of 15.0 IU/g. Hydrolysis was conducted at a substrate loading of 2% (w/V) at 30 °C, 100 rpm agitation, for 12 h hydrolysis time at pH 4.5 to 5.0. Subsequently, fermentation of xylose-rich hemicellulose hydrolysate was conducted with pentose utilizing the yeast Candida tropicalis to produce xylitol. The optimum concentration of xylitol was obtained at about 2.47 g/L, 3.83 g/L, and 5.88 g/L, with yields of approximately 71.02%, 76.78%, and 79.68% for raw fermentative hydrolysate (RFH), acid-treated fermentative hydrolysate (ATFH), and lime-treated fermentative gydrolysate (LTFH), respectively. Purification and crystallization were also conducted to separate xylitol crystals, followed by characterization like X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. Results obtained from crystallization were auspicious, and about 85% pure xylitol crystal was obtained.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Soumya Sasamal
- Department of Biotechnology, Visva Bharati, Santiniketan, 731235, India.
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
14
|
Liang P, Cao M, Li J, Wang Q, Dai Z. Expanding sugar alcohol industry: Microbial production of sugar alcohols and associated chemocatalytic derivatives. Biotechnol Adv 2023; 64:108105. [PMID: 36736865 DOI: 10.1016/j.biotechadv.2023.108105] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Sugar alcohols are polyols that are widely employed in the production of chemicals, pharmaceuticals, and food products. Chemical synthesis of polyols, however, is complex and necessitates the use of hazardous compounds. Therefore, the use of microbes to produce polyols has been proposed as an alternative to traditional synthesis strategies. Many biotechnological approaches have been described to enhancing sugar alcohols production and microbe-mediated sugar alcohol production has the potential to benefit from the availability of inexpensive substrate inputs. Among of them, microbe-mediated erythritol production has been implemented in an industrial scale, but microbial growth and substrate conversion rates are often limited by harsh environmental conditions. In this review, we focused on xylitol, mannitol, sorbitol, and erythritol, the four representative sugar alcohols. The main metabolic engineering strategies, such as regulation of key genes and cofactor balancing, for improving the production of these sugar alcohols were reviewed. The feasible strategies to enhance the stress tolerance of chassis cells, especially thermotolerance, were also summarized. Different low-cost substrates like glycerol, molasses, cellulose hydrolysate, and CO2 employed for producing these sugar alcohols were presented. Given the value of polyols as precursor platform chemicals that can be leveraged to produce a diverse array of chemical products, we not only discuss the challenges encountered in the above parts, but also envisioned the development of their derivatives for broadening the application of sugar alcohols.
Collapse
Affiliation(s)
- Peixin Liang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Zongjie Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| |
Collapse
|
15
|
Bianchini IDA, Jofre FM, Queiroz SDS, Lacerda TM, Felipe MDGDA. Relation of xylitol formation and lignocellulose degradation in yeast. Appl Microbiol Biotechnol 2023; 107:3143-3151. [PMID: 37039848 DOI: 10.1007/s00253-023-12495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
One of the critical steps of the biotechnological production of xylitol from lignocellulosic biomass is the deconstruction of the plant cell wall. This step is crucial to the bioprocess once the solubilization of xylose from hemicellulose is allowed, which can be easily converted to xylitol by pentose-assimilating yeasts in a microaerobic environment. However, lignocellulosic toxic compounds formed/released during plant cell wall pretreatment, such as aliphatic acids, furans, and phenolic compounds, inhibit xylitol production during fermentation, reducing the fermentative performance of yeasts and impairing the bioprocess productivity. Although the toxicity of lignocellulosic inhibitors is one of the biggest bottlenecks of the biotechnological production of xylitol, most of the studies focus on how much xylitol production is inhibited but not how and where cells are affected. Understanding this mechanism is important in order to develop strategies to overcome lignocellulosic inhibitor toxicity. In this mini-review, we addressed how these inhibitors affect both yeast physiology and metabolism and consequently xylose-to-xylitol bioconversion. In addition, this work also addresses about cellular adaptation, one of the most relevant strategies to overcome lignocellulosic inhibitors toxicity, once it allows the development of robust and tolerant strains, contributing to the improvement of the microbial performance against hemicellulosic hydrolysates toxicity. KEY POINTS: • Impact of lignocellulosic inhibitors on the xylitol production by yeasts • Physiological and metabolic alterations provoked by lignocellulosic inhibitors • Cell adaptation as an efficient strategy to improve yeast's robustness.
