1
|
Zhigulin AS, Dron MY, Barygin OI, Tikhonov DB. The diversity of AMPA receptor inhibition mechanisms among amidine-containing compounds. Front Pharmacol 2024; 15:1467266. [PMID: 39444609 PMCID: PMC11496081 DOI: 10.3389/fphar.2024.1467266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Amidine-containing compounds are primarily known as antiprotozoal agents (pentamidine, diminazene, furamidine) or as serine protease inhibitors (nafamostat, sepimostat, camostat, gabexate). DAPI is widely recognized as a fluorescent DNA stain. Recently, it has been shown that these compounds also act as NMDA receptor inhibitors. In this study, we examined the activity of these compounds and analyzed the mechanisms of action in relation to another important class of ionotropic glutamate receptors-calcium-permeable AMPA receptors (CP-AMPARs) and calcium-impermeable AMPA receptors (CI-AMPARs) - using the whole-cell patch-clamp method on isolated male Wistar rat brain neurons. Gabexate and camostat were found to be inactive. Other compounds preferentially inhibited calcium-permeable AMPA receptors with IC50 values of 30-60 µM. DAPI and furamidine were also active against CI-AMPARs with IC50s of 50-60 μM, while others showed poor activity. All active compounds acted as channel blockers, which are able for permeating into the cytoplasm on both CP- and CI-AMPARs. Specifically, sepimostat showed trapping in the closed CP-AMPAR channel. Furamidine and DAPI demonstrated a voltage-independent action on CI-AMPARs, indicating binding to an additional superficial site. While the majority of compounds inhibited glutamate-activated steady-state currents as well as kainate-activated currents on CI-AMPARs, pentamidine significantly potentiated glutamate-induced steady-state responses. The potentiating effect of pentamidine resembles the action of the positive allosteric modulator cyclothiazide although the exact binding site remains unclear. Thus, this study, together with our previous research on NMDA receptors, provides a comprehensive overview of this novel group of ionotropic glutamate receptors inhibitors with a complex pharmacological profile, remarkable diversity of effects and mechanisms of action.
Collapse
Affiliation(s)
- Arseniy S. Zhigulin
- Laboratory for the Research of the Mechanisms of Regulation and Compensation of Nervous System Excitability Pathologies, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | | | | | | |
Collapse
|
2
|
Chen X, Shi W, Li S, Li H, Han J, Guo DY, Chen L, Pan Q. In situ synthesis of luminescent dsDNA-Cu NCs stained with a dsDNA-lighted fluorophore for rapid and stable detection of histamine in food. Int J Biol Macromol 2024; 277:134479. [PMID: 39102918 DOI: 10.1016/j.ijbiomac.2024.134479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Poisonous histamine is accumulated in stale meat and fermented foods. The rapid and stable detection of histamine is essential for food safety. Herein, a ratiometric fluorometric method for histamine detection was designed through in situ preparing double-stranded DNA‑copper nanoclusters (dsDNA-Cu NCs) stained with 4',6-diamidino-2-phenylindole (DAPI). dsDNA-Cu NCs with red emission were rapidly synthesized via mixing Cu2+, ascorbate and dsDNA at room temperature for 5 min. When DAPI was added during preparation, DAPI coordinated with the Cu element accompanied by the quenched red emission of dsDNA-Cu NCs, and DAPI bound to dsDNA together with the enhanced blue emission of DAPI. Upon adding DAPI and histamine simultaneously, the coordination of histamine with the Cu element further decreased the red emission of dsDNA-Cu NCs, and drove the movement of DAPI from the Cu element to dsDNA along with the enhanced blue emission of DAPI. Significantly, ratiometric fluorescence was insensitive to variations in instrument and environment, causing stable measurement. Meanwhile, in situ synthesis integrated probe preparation with analyte detection, reducing time consumption. Additionally, this method quantified histamine in the concentration range of 7-50 μM with a detection limit of 3.6 μM. It was applied to determining histamine in food with satisfactory accuracy and precision.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Wenhui Shi
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Shiyu Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Huihui Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China; State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Jingxuan Han
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen 361000, PR China.
