1
|
Jalajamony HM, Aliyana AK, De S, Diallo F, Stylios G, Fernandez RE. Plasma-aided direct printing of silver nanoparticle conductive structures on polydimethylsiloxane (PDMS) surfaces. Sci Rep 2024; 14:31154. [PMID: 39730889 DOI: 10.1038/s41598-024-82439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
We report a controlled deposition process using atmospheric plasma to fabricate silver nanoparticle (AgNP) structures on polydimethylsiloxane (PDMS) substrates, essential for stretchable electronic circuits in wearable devices. This technique ensures precise printing of conductive structures using nanoparticles as precursors, while the relationship between crystallinity and plasma treatment is established through X-ray diffraction (XRD) analysis. The XRD studies provide insights into the effects of plasma parameters on the structural integrity and adhesion of AgNP patterns, enhancing our understanding of substrate stretchability and bendability. Our findings indicate that atmospheric plasma-aided printing not only avoids the need for high-temperature sintering but also significantly enhances the electrical and mechanical properties of the conductive structures, advancing the production of robust and adaptable electronic devices for wearable technology.
Collapse
Affiliation(s)
| | | | - Soumadeep De
- Department of Engineering, Norfolk State University, Norfolk, USA
| | - Fatima Diallo
- Department of Engineering, Norfolk State University, Norfolk, USA
| | - George Stylios
- Research Institute for Flexible Materials, Heriot Watt University, Galashiels, UK
| | | |
Collapse
|
2
|
Cieślak A, Krakos A, Kulbacka J, Detyna J. Overview of research on additive manufacturing of hydrogel-assisted lab-on-chip platforms for cell engineering applications in photodynamic therapy research. Mikrochim Acta 2024; 191:608. [PMID: 39292358 PMCID: PMC11410904 DOI: 10.1007/s00604-024-06683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Lab-on-chips supported by hydrogel matrices are excellent solutions for cell culture; thus, this literature review presents examples of scientific research in this area. Several works are presenting the properties of biocompatible hydrogels that mimic the cellular environment published recently. Hydrogels can also be treated as cell transporters or as a structural component of microfluidic devices. The rapidly growing scientific sector of hydrogel additive manufacturing is also described herein, with attention paid to the appropriate mechanical and biological properties of the inks used to extrude the material, specifically for biomedical purposes. The paper focuses on protocols employed for additive manufacturing, e.g., 3D printing parameters, calibration, ink preparation, crosslinking processes, etc. The authors also mention potential problems concerning manufacturing processes and offer example solutions. As the novel trend for hydrogels enriched with several biocompatible additives has recently risen, the article presents examples of the use of high-quality carbon nanotubes in hydrogel research enhancing biocompatibility, mechanical stability, and cell viability. Moving forward, the article points out the high applicability of the hydrogel-assisted microfluidic platforms used for cancer research, especially for photodynamic therapy (PDT). This innovative treatment strategy can be investigated directly on the chip, which was first proposed by Jędrych E. et al. in 2011. Summarizing, this literature review highlights recent developments in the additive manufacturing of microfluidic devices supported by hydrogels, toward reliable cell culture experiments with a view to PDT research. This paper gathers the current knowledge in these intriguing and fast-growing research paths.
Collapse
Affiliation(s)
- Adrianna Cieślak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland.
| | - Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, Wrocław, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
3
|
Wu YC, Yang JY, Hsu CH. Tape-assisted fabrication method for constructing PDMS membrane-containing culture devices with cyclic radial stretching stimulation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240284. [PMID: 39144495 PMCID: PMC11321861 DOI: 10.1098/rsos.240284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Advanced in vitro culture systems have emerged as alternatives to animal testing and traditional cell culture methods in biomedical research. Polydimethylsiloxane (PDMS) is frequently used in creating sophisticated culture devices owing to its elastomeric properties, which allow mechanical stretching to simulate physiological movements in cell experiments. We introduce a straightforward method that uses three types of commercial tape-generic, magic and masking-to fabricate PDMS membranes with microscale thicknesses (47.2 µm for generic, 58.1 µm for magic and 89.37 µm for masking) in these devices. These membranes are shaped as the bases of culture wells and can perform cyclic radial movements controlled via a vacuum system. In experiments with A549 cells under three mechanical stimulation conditions, we analysed transcriptional regulators responsive to external mechanical stimuli. Results indicated increased nuclear yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) activity in both confluent and densely packed cells under cyclically mechanical strains (Pearson's coefficient (PC) of 0.59 in confluent and 0.24 in dense cells) compared with static (PC = 0.47 in confluent and 0.13 in dense) and stretched conditions (PC = 0.55 in confluent and 0.20 in dense). This technique offers laboratories without microfabrication capabilities a viable option for exploring cellular behaviour under dynamic mechanical stimulation using PDMS membrane-equipped devices.