Collapse
Affiliation(s)
- Italo de Andrade Bianchini
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Fanny Machado Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Sarah de Souza Queiroz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Talita Martins Lacerda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil
| | - Maria das Graças de Almeida Felipe
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Estrada Municipal do Campinho, 100, Campinho, Lorena, SP, 12602-810, Brazil.
| |
Collapse
|
16
|
Zaykovskaya A, Louhi-Kultanen M. Batch Crystallization of Xylitol by Cooling, Evaporative, and Antisolvent Crystallization. CRYSTAL GROWTH & DESIGN 2023; 23:1813-1820. [PMID: 36879775 PMCID: PMC9982812 DOI: 10.1021/acs.cgd.2c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Four different techniques for xylitol crystallization, namely cooling, evaporative, antisolvent, and combined antisolvent and cooling crystallization, were investigated regarding their influence on the product crystal properties. Various batch times and mixing intensities were studied, and the antisolvent used was ethanol. Real-time monitoring of the count rates of various chord length fractions and distributions using focused beam reflectance measurement was conducted. Several solid characterization methods were used for studying the crystal size and shape, such as scanning electron microscopy and laser diffraction-based crystal size distribution analysis. Crystals ranging in size from 200 to 700 μm were obtained based on the analysis results by laser diffraction. The dynamic viscosity of saturated and undersaturated xylitol solution samples was measured; the density and refraction index were measured to determine the xylitol concentration in the mother liquor. Saturated xylitol solutions were found to have relatively high viscosities up to 129 mPa s in the studied temperature range. Viscosity can have a key role in crystallization kinetics, especially in cooling and evaporative crystallization. Mixing speed had a great influence, mainly on the secondary nucleation mechanism. The addition of ethanol decreased the viscosity, resulting in more uniform crystal shape and better filterability.
Collapse
|
17
|
Guo Q, Liu MM, Zheng SH, Zheng LJ, Ma Q, Cheng YK, Zhao SY, Fan LH, Zheng HD. Methanol-Dependent Carbon Fixation for Irreversible Synthesis of d-Allulose from d-Xylose by Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14255-14263. [PMID: 36286250 DOI: 10.1021/acs.jafc.2c06616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
d-Allulose is a rare hexose with great application potential, owing to its moderate sweetness, low energy, and unique physiological functions. The current strategies for d-allulose production, whether industrialized or under development, utilize six-carbon sugars such as d-glucose or d-fructose as a substrate and are usually based on the principle of reversible Izumoring epimerization. In this work, we designed a novel route that coupled the pathways of methanol reduction, pentose phosphate (PP), ribulose monophosphate (RuMP), and allulose monophosphate (AuMP) for Escherichia coli to irreversibly synthesize d-allulose from d-xylose and methanol. After improving the expression of AlsE by SUMO fusion and regulating the carbon fluxes by knockout of FrmRAB, RpiA, PfkA, and PfkB, the titer of d-allulose in fed-batch fermentation reached ≈70.7 mM, with a yield of ≈0.471 mM/mM on d-xylose or ≈0.512 mM/mM on methanol.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Mei-Ming Liu
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shang-He Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qian Ma
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ying-Kai Cheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Su-Ying Zhao
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou 350108, People's Republic of China
- Qingyuan Innovation Laboratory, Quanzhou 362801, People's Republic of China
| |
Collapse
|
18
|
Fermentation process optimisation based on ANN and RSM for xylitol production from areca nut husk followed by xylitol crystal characterisation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Zhang J, Xu T, Wang X, Jing X, Zhang J, Hong J, Xu J, Wang J. Lignocellulosic xylitol production from corncob using engineered Kluyveromycesmarxianus. Front Bioeng Biotechnol 2022; 10:1029203. [PMID: 36338133 PMCID: PMC9633946 DOI: 10.3389/fbioe.2022.1029203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Xylitol production from lignocellulose hydrolysate is a sustainable and environment-friendly process. In this study, a systematic process of converting corncob waste into xylitol is described. First, the corncobs are hydrolyzed with acid to a hydrolysate. Second, Kluyveromyces marxianus YZJQ016 derived from K. marxianus YZJ074, constructed by overexpressing ScGAL2-N376F from Saccharomyces cerevisiae, CtXYL1 from Candida tropicalis, and KmZWF1 from K. marxianus, produces xylitol from the hydrolysate. A total of ten xylose reductase genes were evaluated, and CtXYL1 proved best by showing the highest catalytic activity under the control of the KmGAPDH promoter. A 5 L fermenter at 42°C produced 105.22 g/L xylitol using K. marxianus YZJQ016—the highest production reported to date from corncob hydrolysate. Finally, for crystallization of the xylitol, the best conditions were 50% (v/v) methanol as an antisolvent, at 25°C, with purity and yield of 99%–100% and 74%, respectively—the highest yield reported to date.