| | - Linan Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
3
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-Specific Arrangement and Structure Determination of Minor Groove Binding Molecules in Self-Assembled Three-Dimensional DNA Crystals. J Am Chem Soc 2023; 145:26075-26085. [PMID: 37987645 PMCID: PMC10789492 DOI: 10.1021/jacs.3c07802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an antiparallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
Affiliation(s)
- Chad R Simmons
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Alex Buchberger
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Skylar J W Henry
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Alexandra Novacek
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nour Eddine Fahmi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
| | - Tara MacCulloch
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Nicholas Stephanopoulos
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University 1001 S. McAllister Ave., Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287,United States
| |
Collapse
|
4
|
Sardana D, Alam P, Yadav K, Clovis NS, Kumar P, Sen S. Unusual similarity of DNA solvation dynamics in high-salinity crowding with divalent cations of varying concentrations. Phys Chem Chem Phys 2023; 25:27744-27755. [PMID: 37814577 DOI: 10.1039/d3cp02606j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Double-stranded DNA bears the highest linear negative charge density (2e- per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts. Nevertheless, how these interactions' dynamics are affected in crowded hypersaline environments remains largely unexplored. Here, we employ steady-state and time-resolved fluorescence Stokes shifts (TRFSS) of a DNA-bound ligand (DAPI) to investigate the static and dynamic solvation properties of DNA in the presence of two divalent cations, magnesium (Mg2+), and calcium (Ca2+) at varying high to very-high concentrations of 0.15 M, 1 M and 2 M. We compare the results to those obtained in physiological concentrations (0.15 M) of monovalent Na+ ions. Combining data from fluorescence femtosecond optical gating (FOG) and time-correlated single photon counting (TCSPC) techniques, dynamic fluorescence Stokes shifts in DNA are analysed over a broad range of time-scales, from 100 fs to 10 ns. We find that while divalent cation crowding strongly influences the DNA stability and ligand binding affinity to DNA, the dynamics of DNA solvation remain remarkably similar across a broad range of five decades in time, even in a high-salinity crowded environment with divalent cations, as compared to the physiological concentration of the Na+ ion. Steady-state and time-resolved data of the DNA-groove-bound ligand are seemingly unaffected by ion-crowding in hypersaline solution, possibly due to ions being mostly displaced by the DNA-bound ligand. Furthermore, the dynamic coupling of cations with nearby water may possibly contribute to a net-neutral effect on the overall collective solvation dynamics in DNA, owing to the strong anti-correlation of their electrostatic interaction energy fluctuations. Such dynamic scenarios may persist within the cellular environment of marine life and other biological cells that experience hypersaline conditions.
Collapse
Affiliation(s)
- Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Pramod Kumar
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Simmons CR, Buchberger A, Henry SJW, Novacek A, Fahmi NE, MacCulloch T, Stephanopoulos N, Yan H. Site-specific arrangement and structure determination of minor groove binding molecules in self-assembled three-dimensional DNA crystals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561756. [PMID: 37873139 PMCID: PMC10592734 DOI: 10.1101/2023.10.10.561756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven elusive since its conception. Oligonucleotide frameworks provide an especially attractive route towards studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via x-ray crystallography, as a proof-of-principle towards scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an anti-parallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.
Collapse
|
6
|
Göktürk T, Sakallı Çetin E, Hökelek T, Pekel H, Şensoy Ö, Aksu EN, Güp R. Synthesis, Structural Investigations, DNA/BSA Interactions, Molecular Docking Studies, and Anticancer Activity of a New 1,4-Disubstituted 1,2,3-Triazole Derivative. ACS OMEGA 2023; 8:31839-31856. [PMID: 37692230 PMCID: PMC10483525 DOI: 10.1021/acsomega.3c03355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
We report herein a new 1,2,3-triazole derivative, namely, 4-((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-hydroxybenzaldehyde, which was synthesized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The structure of the compound was analyzed using Fourier transform infrared spectroscopy (FTIR), 1H NMR, 13C NMR, UV-vis, and elemental analyses. Moreover, X-ray crystallography studies demonstrated that the compound adapted a monoclinic crystal system with the P21/c space group. The dominant interactions formed in the crystal packing were found to be hydrogen bonding and van der Waals interactions according to Hirshfeld surface (HS) analysis. The volume of the crystal voids and the percentage of free spaces in the unit cell were calculated as 152.10 Å3 and 9.80%, respectively. The evaluation of energy frameworks showed that stabilization of the compound was dominated by dispersion energy contributions. Both in vitro and in silico investigations on the DNA/bovine serum albumin (BSA) binding activity of the compound showed that the CT-DNA binding activity of the compound was mediated via intercalation and BSA binding activity was mediated via both polar and hydrophobic interactions. The anticancer activity of the compound was also tested by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using human cell lines including MDA-MB-231, LNCaP, Caco-2, and HEK-293. The compound exhibited more cytotoxic activity than cisplatin and etoposide on Caco-2 cancer cell lines with an IC50 value of 16.63 ± 0.27 μM after 48 h. Annexin V suggests the induction of cell death by apoptosis. Compound 3 significantly increased the loss of mitochondrial membrane potential (MMP) levels in Caco-2 cells, and the reactive oxygen species (ROS) assay proved that compound 3 could induce apoptosis by ROS generation.