Collapse
Affiliation(s)
- Yun-Chen Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Jing-Yi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli35053, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu30013, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung40227, Taiwan
| |
Collapse
|
4
|
Sønstevold L, Koza P, Czerkies M, Andreassen E, McMahon P, Vereshchagina E. Prototyping in Polymethylpentene to Enable Oxygen-Permeable On-a-Chip Cell Culture and Organ-on-a-Chip Devices Suitable for Microscopy. MICROMACHINES 2024; 15:898. [PMID: 39064409 PMCID: PMC11278790 DOI: 10.3390/mi15070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
With the rapid development and commercial interest in the organ-on-a-chip (OoC) field, there is a need for materials addressing key experimental demands and enabling both prototyping and large-scale production. Here, we utilized the gas-permeable, thermoplastic material polymethylpentene (PMP). Three methods were tested to prototype transparent PMP films suitable for transmission light microscopy: hot-press molding, extrusion, and polishing of a commercial, hazy extruded film. The transparent films (thickness 20, 125, 133, 356, and 653 µm) were assembled as the cell-adhering layer in sealed culture chamber devices, to assess resulting oxygen concentration after 4 days of A549 cell culture (cancerous lung epithelial cells). Oxygen concentrations stabilized between 15.6% and 11.6%, where the thicker the film, the lower the oxygen concentration. Cell adherence, proliferation, and viability were comparable to glass for all PMP films (coated with poly-L-lysine), and transparency was adequate for transmission light microscopy of adherent cells. Hot-press molding was concluded as the preferred film prototyping method, due to excellent and reproducible film transparency, the possibility to easily vary film thickness, and the equipment being commonly available. The molecular orientation in the PMP films was characterized by IR dichroism. As expected, the extruded films showed clear orientation, but a novel result was that hot-press molding may also induce some orientation. It has been reported that orientation affects the permeability, but with the films in this study, we conclude that the orientation is not a critical factor. With the obtained results, we find it likely that OoC models with relevant in vivo oxygen concentrations may be facilitated by PMP. Combined with established large-scale production methods for thermoplastics, we foresee a useful role for PMP within the OoC field.
Collapse
Affiliation(s)
- Linda Sønstevold
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373 Oslo, Norway
| | - Paulina Koza
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B, 02-106 Warsaw, Poland
| | - Erik Andreassen
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway; (E.A.)
| | - Paul McMahon
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, 0373 Oslo, Norway; (E.A.)
| | - Elizaveta Vereshchagina
- Department of Smart Sensors and Microsystems, SINTEF Digital, Gaustadalléen 23C, 0373 Oslo, Norway
| |
Collapse
|
5
|
Cesaria M, Calcagnile M, Arima V, Bianco M, Alifano P, Cataldo R. Cyclic olefin copolymer (COC) as a promising biomaterial for affecting bacterial colonization: investigation on Vibrio campbellii. Int J Biol Macromol 2024; 271:132550. [PMID: 38782326 DOI: 10.1016/j.ijbiomac.2024.132550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Cyclic olefin copolymer (COC) has emerged as an interesting biocompatible material for Organ-on-a-Chip (OoC) devices monitoring growth, viability, and metabolism of cells. Despite ISO 10993 approval, systematic investigation of bacteria grown onto COC is a still not documented issue. This study discusses biofilm formations of the canonical wild type BB120 Vibrio campbellii strain on a native COC substrate and addresses the impact of the physico-chemical properties of COC compared to conventional hydroxyapatite (HA) and poly(dimethylsiloxane) (PDMS) surfaces. An interdisciplinary approach combining bacterial colony counting, light microscopy imaging and advanced digital image processing remarks interesting results. First, COC can reduce biomass adhesion with respect to common biopolymers, that is suitable for tuning biofilm formations in the biological and medical areas. Second, remarkably different biofilm morphology (dendritic complex patterns only in the case of COC) was observed among the examined substrates. Third, the observed biofilm morphogenesis was related to the interaction of COC with the conditioning layer of the planktonic biological medium. Fourth, Level Co-occurrence Matrix (CGLM)-based analysis enabled quantitative assessment of the biomass textural fractal development under different coverage conditions. All of this is of key practical relevance in searching innovative biocompatible materials for pharmaceutical, implantable and medical products.