Collapse
Affiliation(s)
- Jia Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohang Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Jing
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiong Hong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Science at the Microscale, Hefei, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jichao Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jichao Wang,
| |
Collapse
|
20
|
An Integrated Process for the Xylitol and Ethanol Production from Oil Palm Empty Fruit Bunch (OPEFB) Using Debaryomyces hansenii and Saccharomyces cerevisiae. Microorganisms 2022; 10:microorganisms10102036. [PMID: 36296312 PMCID: PMC9610057 DOI: 10.3390/microorganisms10102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Oil palm empty fruit bunch (OPEFB) is the largest biomass waste from the palm oil industry. The OPEFB has a lignocellulose content of 34.77% cellulose, 22.55% hemicellulose, and 10.58% lignin. Therefore, this material’s hemicellulose and cellulose content have a high potential for xylitol and ethanol production, respectively. This study investigated the integrated microaerobic xylitol production by Debaryomyces hansenii and anaerobic ethanol semi simultaneous saccharification and fermentation (semi-SSF) by Saccharomyces cerevisiae using the same OPEFB material. A maximum xylitol concentration of 2.86 g/L was obtained with a yield of 0.297 g/gxylose. After 96 h of anaerobic fermentation, the maximum ethanol concentration was 6.48 g/L, corresponding to 71.38% of the theoretical ethanol yield. Significant morphological changes occurred in the OPEFB after hydrolysis and xylitol and ethanol fermentation were shown from SEM analysis.
Collapse
|
21
|
Tang H, Zhou Z, Chen Z, Ju X, Li L. Development of a sugar isomerase cascade to convert D-xylose to rare sugars. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Techno-Economic Analysis of an Integrated Bio-Refinery for the Production of Biofuels and Value-Added Chemicals from Oil Palm Empty Fruit Bunches. Processes (Basel) 2022. [DOI: 10.3390/pr10101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lignocellulose-rich empty fruit bunches (EFBs) have high potential as feedstock for second-generation biofuel and biochemical production without compromising food security. Nevertheless, the major challenge of valorizing lignocellulose-rich EFB is its high pretreatment cost. In this study, the preliminary techno-economic feasibility of expanding an existing pellet production plant into an integrated bio-refinery plant to produce xylitol and bioethanol was investigated as a strategy to diversify the high production cost and leverage the high selling price of biofuel and biochemicals. The EFB feedstock was split into a pellet production stream and a xylitol and bioethanol production stream. Different economic performance metrics were used to compare the profitability at different splitting ratios of xylitol and bioethanol to pellet production. The analysis showed that an EFB splitting ratio below 40% for pellet production was economically feasible. A sensitivity analysis showed that xylitol price had the most significant impact on the economic performance metrics. Another case study on the coproduction of pellet and xylitol versus that of pellet and bioethanol concluded that cellulosic bioethanol production is yet to be market-ready, requiring a minimum selling price above the current market price to be feasible at 16% of the minimum acceptable return rate.
Collapse
|
23
|
Shabbirahmed AM, Haldar D, Dey P, Patel AK, Singhania RR, Dong CD, Purkait MK. Sugarcane bagasse into value-added products: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62785-62806. [PMID: 35802333 DOI: 10.1007/s11356-022-21889-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Strategic valorization of readily available sugarcane bagasse (SB) is very important for waste management and sustainable biorefinery. Conventional SB pretreatment methods are ineffective to meet the requirement for industrial adaptation. Several past studies have highlighted different pretreatment procedures which are lacking environmentally benign characteristics and effective SB bioconversion. This article provides an in-depth review of a variety of environmentally acceptable thermochemical and biological pretreatment techniques for SB. Advancements in the conversion processes such as pyrolysis, liquefaction, gasification, cogeneration, lignin conversion, and cellulose conversion via fermentation processes are critically reviewed for the formation of an extensive array of industrially relevant products such as biofuels, bioelectricity, bioplastics, bio adsorbents, and organic acids. This article would provide comprehensive insights into several crucial aspects of thermochemical and biological conversion processes, including systematic perceptions and scientific developments for value-added products from SB valorization. Moreover, it would lead to determining efficient pretreatment and/or conversion processes for sustainable development of industrial-scale sugarcane-based biorefinery.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India
| | - Dibyajyoti Haldar
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India.