Collapse
Affiliation(s)
- Tolga Göktürk
- Department
of Chemistry, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| | - Esin Sakallı Çetin
- Department
of Medical Biology, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| | - Tuncer Hökelek
- Department
of Physics, Hacettepe University, 06800 Ankara, Türkiye
| | - Hanife Pekel
- Department
of Pharmacy Services, Vocational School of Health Services, Istanbul Medipol University, 34810 Istanbul, Türkiye
| | - Özge Şensoy
- Department
of Computer Engineering, Istanbul Medipol
University, 34000 Istanbul, Türkiye
| | - Ebru Nur Aksu
- Department
of Medical Biology, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| | - Ramazan Güp
- Department
of Chemistry, Muğla Sıtkı
Koçman University, 48000 Muğla, Türkiye
| |
Collapse
|
7
|
Khatun R, Modak R, Islam ASM, Moni D, Sepay N, Mukherjee R, Das G, Murmu N, Ali M. Small Molecule Interactions with Biomacromolecules: DNA Binding Interactions of a Manganese(III) Schiff Base Complex with Potential Anticancer Activities. ACS APPLIED BIO MATERIALS 2023; 6:3176-3188. [PMID: 37548990 DOI: 10.1021/acsabm.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A manganese(III) complex, [MnIII(L)(SCN)(enH)](NO3)·H2O (1•H2O) (H2L = 2-((E)-(2-((E)-2-hydroxy-3-methoxybenzylidene-amino)-ethyl-imino)methyl)-6-methoxyphenol), has been synthesized and characterized by single-crystal X-ray diffraction analysis. The interaction of 1•H2O with DNA was studied by monitoring the decrease in absorbance of the complex at λ = 324 nm with the increase in DNA concentration, providing an opportunity to determine the binding constant of the 1•H2O-ct-DNA complex as 5.63 × 103 M-1. Similarly, fluorescence titration was carried out by adding ct-DNA gradually and monitoring the increase in emission intensity at 453 nm on excitation at λex = 324 nm. A linear form of the Benesi-Hildebrand equation yields a binding constant of 4.40 × 103 M-1 at 25 °C, establishing the self-consistency of our results obtained from absorption and fluorescence titrations. The competitive displacement reactions of dyes like ethidium bromide, Hoechst, and DAPI (4',6-diamidine-2'-phenylindole dihydrochloride) from dye-ct-DNA conjugates by 1•H2O were analyzed, and the corresponding KSV values are 1.05 × 104, 1.25 × 104, and 1.35 × 104 M-1 and the Kapp values are 2.16 × 103, 8.34 × 103, and 9.0 × 103 M-1, from which it is difficult to infer the preference of groove binding over intercalation by these DNA trackers. However, the molecular docking experiments and viscosity measurement clearly indicate the preference for minor groove binding over intercalation, involving a change in Gibbs free energy of -8.56 kcal/mol. The 1•H2O complex was then evaluated for its anticancer potential in breast cancer MCF-7 cells, which severely abrogates the growth of the cells in both 2D and 3D mammospheres, indicating its promising application as an anticancer drug through a minor groove binding interaction with ct-DNA.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Ritwik Modak
- Department of Chemistry, Manipal Academy of Higher Education, Manipal Institute of Technology Bengaluru, Manipal 560064, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2B, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, West Bengal 700 017, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| |
Collapse
|
8
|
El-Sayed SM, Ahmed SA, Gulia K, Lenhard JR, Hassan AHE, Farahat AA. Small Molecules Incorporating Privileged Amidine Moiety as Potential Hits Combating Antibiotic-Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1040. [PMID: 37513951 PMCID: PMC10384254 DOI: 10.3390/ph16071040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The continuing need for the discovery of potent antibacterial agents against antibiotic-resistant pathogens is the driving force for many researchers to design and develop such agents. Herein, we report the design, synthesis, and biological evaluation of amidine derivatives as new antibacterial agents. Compound 13d was the most active in this study against a wide range of antibiotic-resistant, and susceptible, Gram-positive, and Gram-negative bacterial strains. Time-kill assay experiments indicated that compound 13d was an effective bactericidal compound against the tested organisms at the log-phase of bacterial growth. Docking simulations were performed to assess in silico its mode of action regarding UPPS, KARI, and DNA as potential bacterial targets. Results unveiled the importance of structural features of compound 13d in its biological activity including central thiophene ring equipped with left and right pyrrolo[2,3-b]pyridine and phenyl moieties and two terminal amidines cyclized into 4,5-dihydro-1H-imidazol-2-yl functionalities. Collectively, compound 13d represents a possible hit for future development of potent antibacterial agents.