Collapse
Affiliation(s)
- Maura Cesaria
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Monica Bianco
- CNR NANOTEC - Institute of Nanotechnology, c/o Campus Ecotekne, Lecce, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.BA.), University of Salento, c/o Campus Ecotekne-S.P. 6, 73100 Lecce, Italy
| | - Rosella Cataldo
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Campus Ecotekne, Via per Arnesano, 73100 Lecce, Italy
| |
Collapse
|
6
|
Clark JA, Robinson S, Espinoza EM, Bao D, Derr JB, Croft L, O'Mari O, Grover WH, Vullev VI. Poly(dimethylsiloxane) as a room-temperature solid solvent for photophysics and photochemistry. Phys Chem Chem Phys 2024; 26:8062-8076. [PMID: 38372740 DOI: 10.1039/d3cp05413f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medium viscosity strongly affects the dynamics of solvated species and can drastically alter the deactivation pathways of their excited states. This study demonstrates the utility of poly(dimethylsiloxane) (PDMS) as a room-temperature solid-state medium for optical spectroscopy. As a thermoset elastic polymer, PDMS is transparent in the near ultraviolet, visible, and near infrared spectral regions. It is easy to mould into any shape, forming surfaces with a pronounced smoothness. While PDMS is broadly used for the fabrication of microfluidic devices, it swells in organic solvents, presenting severe limitations for the utility of such devices for applications employing non-aqueous fluids. Nevertheless, this swelling is reversible, which proves immensely beneficial for loading samples into the PDMS solid matrix. Transferring molecular-rotor dyes (used for staining prokaryotic cells and amyloid proteins) from non-viscous solvents into PDMS induces orders-of-magnitude enhancement of their fluorescence quantum yield and excited-state lifetimes, providing mechanistic insights about their deactivation pathways. These findings demonstrate the unexplored potential of PDMS as a solid solvent for optical applications.
Collapse
Affiliation(s)
- John A Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Samantha Robinson
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Eli M Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Duoduo Bao
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - James B Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Luca Croft
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Omar O'Mari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - William H Grover
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| | - Valentine I Vullev
- Department of Bioengineering, University of California, Riverside, CA 92521, USA.
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Zoheir AE, Stolle C, Rabe KS. Microfluidics for adaptation of microorganisms to stress: design and application. Appl Microbiol Biotechnol 2024; 108:162. [PMID: 38252163 PMCID: PMC10803453 DOI: 10.1007/s00253-024-13011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Microfluidic systems have fundamentally transformed the realm of adaptive laboratory evolution (ALE) for microorganisms by offering unparalleled control over environmental conditions, thereby optimizing mutant generation and desired trait selection. This review summarizes the substantial influence of microfluidic technologies and their design paradigms on microbial adaptation, with a primary focus on leveraging spatial stressor concentration gradients to enhance microbial growth in challenging environments. Specifically, microfluidic platforms tailored for scaled-down ALE processes not only enable highly autonomous and precise setups but also incorporate novel functionalities. These capabilities encompass fostering the growth of biofilms alongside planktonic cells, refining selection gradient profiles, and simulating adaptation dynamics akin to natural habitats. The integration of these aspects enables shaping phenotypes under pressure, presenting an unprecedented avenue for developing robust, stress-resistant strains, a feat not easily attainable using conventional ALE setups. The versatility of these microfluidic systems is not limited to fundamental research but also offers promising applications in various areas of stress resistance. As microfluidic technologies continue to evolve and merge with cutting-edge methodologies, they possess the potential not only to redefine the landscape of microbial adaptation studies but also to expedite advancements in various biotechnological areas. KEY POINTS: • Microfluidics enable precise microbial adaptation in controlled gradients. • Microfluidic ALE offers insights into stress resistance and distinguishes between resistance and persistence. • Integration of adaptation-influencing factors in microfluidic setups facilitates efficient generation of stress-resistant strains.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Camilla Stolle