| | - Pinaki Dey
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore-641114, Tamil Nadu, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
24
|
Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery. FERMENTATION 2022. [DOI: 10.3390/fermentation8070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biorefinery of sugarcane bagasse into ethanol and xylitol was investigated in this study. Ethanol fermentation of sugarcane bagasse hydrolysate was carried out by Saccharomyces cerevisiae. After ethanol distillation, the vinasse containing xylose was used to produce xylitol through fermentation by Candida guilliermondii TISTR 5068. During the ethanol fermentation, it was not necessary to supplement a nitrogen source to the hydrolysate. Approximately 50 g/L of bioethanol was produced after 36 h of fermentation. The vinasse was successfully used to produce xylitol. Supplementing the vinasse with 1 g/L of yeast extract improved xylitol production 1.4-fold. Cultivating the yeast with 10% controlled dissolved oxygen resulted in the best xylitol production and yields of 10.2 ± 1.12 g/L and 0.74 ± 0.04 g/g after 60 h fermentation. Supplementing the vinasse with low fraction of molasses to improve xylitol production did not yield a positive result. The supplementation caused decreases of up to 34% in xylitol production rate, 24% in concentration, and 24% in yield.
Collapse
|
25
|
Integrated bioinformatics, modelling, and gene expression analysis of the putative pentose transporter from Candida tropicalis during xylose fermentation with and without glucose addition. Appl Microbiol Biotechnol 2022; 106:4587-4606. [PMID: 35708749 DOI: 10.1007/s00253-022-12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The transport of substrates across the cell membrane plays an essential role in nutrient assimilation by yeasts. The establishment of an efficient microbial cell factory, based on the maximum use of available carbon sources, can generate new technologies that allow the full use of lignocellulosic constituents. These technologies are of interest because they could promote the formation of added-value products with economic feasibility. In silico analyses were performed to investigate gene sequences capable of encoding xylose transporter proteins in the Candida tropicalis genome. The current study identified 11 putative transport proteins that have not yet been functionally characterized. A phylogenetic tree highlighted the potential C. tropicalis xylose-transporter proteins CtXUT1, CtXUT4, CtSTL1, CtSTL2, and CtGXT2, which were homologous to previously characterized and reported xylose transporters. Their expression was quantified through real-time qPCR at defined times, determined through a kinetic analysis of the microbial growth curve in the absence/presence of glucose supplemented with xylose as the main carbon source. The results indicated different mRNA expression levels for each gene. CtXUT1 mRNA expression was only found in the absence of glucose in the medium. Maximum CtXUT1 expression was observed in intervals of the highest xylose consumption (21 to 36 h) that corresponded to consumption rates of 1.02 and 0.82 g/L/h in the formulated media, with xylose as the only carbon source and with glucose addition. These observations indicate that CtXUT1 is an important xylose transporter in C. tropicalis. KEY POINTS: • Putative xylose transporter proteins were identified in Candida tropicalis; • The glucose concentration in the cultivation medium plays a key role in xylose transporter regulation; • The transporter gene CtXUT1 has an important role in xylose consumption by Candida tropicalis.
Collapse
|
26
|
de Mello FDSB, Maneira C, Suarez FUL, Nagamatsu S, Vargas B, Vieira C, Secches T, Coradini ALV, Silvello MADC, Goldbeck R, Pereira GAG, Teixeira GS. Rational engineering of industrial S. cerevisiae: towards xylitol production from sugarcane straw. J Genet Eng Biotechnol 2022; 20:80. [PMID: 35612634 PMCID: PMC9133290 DOI: 10.1186/s43141-022-00359-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Background Sugarcane hemicellulosic material is a compelling source of usually neglected xylose that could figure as feedstock to produce chemical building blocks of high economic value, such as xylitol. In this context, Saccharomyces cerevisiae strains typically used in the Brazilian bioethanol industry are a robust chassis for genetic engineering, given their robustness towards harsh operational conditions and outstanding fermentation performance. Nevertheless, there are no reports on the use of these strains for xylitol production using sugarcane hydrolysate. Results Potential single-guided RNA off-targets were analyzed in two preeminent industrial strains (PE-2 and SA-1), providing a database of 5′-NGG 20 nucleotide sequences and guidelines for the fast and cost-effective CRISPR editing of such strains. After genomic integration of a NADPH-preferring xylose reductase (XR), FMYX (SA-1 hoΔ::xyl1) and CENPKX (CEN.PK-122 hoΔ::xyl1) were tested in varying cultivation conditions for xylitol productivity to infer influence of the genetic background. Near-theoretical yields were achieved for all strains; however, the industrial consistently outperformed the laboratory strain. Batch fermentation of raw sugarcane straw hydrolysate with remaining solid particles represented a challenge for xylose metabolization, and 3.65 ± 0.16 g/L xylitol titer was achieved by FMYX. Finally, quantification of NADPH — cofactor implied in XR activity — revealed that FMYX has 33% more available cofactors than CENPKX. Conclusions Although widely used in several S. cerevisiae strains, this is the first report of CRISPR-Cas9 editing major yeast of the Brazilian bioethanol industry. Fermentative assays of xylose consumption revealed that NADPH availability is closely related to mutant strains’ performance. We also pioneer the use of sugarcane straw as a substrate for xylitol production. Finally, we demonstrate how industrial background SA-1 is a compelling chassis for the second-generation industry, given its inhibitor tolerance and better redox environment that may favor production of reduced sugars. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00359-8.
