1
|
Yang W, Li J, Yao Z. High-solids saccharification of non-pretreated citrus peels through tailored cellulase. Int J Biol Macromol 2024; 282:136863. [PMID: 39454926 DOI: 10.1016/j.ijbiomac.2024.136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Citrus peels, characterized by their low lignin and high sugar content, have been drawing increasing attention as a valuable lignocellulosic biomass with significant potential in biorefinery. Notably, in this study, the citrus waste was found to be enzymatically accessible without any pretreatment. Moreover, to promote the high-solids saccharification of the citrus peels, a tailored cellulase cocktail was formulated by response surface methodology (RSM), along with a fed-batch strategy aiming to obtain a high substrate loading. The study resulted in an optimized cellulase cocktail (7.08 U/g DM of β-glucosidase, 164.17 U/g DM of hemicellulase, 47.38 mg/g DM of sophorolipid, and 64.68 mg/g DM of Tween 80) and achieved solids loading of 22 % with a total sugar concentration of 123.84 g/L, corresponding to a yield of 93.12 % (65.28 % in batch operation). These findings provided essential validation for the efficient utilization of citrus waste, ensuring them promising potential as feedstock for sugar platforms.
Collapse
Affiliation(s)
- Weiqing Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
3
|
Gadkari S, Narisetty V, Maity SK, Manyar H, Mohanty K, Jeyakumar RB, Pant KK, Kumar V. Techno-Economic Analysis of 2,3-Butanediol Production from Sugarcane Bagasse. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8337-8349. [PMID: 37292450 PMCID: PMC10245391 DOI: 10.1021/acssuschemeng.3c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Sugarcane bagasse (SCB) is a significant agricultural residue generated by sugar mills based on sugarcane crop. Valorizing carbohydrate-rich SCB provides an opportunity to improve the profitability of sugar mills with simultaneous production of value-added chemicals, such as 2,3-butanediol (BDO). BDO is a prospective platform chemical with multitude of applications and huge derivative potential. This work presents the techno-economic and profitability analysis for fermentative production of BDO utilizing 96 MT of SCB per day. The study considers plant operation in five scenarios representing the biorefinery annexed to a sugar mill, centralized and decentralized units, and conversion of only xylose or total carbohydrates of SCB. Based on the analysis, the net unit production cost of BDO in the different scenarios ranged from 1.13 to 2.28 US$/kg, while the minimum selling price varied from 1.86 to 3.99 US$/kg. Use of the hemicellulose fraction alone was shown to result in an economically viable plant; however, this was dependent on the condition that the plant would be annexed to a sugar mill which could supply utilities and the feedstock free of cost. A standalone facility where the feedstock and utilities were procured was predicted to be economically feasible with a net present value of about 72 million US$, when both hemicellulose and cellulose fractions of SCB were utilized for BDO production. Sensitivity analysis was also conducted to highlight some key parameters affecting plant economics.
Collapse
Affiliation(s)
- Siddharth Gadkari
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Vivek Narisetty
- School
of Water, Energy and Environment, Cranfield
University, Guildford MK43 0AL, U.K.
| | - Sunil K. Maity
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Haresh Manyar
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, Northern Ireland BT9 5AG, U.K.
| | - Kaustubha Mohanty
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Banu Jeyakumar
- Department
of Life Sciences, Central University of
Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Kamal Kishore Pant
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Vinod Kumar
- School
of Water, Energy and Environment, Cranfield
University, Guildford MK43 0AL, U.K.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
4
|
Song G, Madadi M, Sun C, Shao L, Tu M, Abdulkhani A, Zhou Q, Lu X, Hu J, Sun F. Surfactants facilitated glycerol organosolv pretreatment of lignocellulosic biomass by structural modification for co-production of fermentable sugars and highly reactive lignin. BIORESOURCE TECHNOLOGY 2023:129178. [PMID: 37270148 DOI: 10.1016/j.biortech.2023.129178] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
This study reported that surfactants could facilitate the organosolv pretreatment of lignocellulosic biomass (LCB) to produce fermentable sugars and highly active lignin. Under the optimized conditions, the surfactant-assisted glycerol organosolv (saGO) pretreatment achieved 80.7% delignification with a retention of 93.4% cellulose and 83.0% hemicellulose. The saGO pretreated substrate exhibited an excellent enzymatic hydrolyzability, achieving 93% of glucose yield from the enzymatic hydrolysis at 48 h. Structural analysis showed that the saGO lignin contained rich β-O-4 bondings with less repolymerization and lower phenolic hydroxyl groups, thus forming highly reactive lignin fragments. The analysis evidenced that the surfactant graft the lignin by structural modification, which was responsible for the excellent substrate hydrolyzability. The co-production of fermentable sugars and organosolv lignin almost recovered a gross energy (87.2%) from LCB. Overall, the saGO pretreatment holds a lot of promise for launching a novel pathway towards lignocellulosic fractionation and lignin valorization.