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
8
|
Gupta B, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Construction, Features and Regulatory Aspects of Organ-chip for Drug Delivery Applications: Advances and Prospective. Curr Pharm Des 2024; 30:1952-1965. [PMID: 38859792 DOI: 10.2174/0113816128305296240523112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Organ-on-chip is an innovative technique that emerged from tissue engineering and microfluidic technologies. Organ-on-chip devices (OoCs) are anticipated to provide efficient explanations for dealing with challenges in pharmaceutical advancement and individualized illness therapies. Organ-on-chip is an advanced method that can replicate human organs' physiological conditions and functions on a small chip. It possesses the capacity to greatly transform the drug development process by enabling the simulation of diseases and the testing of drugs. Effective integration of this advanced technical platform with common pharmaceutical and medical contexts is still a challenge. Microfluidic technology, a micro-level technique, has become a potent tool for biomedical engineering research. As a result, it has revolutionized disciplines, including physiological material interpreting, compound detection, cell-based assay, tissue engineering, biological diagnostics, and pharmaceutical identification. This article aims to offer an overview of newly developed organ-on-a-chip systems. It includes single-organ platforms, emphasizing the most researched organs, including the heart, liver, blood arteries, and lungs. Subsequently, it provides a concise overview of tumor-on-a-chip systems and emphasizes their use in evaluating anti-cancer medications.
Collapse
Affiliation(s)
- Babita Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
9
|
Mafla-Endara PM, Meklesh V, Beech JP, Ohlsson P, Pucetaite M, Hammer EC. Exposure to polystyrene nanoplastics reduces bacterial and fungal biomass in microfabricated soil models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166503. [PMID: 37633381 DOI: 10.1016/j.scitotenv.2023.166503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
Nanoplastics have been proven to induce toxicity in diverse organisms, yet their effect on soil microbes like bacteria and fungi remains largely unexplored. In this paper, we used micro-engineered soil models to investigate the effect of polystyrene (PS) nanospheres on Pseudomonas putida and Coprinopsis cinerea. Specifically, we explored the effects of increasing concentrations of 60 nm carboxylated bovine serum albumin (BSA) coated nanospheres (0, 0.5, 2, and 10 mg/L) on these bacterial and fungal model organisms respectively, over time. We found that both microorganisms could disperse through the PS solution, but long-distance dispersal was reduced by high concentrations. Microbial biomass decreased in all treatments, in which bacteria showed a linear dose response with the strongest effect at 10 mg/L concentration, and fungi showed a non-linear response with the strongest effect at 2 mg/L concentration. At the highest nanoplastics concentration, the first colonizing fungal hyphae adsorbed most of the PS nanospheres present in their vicinity, in a process that we termed the 'vacuum cleaner effect'. As a result, the toxicity effect of the original treatment on subsequently growing fungal hyphae was reduced to a growth level indistinguishable from the control. We did not find evidence that nanoplastics are able to penetrate bacterial nor fungal cell walls. Overall, our findings provide evidence that nanoplastics can cause a direct negative effect on soil microbes and highlight the need for further studies that can explain how the microbial stress response might affect soil functions.
Collapse
Affiliation(s)
- Paola M Mafla-Endara
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden.