Collapse
Affiliation(s)
| | - Carla Maneira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Frank Uriel Lizarazo Suarez
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.,School of Basic Sciences, University of Pamplona, Pamplona, Colombia
| | - Sheila Nagamatsu
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Vargas
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carla Vieira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Thais Secches
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Alessando L V Coradini
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Rosana Goldbeck
- School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.
| | - Gleidson Silva Teixeira
- Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil.,School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
27
|
Vollmer NI, Gernaey KV, Sin G. Conceptual Process Design of an Integrated Xylitol Biorefinery With Value-Added Co-Products. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.838478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This manuscript describes the conceptual process design of an integrated xylitol biorefinery with value-added co-products. Based on an existing three-step framework, the main product of a second-generation integrated biorefinery is chosen in the first stage. Based upon this, other decisions as the feedstock and value-added co-products are made. All relevant unit operations for the process are introduced. An initial superstructure with all potential process alternatives is composed of all introduced models. In the second step of the framework, a global sensitivity analysis is performed, firstly with coarse sampling to determine all viable flowsheet options and secondly with fine sampling to determine the most sensitive operational variables. As a result of the sensitivity analysis, most of the flowsheet options in the initial superstructure are not feasible. Based on these results, flowsheet sampling with the five most sensitive operational variables is performed to create surrogate models. In the scope of this work, three types of surrogate models are benchmarked against each other. Regarding the results of the superstructure optimization, firstly, it becomes apparent that the production of biokerosene does not contribute significantly to the net present value of the biorefinery. Furthermore, reducing the number of unit operations in the downstream processing leads to lower capital expenditures, but it lowers the product yield. Lastly, most flowsheets are economically feasible, indicated by a positive net present value. Based on this result, the most promising candidate process topology is subjected to the third step of the framework, including uncertainty in capital expenditure and operational expenses according to their estimations and uncertainties in the product prices. As a result, the net present value of the flowsheet turns negative, indicating that the high uncertainties for the expenditure and the expenses do not allow for an economically feasible operation. Lastly, the analysis of conceptually designed process flowsheets based on Monte Carlo sampling shows failure rates, with the NPV falling below the break-even point, of around 60% probability or higher. Based on these results, an economically feasible construction and operation of a xylitol biorefinery seems unlikely. Further ways to improve the metrics are elucidated.
Collapse
|
28
|
Kumar K, Singh E, Shrivastava S. Microbial xylitol production. Appl Microbiol Biotechnol 2022; 106:971-979. [PMID: 35089402 DOI: 10.1007/s00253-022-11793-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 12/01/2022]
Abstract
Xylitol is pentahydroxy sugar alcohol, existing in very trace amount in fruits and vegetables, and finds varied application in industries like food, pharmaceuticals, confectionaries, etc. and is of prime importance to health. Owing to its trace occurrence in nature and considerable increase in market demand that exceeds availability, alternate production through biotechnological and chemical approach is in process. Biochemical production involves substrates like lignocellulosic biomasses and industrial effluents and is an eco-friendly process with high dependency on physico-chemical parameters. Although the chemical processes are faster, high yielding and economical, they have a great limitation as usage of toxic chemicals and thus need to be regulated and replaced by an environment friendly approach. Microbes play a major role in xylitol production through a biotechnological process towards the development of a sustainable system. Major microbes working on assimilation of xylose for production of xylitol include Candida tropicalis, Candida maltose, Bacillus subtilis, Debaromyces hansenii, etc. The present review reports all probable microbial xylitol production biochemical pathways encompassing diverse bioprocesses involved in uptake and conversion of xylose sugars from agricultural residues and industrial effluents. A comprehensive report on xylitol occurrence and biotechnological production processes with varied substrates has been encompassed. KEY POINTS: • Xylitol from agro-industrial waste • Microbial xylose assimilation.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Sector 125, Noida, India
| | - Ekta Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Sector 125, Noida, India
| | - Smriti Shrivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Sector 125, Noida, India.