Collapse
Affiliation(s)
- Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Samar A Ahmed
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Kanika Gulia
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
| | - Justin R Lenhard
- Department of Clinical and Administrative Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Abdelbasset A Farahat
- Master of Pharmaceutical Sciences Program, California Northstate University, 9700 W Taron Dr., Elk Grove, CA 95757, USA
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
9
|
Baral B, Nial PS, Subudhi U. Enhanced enzymatic activity and conformational stability of catalase in presence of tetrahedral DNA nanostructures: A biophysical and kinetic study. Int J Biol Macromol 2023; 242:124677. [PMID: 37141969 DOI: 10.1016/j.ijbiomac.2023.124677] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
The emergence of DNA nanotechnology has shown enormous potential in a vast array of applications, particularly in the medicinal and theranostics fields. Nevertheless, the knowledge of the compatibility between DNA nanostructures and cellular proteins is largely unknown. Herein, we report the biophysical interaction between proteins (circulatory protein bovine serum albumin, BSA, and the cellular enzyme bovine liver catalase, BLC) and tetrahedral DNA (tDNAs), which are well-known nanocarriers for therapeutics. Interestingly, the secondary conformation of BSA or BLC was unaltered in the presence of tDNAs which supports the biocompatible property of tDNA. In addition, thermodynamic studies showed that the binding of tDNAs with BLC has a stable non-covalent interaction via hydrogen bond and van der Waals contact, which is indicative of a spontaneous reaction. Furthermore, the catalytic activity of BLC was increased in the presence of tDNAs during 24 h of incubation. These findings indicate that the presence of tDNA nanostructures not only ensures a steady secondary conformation of proteins, but also stabilize the intracellular proteins like BLC. Surprisingly, our investigation discovered that tDNAs have no effect on albumin proteins, either by interfering or by adhering to the extracellular proteins. These findings will aid in the design of future DNA nanostructures for biomedical applications by increasing the knowledge on the biocompatible interaction of tDNAs with biomacromolecules.
Collapse
Affiliation(s)
- Bineeth Baral
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India; School of Biological Sciences, Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Chen R, Qiu K, Han G, Kundu BK, Ding G, Sun Y, Diao J. Quantifying cell viability through organelle ratiometric probing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538448. [PMID: 37163053 PMCID: PMC10168353 DOI: 10.1101/2023.04.26.538448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting cell viability is crucial in research involving the precancerous discovery of abnormal cells, the evaluation of treatments, and drug toxicity testing. Although conventional methods afford cumulative results regarding cell viability based on a great number of cells, they do not permit investigating cell viability at the single-cell level. In response, we rationally designed and synthesized a fluorescent probe, PCV-1, to visualize cell viability under the super-resolution technology of structured illumination microscopy. Given its sensitivity to mitochondrial membrane potential and affinity to DNA, PCV-1's ability to stain mitochondria and nucleoli was observed in live and dead cells, respectively. During cell injury induced by drug treatment, PCV-1's migration from mitochondria to the nucleolus was dynamically visualized at the single-cell level. By extension, harnessing PCV-1's excellent photostability and signal-to-noise ratio and by comparing the fluorescence intensity of the two organelles, mitochondria and nucleoli, we developed a powerful analytical assay named organelle ratiometric probing (ORP) that we applied to quantitatively analyze and efficiently assess the viability of individual cells, thereby enabling deeper insights into the potential mechanisms of cell death. In ORP analysis with PCV-1, we identified 0.3 as the cutoff point for assessing whether adding a given drug will cause apparent cytotoxicity, which greatly expands the probe's applicability. To the best of our knowledge, PCV-1 is the first probe to allow visualizing cell death and cell injury under super-resolution imaging, and our proposed analytical assay using it paves the way for quantifying cell viability at the single-cell level.
Collapse
|
11
|
Verma S, Patidar RK, Tiwari R, Velayutham R, Ranjan N. Fragment-Based Design of Small Molecules to Study DNA Minor Groove Recognition. J Phys Chem B 2022; 126:7310-7320. [DOI: 10.1021/acs.jpcb.2c04825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Smita Verma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Rajesh Kumar Patidar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
| | - Ratnesh Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
| | - Ravichandiran Velayutham
- National Institute of Pharmaceutical Education and Research, Kolkata, Maniktala Main Road, Kolkata 700054, India
| | - Nihar Ranjan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Lucknow 226002, Uttar Pradesh, India,
| |
Collapse
|
12
|
Nuclease resistance and protein recognition properties of DNA and hybrid PNA-DNA four-way junctions. Biophys Chem 2022; 289:106863. [DOI: 10.1016/j.bpc.2022.106863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
13
|
Interactions between a dsDNA Oligonucleotide and Imidazolium Chloride Ionic Liquids: Effect of Alkyl Chain Length, Part I. Molecules 2021; 27:molecules27010116. [PMID: 35011348 PMCID: PMC8746396 DOI: 10.3390/molecules27010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Ionic liquids (ILs) have become nearly ubiquitous solvents and their interactions with biomolecules has been a focus of study. Here, we used the fluorescence emission of DAPI, a groove binding fluorophore, coupled with molecular dynamics (MD) simulations to report on interactions between imidazolium chloride ([Imn,1]+) ionic liquids and a synthetic DNA oligonucleotide composed entirely of T/A bases (7(TA)) to elucidate the effects ILs on a model DNA duplex. Spectral shifts on the order of 500–1000 cm−1, spectral broadening (~1000 cm−1), and excitation and emission intensity ratio changes combine to give evidence of an increased DAPI environment heterogeneity on added IL. Fluorescence lifetimes for DAPI/IL solutions yielded two time constants 0.15 ns (~80% to 60% contribution) and 2.36–2.71 ns for IL up to 250 mM. With DNA, three time constants were required that varied with added IL (0.33–0.15 ns (1–58% contribution), ~1.7–1.0 ns (~5% contribution), and 3.8–3.6 ns (94–39% contribution)). MD radial distribution functions revealed that π-π stacking interactions between the imidazolium ring were dominant at lower IL concentration and that electrostatic and hydrophobic interactions become more prominent as IL concentration increased. Alkyl chain alignment with DNA and IL-IL interactions also varied with IL. Collectively, our data showed that, at low IL concentration, IL was primarily bound to the DNA minor groove and with increased IL concentration the phosphate regions and major groove binding sites were also important contributors to the complete set of IL-DNA duplex interactions.