| | - Viktoriia Meklesh
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Physical Chemistry Division, Department of Chemistry, Lund University, Lund, Sweden
| | - Jason P Beech
- Division of Solid State Physics, Department of Physics and NanoLund, Lund University, Lund, Sweden
| | - Pelle Ohlsson
- Department of Biomedical Engineering, Faculty of Engineering (LTH), Lund University, Lund, Sweden
| | | | - Edith C Hammer
- Centre for Environmental and Climate Science (CEC), Lund University, Lund, Sweden; Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Zhou C, Yang Y, Duan M, Chen C, Pi C, Zhang D, Liu X, Xie J. Biomimetic Fibers Based on Equidistant Micropillar Arrays Determines Chondrocyte Fate via Mechanoadaptability. Adv Healthc Mater 2023; 12:e2301685. [PMID: 37596884 DOI: 10.1002/adhm.202301685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 08/20/2023]
Abstract
It is recognized that the changes in the physical properties of extracellular matrix (ECM) result in fine-tuned cell responses including cell morphology, proliferation and differentiation. In this study, a novel patterned equidistant micropillar substrate based on polydimethylsiloxane (PDMS) is designed to mimic the collagen fiber-like network of the cartilage matrix. By changing the component of the curing agent to an oligomeric base, micropillar substrates with the same topology but different stiffnesses are obtained and it is found that chondrocytes seeded onto the soft micropillar substrate maintain their phenotype by gathering type II collagen and aggrecan more effectively than those seeded onto the stiff micropillar substrate. Moreover, chondrocytes sense and respond to micropillar substrates with different stiffnesses by altering the ECM-cytoskeleton-focal adhesion axis. Further, it is found that the soft substrate-preserved chondrocyte phenotype is dependent on the activation of Wnt/β-catenin signaling. Finally, it is indicated that the changes in osteoid-like region formation and cartilage phenotype loss in the stiffened sclerotic area of osteoarthritis cartilage to validate the changes triggered by micropillar substrates with different stiffnesses. This study provides the cell behavior changes that are more similar to those of real chondrocytes at tissue level during the transition from a normal state to a state of osteoarthritis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
11
|
Hu X, Abbasi R, Wachsmann-Hogiu S. Microfluidics on lensless, semiconductor optical image sensors: challenges and opportunities for democratization of biosensing at the micro-and nano-scale. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3977-4008. [PMID: 39635640 PMCID: PMC11501743 DOI: 10.1515/nanoph-2023-0301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/29/2023] [Indexed: 12/07/2024]
Abstract
Optical image sensors are 2D arrays of pixels that integrate semiconductor photodiodes and field effect transistors for efficient photon conversion and processing of generated electrons. With technological advancements and subsequent democratization of these sensors, opportunities for integration with microfluidics devices are currently explored. 2D pixel arrays of such optical image sensors can reach dimensions larger than one centimeter with a sub-micrometer pixel size, for high spatial resolution lensless imaging with large field of view, a feat that cannot be achieved with lens-based optical microscopy. Moreover, with advancements in fabrication processes, the field of microfluidics has evolved to develop microfluidic devices with an overall size below one centimeter and individual components of sub-micrometer size, such that they can now be implemented onto optical image sensors. The convergence of these fields is discussed in this article, where we review fundamental principles, opportunities, challenges, and outlook for integration, with focus on contact-mode imaging configuration. Most recent developments and applications of microfluidic lensless contact-based imaging to the field of biosensors, in particular those related to the potential for point of need applications, are also discussed.
Collapse
Affiliation(s)
- Xinyue Hu
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC H3A 0C3, Canada
| | | |
Collapse
|
12
|
Krakos A, Cieślak A, Hartel E, Łabowska MB, Kulbacka J, Detyna J. 3D bio-printed hydrogel inks promoting lung cancer cell growth in a lab-on-chip culturing platform. Mikrochim Acta 2023; 190:349. [PMID: 37572169 PMCID: PMC10423169 DOI: 10.1007/s00604-023-05931-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
The results of a lab-on-chip (LOC) platform fabrication equipped with a hydrogel matrix is reported. A 3D printing technique was used to provide a hybrid, "sandwiched" type structure, including two microfluidic substrates of different origins. Special attention was paid to achieving uniformly bio-printed microfluidic hydrogel layers of a unique composition. Six different hydrogel inks were proposed containing sodium alginate, agar, chitosan, gelatin, methylcellulose, deionized water, or 0.9% NaCl, varying in proportions. All of them exhibited appropriate mechanical properties showing, e.g., the value of elasticity modulus as similar to that of biological tissues, such as skin. Utilizing our biocompatible, entirely 3D bio-printed structure, for the first time, a multi-drug-resistant lung cancer cell line (H69AR) was cultured on-chip. Biological validation of the device was performed qualitatively and quantitatively utilizing LIVE/DEAD assays and Presto blue staining. Although all bio-inks exhibited acceptable cell viability, the best results were obtained for the hydrogel composition including 3% sodium alginate + 7% gelatin + 90% NaCl (0.9%), reaching approximately 127.2% after 24 h and 105.4% after 48 h compared to the control group (100%). Further research in this area will focus on the microfluidic culture of the chosen cancer cell line (H69AR) and the development of novel drug delivery strategies towards appropriate in vivo models for chemotherapy and polychemotherapy treatment.