| |
Collapse
|
29
|
Meng J, Chroumpi T, Mäkelä MR, de Vries RP. Xylitol production from plant biomass by Aspergillus niger through metabolic engineering. BIORESOURCE TECHNOLOGY 2022; 344:126199. [PMID: 34710597 DOI: 10.1016/j.biortech.2021.126199] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/12/2023]
Abstract
Xylitol is widely used in the food and pharmaceutical industries as a valuable commodity product. Biotechnological production of xylitol from lignocellulosic biomass by microorganisms is a promising alternative option to chemical synthesis or bioconversion from D-xylose. In this study, four metabolic mutants of Aspergillus niger were constructed and evaluated for xylitol accumulation from D-xylose and lignocellulosic biomass. All mutants had strongly increased xylitol production from pure D-xylose, beechwood xylan, wheat bran and cotton seed hulls compared to the reference strain, but not from several other feed stocks. The triple mutant ΔladAΔxdhAΔsdhA showed the best performance in xylitol production from wheat bran and cotton seed hulls. This study demonstrated the large potential of A. niger for xylitol production directly from lignocellulosic biomass by metabolic engineering.
Collapse
Affiliation(s)
- Jiali Meng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Tania Chroumpi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, 00790 Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
30
|
Guo Q, Ullah I, Zheng LJ, Gao XQ, Liu CY, Zheng HD, Fan LH, Deng L. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures. Biotechnol Bioeng 2021; 119:388-398. [PMID: 34837379 DOI: 10.1002/bit.28002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/31/2023]
Abstract
Xylitol is a salutary sugar substitute that has been widely used in the food, pharmaceutical, and chemical industries. Co-fermentation of xylose and glucose by metabolically engineered cell factories is a promising alternative to chemical hydrogenation of xylose for commercial production of xylitol. Here, we engineered a mutant of SecY protein-translocation channel (SecY [ΔP]) in xylitol-producing Escherichia coli JM109 (DE3) as a passageway for xylose uptake. It was found that SecY (ΔP) channel could rapidly transport xylose without being interfered by XylB-catalyzed synthesis of xylitol-phosphate, which is impossible for native XylFGH and XylE transporters. More importantly, with the coaction of SecY (ΔP) channel and carbon catabolite repression (CCR), the flux of xylose to the pentose phosphate (PP) pathway and the xylitol synthesis pathway in E. coli could be automatically controlled in response to glucose, thereby ensuring that the mutant cells were able to fully utilize sugars with high xylitol yields. The E. coli cell factory developed in this study has been proven to be applicable to a broad range of xylose-glucose mixtures, which is conducive to simplifying the mixed-sugar fermentation process for efficient and economical production of xylitol.
Collapse
Affiliation(s)
- Qiang Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Ling-Jie Zheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Xin-Quan Gao
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
| | - Chen-Yang Liu
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Hui-Dong Zheng
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, People's Republic of China
- Qingyuan Innovation Laboratory, Fuzhou University, Quanzhou, People's Republic of China
| | - Li Deng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
31
|
Barros KO, Souza RM, Palladino F, Cadete RM, Santos ARO, Goes-Neto A, Berkov A, Zilli JE, Vital MJS, Lachance MA, Rosa CA. Cyberlindnera dasilvae sp. nov., a xylitol-producing yeast species isolated from rotting wood and frass of cerambycid larva. Int J Syst Evol Microbiol 2021; 71. [PMID: 34494946 DOI: 10.1099/ijsem.0.004986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six yeast isolates were obtained from rotting wood samples in Brazil and frass of a cerambycid beetle larva in French Guiana. Sequence analysis of the ITS-5.8S region and the D1/D2 domains of the large subunit rRNA gene showed that the isolates represent a novel species of Cyberlindnera. This novel species is related to Cyberlindnera japonica, Cyberlindnera xylosilytica, Candida easanensis and Candida maesa. It is heterothallic and produces asci with two or four hat-shaped ascospores. The name Cyberlindnera dasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Cy. dasilvae is CBS 16129T and the designated paratype is CBS 16584. The MycoBank number is 838252. All isolates of Cy. dasilvae were able to convert xylose into xylitol with maximum xylitol production within 60 and 72 h. The isolates produced xylitol with values ranging from 12.61 to 31.79 g l-1 in yeast extract-peptone-xylose medium with 5% xylose. When the isolates were tested in sugarcane bagasse hydrolysate containing around 35-38 g l-1d-xylose, isolate UFMG-CM-Y519 showed maximum xylitol production.