Collapse
Affiliation(s)
- Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, China
| | - Ali Abdulkhani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj 1417466191, China
| | - Qing Zhou
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingmei Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Zhang B, Liu X, Bao J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology - An overview. BIORESOURCE TECHNOLOGY 2023; 369:128334. [PMID: 36403909 DOI: 10.1016/j.biortech.2022.128334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
6
|
Xu C, Xiong Y, Zhang J, Li K, Zhong S, Huang S, Xie C, Gong W, Zhu Z, Zhou Y, Peng Y. Liquid hot water pretreatment combined with high-solids enzymatic hydrolysis and fed-batch fermentation for succinic acid sustainable processed from sugarcane bagasse. BIORESOURCE TECHNOLOGY 2023; 369:128389. [PMID: 36435419 DOI: 10.1016/j.biortech.2022.128389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In order to sustainable process of bio-succinic acid (SA), response surface methodology (RSM) was applied to optimize liquid hot water pretreatment pretreatment of sugarcane bagasse (SCB), followed by high-solids enzymatic hydrolysis of pretreated residual that without washing, then the hydrolysates and partial pretreatment liquid were used as carbon sources for SA fermentation. Results showed that the highest sugars yield could be achieved at pretreatment conditions of temperature 186 °C, time 25 min and solid-to-liquid ratio 0.08; enzymatic digestion the pretreated residuals at 20 % (w/v) solid content via enzymes reconstruction and fed-batch strategy, the obtained sugars reached to 121 g/L; by controlling the nutrition and conditions of the fermentation process, most of the C5 and C6 sugars in the hydrolysate and pretreatment liquid were converted into SA with a conversion rate high to 280 mg/g SCB. This study can provide a novel clue for clean and efficient biorefining of chemicals.
Collapse
Affiliation(s)
- Chao Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; School of Food and Bioengineering, Changsha University of Science and Technology, Changsha 410005, China
| | - Yaru Xiong
- Hunan Provincial Center for Disease Control and prevention, Changsha 410005, China
| | - Jun Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kuntai Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Nanning 530007, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Wenbing Gong
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
7
|
Li J, Zeng Y, Wang WB, Wan QQ, Liu CG, den Haan R, van Zyl WH, Zhao XQ. Increasing extracellular cellulase activity of the recombinant Saccharomyces cerevisiae by engineering cell wall-related proteins for improved consolidated processing of carbon neutral lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 365:128132. [PMID: 36252752 DOI: 10.1016/j.biortech.2022.128132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bioproduction usingcarbon neutral feedstocks, especially lignocellulosic biomass, has attracted increasing attention due to concern over climate change and carbon reduction. Consolidated bioprocessing (CBP) of lignocellulosic biomass using recombinantyeast of Saccharomyces cerevisiaeis a promising strategy forlignocellulosic biorefinery. However, the economic viability is restricted by low enzyme secretion levels.For more efficient CBP, MIG1spsc01isolated from the industrial yeast which encodes the glucose repression regulator derivative was overexpressed. Increased extracellular cellobiohydrolase (CBH) activity was observed with unexpectedly decreased cell wall integrity. Further studies revealed that disruption ofCWP2, YGP1, andUTH1,which are functionally related toMIG1spsc01, also enhanced CBH secretion. Subsequently, improved cellulase production was achieved by simultaneous disruption ofYGP1and overexpression ofSED5, which remarkably increased extracellular CBH activity of 2.2-fold over the control strain. These results provide a novel strategy to improve the CBP yeast for bioconversion of carbon neutral biomass.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing-Qing Wan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Riaan den Haan
- Department of Biotechnology, University of the Western Cape, Bellville 7530, South Africa
| | - Willem H van Zyl
- Department of Microbiology, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Sun C, Wu W, Chang H, Wang R, Wang K, Zhong N, Zhang T, He X, Sun F, Zhang E, Ho SH. A tailored bifunctional carbon catalyst for efficient glycosidic bond fracture and selective hemicellulose fractionation. BIORESOURCE TECHNOLOGY 2022; 362:127861. [PMID: 36041679 DOI: 10.1016/j.biortech.2022.127861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
This study proposed a mild chlorination-sulfonation approach to synthesize magnetic carbon acid bearing with catalytic SO3H and adsorption Cl bifunctional sites on polydopamine coating. The catalysts exerted good textural structure and surface chemical properties (i.e., porosity, high specific surface area of >70 m2/g, high catalytic activity with 0.86-1.1 mmol/g of SO3H sites and 0.8%-1.9% of Cl sites, and abundant hydrophilic functional groups), rendering a maximum cellobiose adsorption efficiency of ∼40% within 6 h. Moreover, the catalysts had strong fracture characteristics on different α-/β-glycosidic bonds with 85.4%-93.9% of disaccharide conversion, while selectively fractionating hemicellulose from wheat straw with 64.3% of xylose yield and 93.4% of cellulose retention. Due to the stable interaction between parent polydopamine support with Fe core and functional groups, the catalysts efficiently recovered by simple magnetic separation had good reusability with minimal losses in catalytic activity.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenbo Wu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Rupeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nianbing Zhong
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xuefeng He
- Intelligent Fiber Sensing Technology of Chongqing Municipal Engineering Research Center of Institutions of Higher Education, Chongqing Key Laboratory of Fiber Optic Sensor and Photodetector, Chongqing University of Technology, Chongqing 400054, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007,China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|