Collapse
Affiliation(s)
- Agnieszka Krakos
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland.
| | - Adrianna Cieślak
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| | - Eliza Hartel
- Department of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, Janiszewskiego 11/17, 50-372, Wroclaw, Poland
| | - Magdalena Beata Łabowska
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Jerzy Detyna
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-371, Wroclaw, Poland
| |
Collapse
|
13
|
Xu S, Liu Y, Yang Y, Zhang K, Liang W, Xu Z, Wu Y, Luo J, Zhuang C, Cai X. Recent Progress and Perspectives on Neural Chip Platforms Integrating PDMS-Based Microfluidic Devices and Microelectrode Arrays. MICROMACHINES 2023; 14:709. [PMID: 37420942 PMCID: PMC10145465 DOI: 10.3390/mi14040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 07/09/2023]
Abstract
Recent years have witnessed a spurt of progress in the application of the encoding and decoding of neural activities to drug screening, diseases diagnosis, and brain-computer interactions. To overcome the constraints of the complexity of the brain and the ethical considerations of in vivo research, neural chip platforms integrating microfluidic devices and microelectrode arrays have been raised, which can not only customize growth paths for neurons in vitro but also monitor and modulate the specialized neural networks grown on chips. Therefore, this article reviews the developmental history of chip platforms integrating microfluidic devices and microelectrode arrays. First, we review the design and application of advanced microelectrode arrays and microfluidic devices. After, we introduce the fabrication process of neural chip platforms. Finally, we highlight the recent progress on this type of chip platform as a research tool in the field of brain science and neuroscience, focusing on neuropharmacology, neurological diseases, and simplified brain models. This is a detailed and comprehensive review of neural chip platforms. This work aims to fulfill the following three goals: (1) summarize the latest design patterns and fabrication schemes of such platforms, providing a reference for the development of other new platforms; (2) generalize several important applications of chip platforms in the field of neurology, which will attract the attention of scientists in the field; and (3) propose the developmental direction of neural chip platforms integrating microfluidic devices and microelectrode arrays.
Collapse
Affiliation(s)
- Shihong Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojie Xu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Rujing Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Borriello M, Tarabella G, D’Angelo P, Liboà A, Barra M, Vurro D, Lombari P, Coppola A, Mazzella E, Perna AF, Ingrosso D. Lab on a Chip Device for Diagnostic Evaluation and Management in Chronic Renal Disease: A Change Promoting Approach in the Patients' Follow Up. BIOSENSORS 2023; 13:373. [PMID: 36979584 PMCID: PMC10046018 DOI: 10.3390/bios13030373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Lab-on-a-chip (LOC) systems are miniaturized devices aimed to perform one or several analyses, normally carried out in a laboratory setting, on a single chip. LOC systems have a wide application range, including diagnosis and clinical biochemistry. In a clinical setting, LOC systems can be associated with the Point-of-Care Testing (POCT) definition. POCT circumvents several steps in central laboratory testing, including specimen transportation and processing, resulting in a faster turnaround time. Provider access to rapid test results allows for prompt medical decision making, which can lead to improved patient outcomes, operational efficiencies, patient satisfaction, and even cost savings. These features are particularly attractive for healthcare settings dealing with complicated patients, such as those affected by chronic kidney disease (CKD). CKD is a pathological condition characterized by progressive and irreversible structural or functional kidney impairment lasting for more than three months. The disease displays an unavoidable tendency to progress to End Stage Renal Disease (ESRD), thus requiring renal replacement therapy, usually dialysis, and transplant. Cardiovascular disease (CVD) is the major cause of death in CKD, with a cardiovascular risk ten times higher in these patients than the rate observed in healthy subjects. The gradual decline of the kidney leads to the accumulation of uremic solutes, with negative effect on organs, especially on the cardiovascular system. The possibility to monitor CKD patients by using non-invasive and low-cost approaches could give advantages both to the patient outcome and sanitary costs. Despite their numerous advantages, POCT application in CKD management is not very common, even if a number of devices aimed at monitoring the CKD have been demonstrated worldwide at the lab scale by basic studies (low Technology Readiness Level, TRL). The reasons are related to both technological and clinical aspects. In this review, the main technologies for the design of LOCs are reported, as well as the available POCT devices for CKD monitoring, with a special focus on the most recent reliable applications in this field. Moreover, the current challenges in design and applications of LOCs in the clinical setting are briefly discussed.