Collapse
|
14
|
Phukan K, Sarma RR, Dash S, Devi R, Chowdhury D. Carbon dot based nucleus targeted fluorescence imaging and detection of nuclear hydrogen peroxide in living cells. NANOSCALE ADVANCES 2021; 4:138-149. [PMID: 36132963 PMCID: PMC9416979 DOI: 10.1039/d1na00617g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/11/2023]
Abstract
Investigation of the intracellular generation of H2O2, one of the most important reactive oxygen species (ROS), is crucial for preventing various diseases since it is closely linked with different physiological and complex cell signaling pathways. Despite the development of various fluorescent probes, the majority of the fluorescent probes cannot move across the nuclear membrane. However, detection of the nuclear level of H2O2 is very important since it can directly cause oxidative DNA damage which ultimately leads to various diseases. Therefore, in this study, p-phenylenediamine based carbon quantum dots (B-PPD CDs) have been synthesized and integrated with 4-formylbenzeneboronic acid as a doping agent for the detection of H2O2. The detection mechanism showed that, upon exposure to H2O2, the fluorescence of the B-PPD CDs was immediately quenched. Further investigation has been done in the in vitro RAW 264.7 cell line by both exogenous and endogenous exposure of H2O2 to demonstrate the feasibility of the method. It is shown successfully that the exogenous presence and endogenous generation of H2O2 in RAW 264.7 cells can be detected using B-PPD CDs. The limit of detection (LOD) was determined to be 0.242 μM. The development of such imaging probes using carbon quantum dots will lead to live-cell imaging as well as ROS detection.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material Nanochemistry Laboratory, Physical Sciences Division India +91 3612270095
| | - Ritwick Ranjan Sarma
- Material Nanochemistry Laboratory, Physical Sciences Division India +91 3612270095
| | - Somarani Dash
- Life Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati-781035 India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati-781035 India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division India +91 3612270095
| |
Collapse
|
15
|
Neupane R, Malla S, Abou-Dahech MS, Balaji S, Kumari S, Waiker DK, Moorthy NSHN, Trivedi P, Ashby CR, Karthikeyan C, Tiwari AK. Antiproliferative Efficacy of N-(3-chloro-4-fluorophenyl)-6,7-dimethoxyquinazolin-4-amine, DW-8, in Colon Cancer Cells Is Mediated by Intrinsic Apoptosis. Molecules 2021; 26:molecules26154417. [PMID: 34361570 PMCID: PMC8347809 DOI: 10.3390/molecules26154417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
A novel series of 4-anilinoquinazoline analogues, DW (1–10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.
Collapse
Affiliation(s)
- Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA; (R.N.); (S.M.); (M.S.A.-D.); (S.B.); (S.K.)
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA; (R.N.); (S.M.); (M.S.A.-D.); (S.B.); (S.K.)
| | - Mariam Sami Abou-Dahech
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA; (R.N.); (S.M.); (M.S.A.-D.); (S.B.); (S.K.)
| | - Swapnaa Balaji
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA; (R.N.); (S.M.); (M.S.A.-D.); (S.B.); (S.K.)
| | - Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA; (R.N.); (S.M.); (M.S.A.-D.); (S.B.); (S.K.)
| | - Digambar Kumar Waiker
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, India;
| | | | - Piyush Trivedi
- Center of Innovation and Translational Research, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Pune 411030, India;
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY 11439, USA;
| | - Chandrabose Karthikeyan
- Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 484887, India;
- Correspondence: (C.K.); (A.K.T.); Tel.: +91-7587521152 (C.K.); +1-419-383-1913 (A.K.T.); Fax: +1-419-383-1909 (A.K.T.)
