1
|
Zheng Y, Wu Z, Wang P, Wei Y, Jia K, Zhang M, Shi X, Zhang L, Li J. Long-chain fatty acids facilitate acidogenic fermentation of food waste: Attention to the microbial response and the change of core metabolic pathway under saturated and unsaturated fatty acids loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175565. [PMID: 39151620 DOI: 10.1016/j.scitotenv.2024.175565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Long-chain fatty acids (LCFAs) are recognized as a significant inhibitory factor in anaerobic digestion of food waste (FW), yet they are inevitably present in FW due to lipid hydrolysis. Given their distinct synthesis mechanism from traditional anaerobic digestion, little is known about the effect of LCFAs on FW acidogenic fermentation. This study reveals that total volatile fatty acids (VFAs) production increased by 9.98 % and 4.03 % under stearic acid and oleic acid loading, respectively. Acetic acid production increased by 20.66 % under stearic acid loading compared to the control group (CK). However, the LCFA stress restricted the degradation of solid organic matter, particularly under oleic acid stress. Analysis of microbial community structure and quorum sensing (QS) indicates that LCFA stress enhanced the relative abundance of Lactobacillus and Klebsiella. In QS system, the relative abundance of luxS declined from 0.157 % to 0.116 % and 0.125 % under oleic acid and stearic acid stress, respectively. LCFA stress limited the Autoinducer-2 (AI-2) biosynthesis, suggesting that microorganisms cannot use QS to resist the LCFA stress. Metagenomic sequencing showed that LCFA stress promoted acetic acid production via the conversion of pyruvate and acetyl-CoA to acetate. Direct conversion of pyruvate to acetic acid increased by 47.23 % compared to the CK group, accounting for the enhanced acetic acid production under stearic acid loading. The abundance of β-oxidation pathway under stearic acid loading was lower than under oleic acid loading. Overall, the stimulating direct conversion of pyruvate plays a pivotal role in enhancing acetic acid biosynthesis under stearic acid loading, providing insights into the effect of LCFA on mechanism of FW acidogenic fermentation.
Collapse
Affiliation(s)
- Yi Zheng
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhen Wu
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Pan Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuquan Wei
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Kaixue Jia
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Mingzhu Zhang
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Wuhan 430014, China
| | - Longli Zhang
- Beijing VOTO Biotech Co., Ltd, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
2
|
Adnane I, Taoumi H, Elouahabi K, Lahrech K, Oulmekki A. Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon 2024; 10:e26440. [PMID: 38439870 PMCID: PMC10909651 DOI: 10.1016/j.heliyon.2024.e26440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
To switch the over-reliance on fossil-based resources, curb environmental quality deterioration, and promote the use of renewable fuels, much attention has recently been directed toward the implementation of sustainable and environmentally benign 'waste-to-energy' technology exploiting a clean, inexhaustible, carbon-neutral, and renewable energy source, namely agricultural biomass. From this perspective, anaerobic co-digestion (AcoD) technology emerges as a potent and plausible approach to attain sustainable energy development, foster environmental sustainability, and, most importantly, circumvent the key challenges associated with mono-digestion. This review article provides a comprehensive overview of AcoD as a biochemical valorization pathway of crop residues and livestock manure for biogas production. Furthermore, this manuscript aims to assess the different biotic and abiotic parameters affecting co-digestion efficiency and present recent advancements in pretreatment technologies designed to enhance feedstock biodegradability and conversion rate. It can be concluded that the substantial quantities of crop residues and animal waste generated annually from agricultural practices represent valuable bioenergy resources that can contribute to meeting global targets for affordable renewable energy. Nevertheless, extensive and multidisciplinary research is needed to evolve the industrial-scale implementation of AcoD technology of livestock waste and crop residues, particularly when a pretreatment phase is included, and bridge the gap between small-scale studies and real-world applications.