Collapse
Affiliation(s)
- Margherita Borriello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | | | | | - Aris Liboà
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Mario Barra
- CNR-SPIN, c/o Dipartimento di Fisica “Ettore Pancini”, P.le Tecchio, 80, 80125 Naples, Italy
| | - Davide Vurro
- IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy; (G.T.)
| | - Patrizia Lombari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Annapaola Coppola
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| | - Elvira Mazzella
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Alessandra F. Perna
- Department of Translational Medical Science, University of Campania “Luigi Vanvitelli”, via Via Pansini, Bldg 17, 80131 Naples, Italy
| | - Diego Ingrosso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, via L. De Crecchio, 7, 80138 Naples, Italy
| |
Collapse
|
15
|
Chen L, Guo X, Sun X, Zhang S, Wu J, Yu H, Zhang T, Cheng W, Shi Y, Pan L. Porous Structural Microfluidic Device for Biomedical Diagnosis: A Review. MICROMACHINES 2023; 14:547. [PMID: 36984956 PMCID: PMC10051279 DOI: 10.3390/mi14030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microfluidics has recently received more and more attention in applications such as biomedical, chemical and medicine. With the development of microelectronics technology as well as material science in recent years, microfluidic devices have made great progress. Porous structures as a discontinuous medium in which the special flow phenomena of fluids lead to their potential and special applications in microfluidics offer a unique way to develop completely new microfluidic chips. In this article, we firstly introduce the fabrication methods for porous structures of different materials. Then, the physical effects of microfluid flow in porous media and their related physical models are discussed. Finally, the state-of-the-art porous microfluidic chips and their applications in biomedicine are summarized, and we present the current problems and future directions in this field.
Collapse
Affiliation(s)
| | | | - Xidi Sun
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | | | | | | | | | | | - Yi Shi
- Correspondence: (X.S.); (Y.S.); (L.P.)
| | - Lijia Pan
- Correspondence: (X.S.); (Y.S.); (L.P.)
| |
Collapse
|
16
|
Morelli M, Kurek D, Ng CP, Queiroz K. Gut-on-a-Chip Models: Current and Future Perspectives for Host-Microbial Interactions Research. Biomedicines 2023; 11:biomedicines11020619. [PMID: 36831155 PMCID: PMC9953162 DOI: 10.3390/biomedicines11020619] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The intestine contains the largest microbial community in the human body, the gut microbiome. Increasing evidence suggests that it plays a crucial role in maintaining overall health. However, while many studies have found a correlation between certain diseases and changes in the microbiome, the impact of different microbial compositions on the gut and the mechanisms by which they contribute to disease are not well understood. Traditional pre-clinical models, such as cell culture or animal models, are limited in their ability to mimic the complexity of human physiology. New mechanistic models, such as organ-on-a-chip, are being developed to address this issue. These models provide a more accurate representation of human physiology and could help bridge the gap between clinical and pre-clinical studies. Gut-on-chip models allow researchers to better understand the underlying mechanisms of disease and the effect of different microbial compositions on the gut. They can help to move the field from correlation to causation and accelerate the development of new treatments for diseases associated with changes in the gut microbiome. This review will discuss current and future perspectives of gut-on-chip models to study host-microbial interactions.
Collapse
|
17
|
A Preliminary Experimental Study of Polydimethylsiloxane (PDMS)-To-PDMS Bonding Using Oxygen Plasma Treatment Incorporating Isopropyl Alcohol. Polymers (Basel) 2023; 15:polym15041006. [PMID: 36850290 PMCID: PMC9958961 DOI: 10.3390/polym15041006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Polydimethylsiloxane (PDMS) is a widely used material for soft lithography and microfabrication. PDMS exhibits some promising properties suitable for building microfluidic devices; however, bonding PDMS to PDMS and PDMS to other materials for multilayer structures in microfluidic devices is still challenging due to the hydrophobic nature of the surface of PDMS. This paper presents a simple yet effective method to increase the bonding strength for PDMS-to-PDMS using isopropyl alcohol (IPA). The experiment was carried out to evaluate the bonding strength for both the natural-cured and the heat-cured PDMS layer. The results show the effectiveness of our approach in terms of the improved irreversible bonding strength, up to 3.060 MPa, for the natural-cured PDMS and 1.373 MPa for the heat-cured PDMS, while the best bonding strength with the existing method in literature is 1.9 MPa. The work is preliminary because the underlying mechanism is only speculative and open for future research.