Collapse
Affiliation(s)
- Katharina O Barros
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael M Souza
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Fernanda Palladino
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Raquel M Cadete
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Raquel O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Aristóteles Goes-Neto
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Amy Berkov
- Department of Biology, City College and the Graduate Center, The City University of New York, Convent Avenue at 138 St., New York, NY 10031, USA
| | - Jerri E Zilli
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, Brazil
| | - Marcos J S Vital
- Departamento de Biologia, Universidade Federal de Roraima, Campus do Paricarana, Boa Vista, Brazil
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
32
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
33
|
Vollmer NI, Al R, Gernaey KV, Sin G. Synergistic optimization framework for the process synthesis and design of biorefineries. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2071-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
35
|
Puligundla P, Mok C. Recent advances in biotechnological valorization of brewers' spent grain. Food Sci Biotechnol 2021; 30:341-353. [PMID: 33868745 DOI: 10.1007/s10068-021-00900-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Brewers' spent grain (BSG) is the most abundant by-product of beer-brewing. BSG is rich in nutrients such as protein, fiber, minerals, and vitamins, and therefore it is conventionally used as low-cost animal feed. On the other hand, alternative utilization of BSG has gained increased attention during recent years due to technological progress in its processing and the emergence of the concept of circular economy. The valorization of BSG through biotechnological approaches is environmentally friendly and sustainable. This review was focused on recent advancements in the conversion of BSG into value-added products, including bioenergy (ethanol, butanol, hydrogen, biodiesel, and biogas), organic acids, enzymes, xylitol, oligosaccharides, and single cell protein, via biotechnological approaches. In addition, the potential applications of BSG as immobilization matrices in bioprocesses have been reviewed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| | - Chulkyoon Mok
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
36
|
Rafiqul ISM, Mimi Sakinah AM, Zularisam AW. Improvement of enzymatic bioxylitol production from sawdust hemicellulose: optimization of parameters. Prep Biochem Biotechnol 2021; 51:1060-1070. [PMID: 33724897 DOI: 10.1080/10826068.2021.1897840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymatic production of bioxylitol from lignocellulosic biomass (LCB) provides a promising alternative to both chemical and fermentative routes. This study aimed to assess the impacts of catalytic variables on bioxylitol production from wood sawdust using xylose reductase (XR) enzyme and to optimize the bioprocess. Enzyme-based xylitol production was carried out in batch cultivation under various experimental conditions to obtain maximum xylitol yield and productivity. The response surface methodology (RSM) was followed to fine-tune the most significant variables such as reaction time, temperature, and pH, which influence the synthesis of bioxylitol from sawdust hydrolysate and to optimize them. The optimum time, temperature, and pH became were 12.25 h, 35 °C, and 6.5, respectively, with initial xylose 18.8 g/L, NADPH 2.83 g/L, XR 0.027 U/mg, and agitation 100 rpm. The maximum xylitol production was attained at 16.28 g/L with a yield and productivity of 86.6% (w/w) and 1.33 g/L·h, respectively. Optimization of catalytic parameters using sequential strategies resulted in 1.55-fold improvement in overall xylitol production. This study explores a novel strategy for using sawdust hemicellulose in bioxylitol production by enzyme technology.
Collapse
Affiliation(s)
- Islam S M Rafiqul
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - Abdul Munaim Mimi Sakinah
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Abdul Wahid Zularisam
- Faculty of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| |
Collapse
|
37
|
Cardoso BS, Forte MBS. Purification of biotechnological xylitol from Candida tropicalis fermentation using activated carbon in fixed-bed adsorption columns with continuous feed. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Baptista SL, Costa CE, Cunha JT, Soares PO, Domingues L. Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol Adv 2021; 47:107697. [PMID: 33508428 DOI: 10.1016/j.biotechadv.2021.107697] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.