Collapse
Affiliation(s)
- Imane Adnane
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Hamza Taoumi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Karim Elouahabi
- Sidi Mohamed Ben Abdellah University (USMBA), IPI Laboratory, ENS, Fez, Morocco
| | - Khadija Lahrech
- Sidi Mohamed Ben Abdellah University (USMBA), ENSA, Fez, Morocco
| | - Abdellah Oulmekki
- Laboratory of Processes, Materials and Environment (LPME), Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
3
|
Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Wirach T, Kee WC, Khoo HC. Exploring the potential of thermophilic anaerobic co-digestion between agro-industrial waste and water hyacinth: operational performance, kinetic study and degradation pathway. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02879-0. [PMID: 37160769 DOI: 10.1007/s00449-023-02879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
Collapse
Affiliation(s)
- Audrey Chai
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Sung-Ting Sam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Taweepreda Wirach
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Wei-Chin Kee
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Hwa-Chuan Khoo
- Bio Synergy Laboratories Sdn Bhd, Lot 1109, Mukim Malau, Daerah Kubang PasuJitra, 06000, Kedah, Malaysia
| |
Collapse
|
4
|
Ye M, Li YY. Methanogenic treatment of dairy wastewater: A review of current obstacles and new technological perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161447. [PMID: 36621500 DOI: 10.1016/j.scitotenv.2023.161447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Methanogenic treatment can effectively manage wastewater in the dairy industry. However, its treatment efficiency and stability are problematic due to the feature of wastewater. This review comprehensively summarizes the dairy wastewater characteristics and reveals the mechanisms and impacts of three critical issues in anaerobic treatment, including ammonia and long-chain fatty acid (LCFA) inhibition and trace metal (TM) deficiency. It evaluates current remedial strategies and the implementation of anaerobic membrane bioreactor (AnMBR) technology. It assesses the use of nitrogen-removed effluent return to dilute the influent for solving protein-rich dairy wastewater treatment. It explores the methodology of TM addition to dairy wastewater in accordance with microbial TM content and proliferation. It analyzes the multiple benefits of applying high-solid AnMBR to lipid-rich influent to mitigate LCFA inhibition. Finally, it proposes a promising low-carbon treatment system with enhanced bioenergy recovery, nitrogen removal, and simultaneous phosphorus recovery that could promote carbon neutrality for dairy industry wastewater treatment.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
5
|
Wu Y, Yue X, Zhou A, Song X, Su B, Cao F, Ding J. Simultaneous recovery of short-chain fatty acids and phosphorus during lipid-rich anaerobic fermentation with sodium hydroxide conditioning. CHEMOSPHERE 2023; 312:137227. [PMID: 36379433 DOI: 10.1016/j.chemosphere.2022.137227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation (AF) could achieve simultaneous recovery of short-chain fatty acids (SCFAs) and phosphorus (P) when waste activated sludge (WAS) and meat processing waste (MPW) act as co-substrate. However, long-chain fatty acids, the degradation intermediates of lipids, always inhibit anaerobic microbial activity. Therefore, sodium hydroxide (NaOH) conditioning was applied to improve the lipid-rich AF performance in this study. The results demonstrated that 96% WAS (v/v) with NaOH addition that remaining at pH 7.5 could achieve the maximum SCFAs yield (1180.05 mg/g VSfed) at 12 d, and ortho-P content in the AF liquor (AFL) was much more than that of without NaOH addition. Anaerovibrio and Aminobacterium, one kind of lipolytic and proteolytic bacteria, respectively, became the major genus in the lipid-rich AF system. 86% of P in the AFL from 96% WAS + pH 7.5 reactor was recovered through vivianite crystallization method, with 91% of SCFAs remaining in the post-AFL. Meanwhile, analysis results verified vivianite formation in the P precipitate products. Overall, this study provided a new idea to achieve SCFAs and P simultaneous recovery from WAS and MPW through AF with NaOH conditioning and vivianite crystallization.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Bingqin Su
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Jianzhi Ding
- Taiyuan Design Research Institute for Coal Industry, 18 Qingnian Road, Taiyuan, 030001, PR China
| |
Collapse
|
6
|
Towards the Physiological Understanding of Yarrowia lipolytica Growth and Lipase Production Using Waste Cooking Oils. ENERGIES 2022. [DOI: 10.3390/en15145217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food supply chain, especially from the domestic sector. The need to avoid its incorrect disposal makes this waste a resource for developing bioprocesses in the perspective of a circular bioeconomy. To this end, the strain Y. lipolytica W29 was used as a platform for the simultaneous production of intracellular lipids and extracellular lipases. Three different minimal media conditions with different pH controls were utilized in a small-scale (50 mL final volume) screening strategy, and the best condition was tested for an up-scaling procedure in higher volumes (800 mL) by selecting the best-performing possibility. The tested media were constituted by YNB media with high nitrogen restriction (1 g L−1 (NH4)2SO4) and different carbon sources (3% w v−1 glucose and 10% v v−1 WCO) with different levels of pH controls. Lipase production and SCO content were analyzed. A direct correlation was found between decreasing FFA availability in the media and increasing SCO levels and lipase activity. The simultaneous production of extracellular lipase (1.164 ± 0.025 U mL−1) and intracellular single-cell oil accumulation by Y. lipolytica W29 growing on WCO demonstrates the potential and the industrial relevance of this biorefinery model.