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA; (R.N.); (S.M.); (M.S.A.-D.); (S.B.); (S.K.)
- Department Centre of Medical and Bio-allied Health Sciences Research (CMBHSR), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Health Science Campus, 3000 Arlington Ave, Toledo, OH 43614, USA
- Correspondence: (C.K.); (A.K.T.); Tel.: +91-7587521152 (C.K.); +1-419-383-1913 (A.K.T.); Fax: +1-419-383-1909 (A.K.T.)
| |
Collapse
|
16
|
Cárdenas G, Nogueira JJ. Stacking Effects on Anthraquinone/DNA Charge-Transfer Electronically Excited States. Molecules 2020; 25:E5927. [PMID: 33333751 PMCID: PMC7765225 DOI: 10.3390/molecules25245927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
The design of more efficient photosensitizers is a matter of great importance in the field of cancer treatment by means of photodynamic therapy. One of the main processes involved in the activation of apoptosis in cancer cells is the oxidative stress on DNA once a photosensitizer is excited by light. As a consequence, it is very relevant to investigate in detail the binding modes of the chromophore with DNA, and the nature of the electronically excited states that participate in the induction of DNA damage, for example, charge-transfer states. In this work, we investigate the electronic structure of the anthraquinone photosensitizer intercalated into a double-stranded poly(dG-dC) decamer model of DNA. First, the different geometric configurations are analyzed by means of classical molecular dynamics simulations. Then, the excited states for the most relevant poses of anthraquinone inside the binding pocket are computed by an electrostatic-embedding quantum mechanics/molecular mechanics approach, where anthraquinone and one of the nearby guanine residues are described quantum mechanically to take into account intermolecular charge-transfer states. The excited states are characterized as monomer, exciton, excimer, and charge-transfer states based on the analysis of the transition density matrix, and each of these contributions to the total density of states and absorption spectrum is discussed in terms of the stacking interactions. These results are relevant as they represent the footing for future studies on the reactivity of anthraquinone derivatives with DNA and give insights on possible geometrical configurations that potentially favor the oxidative stress of DNA.
Collapse
Affiliation(s)
- Gustavo Cárdenas
- Chemistry Department, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain;
| | - Juan J. Nogueira
- Chemistry Department, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain;
- IADCHEM, Institute for Advanced Research in Chemistry, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
17
|
Belanger MC, Zhuang M, Ball AG, Richey KH, DeRosa CA, Fraser CL, Pompano RR. Labelling primary immune cells using bright blue fluorescent nanoparticles. Biomater Sci 2020; 8:1897-1909. [PMID: 32026891 DOI: 10.1039/c9bm01572h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tracking cell movements is an important aspect of many biological studies. Reagents for cell tracking must not alter the biological state of the cell and must be bright enough to be visualized above background autofluorescence, a particular concern when imaging in tissue. Currently there are few reagents compatible with standard UV excitation filter sets (e.g. DAPI) that fulfill those requirements, despite the development of many dyes optimized for violet excitation (405 nm). A family of boron-based fluorescent dyes, difluoroboron β-diketonates, has previously served as bio-imaging reagents with UV excitation, offering high quantum yields and wide excitation peaks. In this study, we investigated the use of one such dye as a potential cell tracking reagent. A library of difluoroboron dibenzoylmethane (BF2dbm) conjugates were synthesized with biocompatible polymers including: poly(l-lactic acid) (PLLA), poly(ε-caprolactone) (PCL), and block copolymers with poly(ethylene glycol) (PEG). Dye-polymer conjugates were fabricated into nanoparticles, which were stable for a week at 37 °C in water and cell culture media, but quickly aggregated in saline. Nanoparticles were used to label primary splenocytes; phagocytic cell types were more effectively labelled. Labelling with nanoparticles did not affect cellular viability, nor basic immune responses. Labelled cells were more easily distinguished when imaged on a live tissue background than those labelled with a commercially available UV-excitable cytoplasmic labelling reagent. The high efficiency in terms of both fluorescence and cellular labelling may allow these nanoparticles to act as a short-term cell labelling strategy while wide excitation peaks offer utility across imaging and analysis platforms.
Collapse
Affiliation(s)
- Maura C Belanger
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA. and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Meng Zhuang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Alexander G Ball
- Department of Microbiology Cancer Biology and Immunology, University of Virginia, Charlottesville, Virginia 22903, USA and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Kristen H Richey
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Christopher A DeRosa
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Cassandra L Fraser
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA.