Collapse
Affiliation(s)
- Sara L Baptista
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Pedro O Soares
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Campus Gualtar, Braga, Portugal.
| |
Collapse
|
39
|
Prabhu AA, Bosakornranut E, Amraoui Y, Agrawal D, Coulon F, Vivekanand V, Thakur VK, Kumar V. Enhanced xylitol production using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse by newly isolated Pichia fermentans. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:209. [PMID: 33375948 PMCID: PMC7772924 DOI: 10.1186/s13068-020-01845-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/28/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Integrated management of hemicellulosic fraction and its economical transformation to value-added products is the key driver towards sustainable lignocellulosic biorefineries. In this aspect, microbial cell factories are harnessed for the sustainable production of commercially viable biochemicals by valorising C5 and C6 sugars generated from agro-industrial waste. However, in the terrestrial ecosystem, microbial systems can efficiently consume glucose. On the contrary, pentose sugars are less preferred carbon source as most of the microbes lack metabolic pathway for their utilization. The effective utilization of both pentose and hexose sugars is key for economical biorefinery. RESULTS Bioprospecting the food waste and selective enrichment on xylose-rich medium led to screening and isolation of yeast which was phylogenetically identified as Pichia fermentans. The newly isolated xylose assimilating yeast was explored for xylitol production. The wild type strain robustly grew on xylose and produced xylitol with > 40% conversion yield. Chemical mutagenesis of isolated yeast with ethyl methanesulphonate (EMS) yielded seven mutants. The mutant obtained after 15 min EMS exposure, exhibited best xylose bioconversion efficiency. This mutant under shake flask conditions produced maximum xylitol titer and yield of 34.0 g/L and 0.68 g/g, respectively. However, under the same conditions, the control wild type strain accumulated 27.0 g/L xylitol with a conversion yield of 0.45 g/g. Improved performance of the mutant was attributed to 34.6% activity enhancement in xylose reductase with simultaneous reduction of xylitol dehydrogenase activity by 22.9%. Later, the culture medium was optimized using statistical design and validated at shake flask and bioreactor level. Bioreactor studies affirmed the competence of the mutant for xylitol accumulation. The xylitol titer and yield obtained with pure xylose were 98.9 g/L and 0.67 g/g, respectively. In comparison, xylitol produced using non-detoxified xylose rich pre-hydrolysate from sugarcane bagasse was 79.0 g/L with an overall yield of 0.54 g/g. CONCLUSION This study demonstrates the potential of newly isolated P. fermentans in successfully valorising the hemicellulosic fraction for the sustainable xylitol production.
Collapse
Affiliation(s)
- Ashish A Prabhu
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ekkarin Bosakornranut
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Yassin Amraoui
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Mohkampur, Dehradun, 248005, India
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, Rajasthan, 302017, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
40
|
Yang BX, Xie CY, Xia ZY, Wu YJ, Li B, Tang YQ. The effect of xylose reductase genes on xylitol production by industrial Saccharomyces cerevisiae in fermentation of glucose and xylose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
41
|
Health benefits of xylitol. Appl Microbiol Biotechnol 2020; 104:7225-7237. [DOI: 10.1007/s00253-020-10708-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 05/31/2020] [Indexed: 02/07/2023]
|
42
|
Valorization of apple pomace using bio-based technology for the production of xylitol and 2G ethanol. Bioprocess Biosyst Eng 2020; 43:2153-2163. [PMID: 32627063 DOI: 10.1007/s00449-020-02401-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/27/2020] [Indexed: 10/23/2022]
Abstract
Apple pomace was studied as a raw material for the production of xylitol and 2G ethanol, since this agroindustrial residue has a high concentration of carbohydrate macromolecules, but is still poorly studied for the production of fermentation bioproducts, such as polyols. The dry biomass was subjected to dilute-acid hydrolysis with H2SO4 to obtain the hemicellulosic hydrolysate, which was concentrated, detoxified and fermented. The hydrolyzate after characterization was submitted to submerged fermentations, which were carried out in Erlenmeyer flasks using, separately, the yeasts Candida guilliermondii and Kluyveromyces marxianus. High cellulose (32.62%) and hemicellulose (23.60%) contents were found in this biomass, and the chemical hydrolysis yielded appreciable quantities of fermentable sugars, especially xylose. Both yeasts were able to metabolize xylose, but Candida guilliermondii produced only xylitol (9.35 g L-1 in 96 h), while K. marxianus produced ethanol as the main product (10.47 g L-1 in 24 h) and xylitol as byproduct (9.10 g L-1 xylitol in 96 h). Maximum activities of xylose reductase and xylitol dehydrogenase were verified after 24 h of fermentation with C. guilliermondii (0.23 and 0.53 U/mgprot, respectively) and with K. marxianus (0.08 e 0.08 U/mgprot, respectively). Apple pomace has shown potential as a raw material for the fermentation process, and the development of a biotechnological platform for the integrated use of both the hemicellulosic and cellulosic fraction could add value to this residue and the apple production chain.
Collapse
|