Collapse
|
7
|
Salama ES, El-Fatah Abomohra A. Introductory Chapter: From Biogas Lab-Scale towards Industrialization. BIOGAS - BASICS, INTEGRATED APPROACHES, AND CASE STUDIES 2022. [DOI: 10.5772/intechopen.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Usman M, Zhao S, Jeon BH, Salama ES, Li X. Microbial β-oxidation of synthetic long-chain fatty acids to improve lipid biomethanation. WATER RESEARCH 2022; 213:118164. [PMID: 35176594 DOI: 10.1016/j.watres.2022.118164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
β-oxidation is a well-known pathway for fatty acid (FA) degradation. However, the wide range of feedstocks, their intermediates, and complex microbial networks involved in anaerobic digestion (AD) make β-oxidation unclear during lipid digestion having a variety of long-chain fatty acids (LCFAs). Here, we demonstrated the detailed metabolic pathway of major bacteria and enzymes responsible for the β-oxidation of individual saturated FAs (C16:0 and C18:0) and unsaturated FAs (C18:1 and C18:2). C16:0 showed no negative impact on AD. The relative enzyme abundance and production of shorter-chain FAs (
Collapse
Affiliation(s)
- Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University Lanzhou 730000, Gansu, China
| | - Shuai Zhao
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University Lanzhou 730000, Gansu, China.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
9
|
Sharma P, Usman M, Salama ES, Redina M, Thakur N, Li X. Evaluation of various waste cooking oils for biodiesel production: A comprehensive analysis of feedstock. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 136:219-229. [PMID: 34700162 DOI: 10.1016/j.wasman.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Biodiesel production from edible sources faces several challenges such as food security and cost issues. Waste cooking oils (WCOs) can be an alternative feedstock due to their large production. The comprehensive characterization of WCOs has been rarely reported in previous studies. In this study, six different WCOs including chicken oil (CO), fat, oil, and grease (FOG), beef hotpot oil (BHP), mixed waste cooking oil (MWO), duck oil (DO), and vegetable hotpot oil (VHP) were assessed for the biodiesel production. Lipid content of WCOs ranged from 73 to 84.5% with the highest C16 in DO (32.1%) and C18 in VHP (71.4%). The highest saturated (such as C16:0 and C18:0), monounsaturated (such as C18:1) and poly unsaturated (such as C18:2, and C18:3) fatty acids were 58%, 59%, and 21% in BHP, VHP, and MWO, respectively. The diverse nature of fatty acids in WCOs makes it highly recommended for biodiesel production, as its derived biodiesel complied with international standards. Fourier transform infrared spectroscopy confirmed the presence of linkages specific to lipid and thermogravimetric analysis showed high volatile matter content (>97%). Biochemical composition, fatty acids profile, and the properties of the produced biodiesel demonstrated that these WCOs could be promising candidates for biodiesel production, solving waste management and socio-economic challenges of conventional feedstocks. However, the commercialization of WCOs' biodiesel requires further investigation of produced biodiesel and their petro-diesel blends on the engine performance, efficiency, and emissions (SO×, NO×, and CO×) parameters to produce quality and cost-effective biodiesel.
Collapse
Affiliation(s)
- Priyanka Sharma
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| | - Margarita Redina
- Department of Applied Ecology, Peoples' Friendship University of Russia, (RUDN-University), Miklukho-Maklaya str. 6, Moscow 117198, Russia
| | - Nandini Thakur
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
10
|
Guo Z, Usman M, Alsareii SA, Harraz FA, Al-Assiri MS, Jalalah M, Li X, Salama ES. Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. BIORESOURCE TECHNOLOGY 2021; 337:125383. [PMID: 34126358 DOI: 10.1016/j.biortech.2021.125383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The slaughterhouse waste (SHW) contains high organics which makes SHW a feasible feedstock for anaerobic digestion (AD). The present study systematically assessed the microbiome response and biomethanation along with the production of volatile fatty acids (VFAs) and ammonia under 2%, 4%, 6%, and 8% (w v-1) loadings of SHW in AD. The optimum loading was 2% SHW which resulted in maximum biomethane production and VFAs consumption. A higher SHW concentration (4% and 6%) resulted in a prolonged lag-phase and decreased biomethane production. High VFAs (28.88 g L-1) and ammonia nitrogen (>4 g L-1) accumulation were observed at 8% SHW leading to permanent inhibition of biomethane and methanogenic archaea. An increase in ammonia and VFAs concentration, at 4% and 6% SHW loadings, shifted the methanogenic pathway from acetoclastic to hydrogenotrophic lead by Methanoculleus. Acetoclastic Methanosaeta (77.15%) dominated the reactors loaded with 2% SHW resulting in the highest biomethane production.