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA. and Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
18
|
Novel diindoloazepinone derivatives as DNA minor groove binding agents with selective topoisomerase I inhibition: Design, synthesis, biological evaluation and docking studies. Bioorg Chem 2020; 99:103629. [DOI: 10.1016/j.bioorg.2020.103629] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
|
19
|
Bonzano C, Canciani B, Olivari S, Papadia M, Bagnis A, Cutolo CA, Bonzano E, Pagani P, Cancedda R, Traverso CE. CFSE: A New Method for Identifying Human Limbal Stem Cells and Following Their Migration in Human Cornea. In Vivo 2020; 33:1851-1855. [PMID: 31662512 DOI: 10.21873/invivo.11678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 11/10/2022]
Abstract
AIM To develop a method capable of identifying human corneal limbal stem cells (LSCs) and follow their proliferation and migration in the epithelium. MATERIALS AND METHODS Ten fresh matched pairs of cadaveric normal human corneas were obtained from donors. Carboxyfluorescein diacetate succinimidyl ester (CFSE) was used to target LSCs. The distribution of CFSE-positive cell clusters was analyzed by fluorescence microscopy by counterstaining with 4',6-diamidino-2-phenylindole (DAPI). Fluorescence was digitally recorded for seven days, and the rate of cell movement was determined. RESULTS CFSE-labeled cells were tracked in corneas. Analysis of time sequences revealed that they moved centripetally. Daily average CFSE-labeled LSC movement was 0.073±0.01 cm (±SD). CONCLUSION CFSE allowed us to identify LSCs and to track their centripetal migration from the limbal basal layer to the anterior ocular surface. This experimental system appears to be a valuable tool for further studies on corneal epithelial cell migration and proliferation.
Collapse
Affiliation(s)
- Chiara Bonzano
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Barbara Canciani
- Laboratory of Regenerative Medicine, Department of Oncology, Biology and Genetics, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Sara Olivari
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | | | - Alessandro Bagnis
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Carlo Alberto Cutolo
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Elisabetta Bonzano
- School of Experimental Medicine, University of Pavia and Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Paola Pagani
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Ranieri Cancedda
- Laboratory of Regenerative Medicine, Department of Oncology, Biology and Genetics, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Carlo Enrico Traverso
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
20
|
Liu Y, Chen Z. New role of oil red O in detection of double stranded DNA. Talanta 2019; 204:337-343. [PMID: 31357302 DOI: 10.1016/j.talanta.2019.05.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 11/26/2022]
Abstract
Oil red O (ORO) is a commonly used dye for the tissue staining, which recognizes nitroglycerin and cholesterol esters. In this paper, we describe an unexpected finding that ORO can be fluorescently lighted up upon meeting dsDNA with emission peak localized at 600 nm, although it almost does not fluoresce by itself. This property triggered us to test its potential as a dsDNA fluorescence probe. The interaction of dsDNA and ORO was demonstrated by spectral and thermodynamic analysis and several other means. The fluorescence of ORO was gradually increased following the addition of dsDNA, which showed linear response toward dsDNA in the concentration range from 0.02 to 0.64 mg/mL with a detection limit of 0.69 μg/mL. Moreover, ORO showed excellent selectivity when testing with a variety of dsDNA-like biomolecules. Besides, ORO resisted photobleaching and worked very well under biological background. Altogether, we propose here a new nucleic acid lighting up fluorescence probe for double stranded dsDNA detection.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of SupraMecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, PR China
| | - Zhijun Chen
- State Key Laboratory of SupraMecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, 130012, Changchun, PR China.
| |
Collapse
|
21
|
Sardana D, Yadav K, Shweta H, Clovis NS, Alam P, Sen S. Origin of Slow Solvation Dynamics in DNA: DAPI in Minor Groove of Dickerson-Drew DNA. J Phys Chem B 2019; 123:10202-10216. [PMID: 31589442 DOI: 10.1021/acs.jpcb.9b09275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The measurement and understanding of collective solvation dynamics in DNA have vital biological implications, as protein and ligand binding to DNA can be directly controlled by complex electrostatic interactions of anionic DNA and surrounding dipolar water, and ions. Time-resolved fluorescence Stokes shift (TRFSS) experiments revealed anomalously slow solvation dynamics in DNA much beyond 100 ps that follow either power-law or slow multiexponential decay over several nanoseconds. The origin of such dispersed dynamics remains difficult to understand. Here we compare results of TRFSS experiments to molecular dynamics (MD) simulations of well-known 4',6-diamidino-2-phenylindole (DAPI)/Dickerson-Drew DNA complex over five decades of time from 100 fs to 10 ns to understand the origin of such dispersed dynamics. We show that the solvation time-correlation function (TCF) calculated from 200 ns simulation trajectory (total 800 ns) captures most features of slow dynamics as measured in TRFSS experiments. Decomposition of TCF into individual components unravels that slow dynamics originating from dynamically coupled DNA-water motion, although contribution from coupled water-Na+ motion is non-negligible. The analysis of residence time of water molecules around the probe (DAPI) reveals broad distribution from ∼6 ps to ∼3.5 ns: Several (49 nos.) water molecules show residences time greater than 500 ps, of which at least 14 water molecules show residence times of more than 1 ns in the first solvation shell of DAPI. Most of these slow water molecules are found to occupy two hydration sites in the minor groove near DAPI binding site. The residence time of Na+, however, is found to vary within ∼17-120 ps. Remarkably, we find that freezing the DNA fluctuations in simulation eliminates slower dynamics beyond ∼100 ps, where water and Na+ dynamics become faster, although strong anticorrelation exists between them. These results indicate that primary origin of slow dynamics lies within the slow fluctuations of DNA parts that couple with nearby slow water and ions to control the dispersed collective solvation dynamics in DNA minor groove.