Collapse
|
18
|
Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:pharmaceutics15010280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
|
19
|
Nano-liter perfusion microfluidic device made entirely by two-photon polymerization for dynamic cell culture with easy cell recovery. Sci Rep 2023; 13:562. [PMID: 36631601 PMCID: PMC9834384 DOI: 10.1038/s41598-023-27660-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Polydimethylsiloxane (PDMS) has been the material of choice for microfluidic applications in cell biology for many years, with recent advances encompassing nano-scaffolds and surface modifications to enhance cell-surface interactions at nano-scale. However, PDMS has not previously been amenable to applications which require complex geometries in three dimensions for cell culture device fabrication in the absence of additional components. Further, PDMS microfluidic devices have limited capacity for cell retrieval following culture without severely compromising cell health. This study presents a designed and entirely 3D-printed microfluidic chip (8.8 mm × 8.2 mm × 3.6 mm) using two-photon polymerization (2PP). The 'nest' chip is composed of ten channels that deliver sub-microliter volume flowrates (to ~ 600 nL/min per channel) to 10 individual retrievable cell sample 'cradles' that interlock with the nest to create the microfluidic device. Computational fluid dynamics modelling predicted medium flow in the device, which was accurately validated by real-time microbead tracking. Functional capability of the device was assessed, and demonstrated the capability to deliver culture medium, dyes, and biological molecules to support cell growth, staining and cell phenotype changes, respectively. Therefore, 2PP 3D-printing provides the precision needed for nanoliter fluidic devices constructed from multiple interlocking parts for cell culture application.
Collapse
|
20
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
21
|
Dai X, Zhang S, Liu S, Qi H, Duan X, Han Z, Wang J. Functional Characterization and Phenotyping of Protoplasts on a Microfluidics-Based Flow Cytometry. BIOSENSORS 2022; 12:bios12090688. [PMID: 36140072 PMCID: PMC9496511 DOI: 10.3390/bios12090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as H2O2, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated. Second, a faster and stronger oxidative burst was observed in Petunia protoplasts isolated from white petals than in those isolated from purple petals, demonstrating the photoprotective role of anthocyanins. Third, using mutants with different endogenous auxin, we demonstrated the beneficial effect of auxin during the process of primary cell wall regeneration. Moreover, UV-B irradiation has a similar accelerating effect by increasing the intracellular auxin level, as shown by double fluorescence channels. In summary, our work has revealed previously underappreciated phenotypic variability within a protoplast population and demonstrated the advantages of a microfluidic flow cytometry for assessing the in vivo dynamics of plant metabolic and physiological indices at the single-cell level.
Collapse
Affiliation(s)
- Xingda Dai
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Siyuan Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| |
Collapse
|
22
|
Sala F, Ficorella C, Osellame R, Käs JA, Martínez Vázquez R. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement. BIOSENSORS 2022; 12:bios12080604. [PMID: 36004998 PMCID: PMC9405557 DOI: 10.3390/bios12080604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Understanding cell migration is a key step in unraveling many physiological phenomena and predicting several pathologies, such as cancer metastasis. In particular, confinement has been proven to be a key factor in the cellular migration strategy choice. As our insight in the field improves, new tools are needed in order to empower biologists’ analysis capabilities. In this framework, microfluidic devices have been used to engineer the mechanical and spatial stimuli and to investigate cellular migration response in a more controlled way. In this work, we will review the existing technologies employed in the realization of microfluidic cellular migration assays, namely the soft lithography of PDMS and hydrogels and femtosecond laser micromachining. We will give an overview of the state of the art of these devices, focusing on the different geometrical configurations that have been exploited to study specific aspects of cellular migration. Our scope is to highlight the advantages and possibilities given by each approach and to envisage the future developments in in vitro migration studies under spatial confinement in microfluidic devices.
Collapse
Affiliation(s)
- Federico Sala
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Carlotta Ficorella
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Josef A. Käs
- Peter Debye Institute for Soft Matter Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies, CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|