Collapse
Affiliation(s)
- Zhaodi Guo
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Muhammad Usman
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Saeed A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87, Helwan, Cairo 11421, Egypt
| | - M S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia; Department of Electrical Engineering, Faculty of Engineering, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
11
|
Yuan C, El-Fatah Abomohra A, Wang S, Liu Q, Zhao S, Cao B, Hu X, Marrakchi F, He Z, Hu Y. High-grade biofuel production from catalytic pyrolysis of waste clay oil using modified activated seaweed carbon-based catalyst. JOURNAL OF CLEANER PRODUCTION 2021; 313:127928. [DOI: 10.1016/j.jclepro.2021.127928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Co-Digestion of Extended Aeration Sewage Sludge with Whey, Grease and Septage: Experimental and Modeling Determination. SUSTAINABILITY 2021. [DOI: 10.3390/su13169199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The potential of co-digestion mixing thickened secondary sludge (TS) from extended aeration wastewater treatment plant and locally available substrates (whey, grease and septage) has been studied in this work, using three steps. The first step was a batch test to determine the biological methane potential (BMP) of different mixtures of the three co-substrates with TS. The second step was carried out with lab-scale reactors (20 L), simulating anaerobic continuous stirred tank reactors, fed by three mixtures of co-substrates that were determined according to the previous step results. Modeling was applied in the third step, using ADM1 as a mechanistic model to help understand the co-digestion process. According to the BMP step, septage used as a co-substrate has a negative effect on performance, and the addition of 10–30% grease or whey would lead to a gain of around 60–70% in the production of methane. The results from the reactor tests did not validate the positive effects observed with the BMP assay but confirmed good biodegradation efficiency (> 85%). The main purpose of co-digestion in this scenario is to recover energy from waste and effluents that would require even more energy for their treatment. The protein and lipid percentages of particulate biodegradable COD are important variables for digester stability and methane production, as predicted by modeling. The results of simulations with the ADM1 model, adapted to co-digestion, confirmed that this model is a powerful tool to optimize the process of biogas production.
Collapse
|
13
|
Ling Z, Thakur N, El-Dalatony MM, Salama ES, Li X. Protein biomethanation: insight into the microbial nexus. Trends Microbiol 2021; 30:69-78. [PMID: 34215486 DOI: 10.1016/j.tim.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
Biomethanation of carbohydrates (e.g., lignocellulosic biomass) and lipids (e.g., waste oils) has been well studied. However, investigations on the biomethanation of protein-rich biowastes (PRBs) and associated microbial communities have not been reported. This review summarizes the challenges in the metabolic process of anaerobic digestion of PRBs and the microbial instability associated with it. We discuss the diversity of bacterial and archaeal communities via metagenomics under PRB mono- and codigestion. A stable community structure with enhanced metabolic activity is a core factor in PRB biomethanation. The application of strategies such as codigestion of PRBs with carbon-rich biomass and microbial stimulation/augmentation would make PRB biomethanation more feasible.
Collapse
Affiliation(s)
- Zhenmin Ling
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Nandini Thakur
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Marwa M El-Dalatony
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
14
|
Ali G, Ling Z, Saif I, Usman M, Jalalah M, Harraz FA, Al-Assiri MS, Salama ES, Li X. Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116801. [PMID: 33689949 DOI: 10.1016/j.envpol.2021.116801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion, a promising technology for waste utilization and bioenergy generation, is a suitable approach to convert the shrimp waste to biomethane, reducing its environmental impact. In this study, shrimp chaff (SC) was co-digested corn straw (CS), wheat straw (WS), and sugarcane bagasse (SB). In co-digestion, SC enhanced biomethane production of CS by 8.47-fold, followed by SC + WS (5.67-folds), and SC + SB (3.37-folds). SC addition to agricultural biomass digestion also promoted the volatile solids removal up to 85%. Microbial community analysis of SC and CS co-digestion presented the dominance of phylum Bacteroidetes, Firmicutes, Proteobacteria, and Euryarchaeota. Proteolytic bacteria were dominant (18.02%) during co-digestion of SC and CS, with Proteiniphilum as major bacterial genera (14%) that converts complex proteinaceous substrates to organic acids. Among the archaeal community, Methanosarcina responsible for conversion of acetate and hydrogen to biomethane, increased up to 70.77% in SC and CS digestion. Addition of SC to the digestion of agricultural wastes can significantly improve the biomethane production along with its effective management to reduce environmental risks.
Collapse
Affiliation(s)
- Gohar Ali
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Zhenmin Ling
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| | - Irfan Saif
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Muhammad Usman
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, Faculty of Engineering, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo, 11421, Egypt
| | - M S Al-Assiri
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China.
| | - Xiangkai Li
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| |
Collapse
|