Collapse
Affiliation(s)
- Deepika Sardana
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Ndege Simisi Clovis
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Parvez Alam
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences , Jawaharlal Nehru University , New Delhi 110067 , India
| |
Collapse
|
22
|
Sánchez MI, Rama G, Calo-Lapido R, Ucar K, Lincoln P, López MV, Melle-Franco M, Mascareñas JL, Vázquez ME. Canonical DNA minor groove insertion of bisbenzamidine-Ru(ii) complexes with chiral selectivity. Chem Sci 2019; 10:8668-8674. [PMID: 31803441 PMCID: PMC6849638 DOI: 10.1039/c9sc03053k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/30/2019] [Indexed: 11/24/2022] Open
Abstract
We report the first Ru(ii) coordination compounds that interact with DNA through a canonical minor groove insertion mode and with selectivity for A/T rich sites. This was made possible by integrating a bis-benzamidine minor groove DNA-binding agent with a ruthenium(ii) complex. Importantly, one of the enantiomers (Δ-[Ru(bpy)2 b4bpy]2+, Δ-4Ru) shows a considerably higher DNA affinity than the parent organic ligand and the other enantiomer, particularly for the AATT sequence, while the other enantiomer preferentially targets long AAATTT sites with overall lower affinity. Finally, we demonstrate that the photophysical properties of these new binders can be exploited for DNA cleavage using visible light.
Collapse
Affiliation(s)
- Mateo I Sánchez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Gustavo Rama
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Inorgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Renata Calo-Lapido
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - Kübra Ucar
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE 412 96 Gothenburg , Sweden
| | - Per Lincoln
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , SE 412 96 Gothenburg , Sweden
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Inorgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Manuel Melle-Franco
- Ciceco - Aveiro Institute of Materials , University of Aveiro Campus Universitario de Santiago , Aveiro , 3810-193 , Portugal
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) , Departamento de Química Orgánica , Universidade de Santiago de Compostela , 15782 Santiago de Compostela , Spain .
| |
Collapse
|
23
|
Phadte AA, Banerjee S, Mate NA, Banerjee A. Spectroscopic and viscometric determination of DNA-binding modes of some bioactive dibenzodioxins and phenazines. Biochem Biophys Rep 2019; 18:100629. [PMID: 30993216 PMCID: PMC6449707 DOI: 10.1016/j.bbrep.2019.100629] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022] Open
Abstract
Push-pull dibenzodioxins and phenazines having ‘anthracene-like’ planar structures and good charge transfer character had been previously synthesised in our laboratory. The dibenzodioxins had earlier proven their anti-proliferative nature against HeLa tumor cell lines. Since phenazines are structural analogues of the former, these molecules were evaluated in course of the current study for their cytotoxic action against HeLa cell lines and they exhibited strong anti-tumor activity. This behavior could be related to their good DNA binding property. The DNA binding modes of molecules 1–4 (Fig. 1) were evaluated using various experimental techniques and they interacted with DNA in a non-covalently by both intercalative as well as groove binding mechanisms. Molecule 1 follows predominantly intercalative binding mode whereas molecules 2 and 3 have nearly equal and opposite preferences for both groove binding and intercalative modes. For molecule 4, groove binding is preferred mode of binding to DNA. A rationale for such differential binding behaviour is provided based on the subtle structural differences in our synthesised dibenzodioxins and phenazines. Elucidation of the mode of a molecule-DNA-binding event is relevant for understanding the mechanism of action of these molecules and will help promote further research into designing better DNA targeting small molecules. DNA binding modes of push-pull planar dibenzodioxins and phenazines were elucidated. DNA binding mechanistic details were obtained by spectroscopic and viscometric techniques. The molecular shape and geometry has a bearing on its choice of binding mode.
Collapse
Affiliation(s)
- Apeksha Ashok Phadte
- Department of Chemistry, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Subhadeep Banerjee
- Department of Chemistry, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Nayan Anand Mate
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa, 403726, India
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa, 403726, India
| |
Collapse
|
24
|
Kimura E, Kikuta E. Macrocyclic Zinc(II) Complexes for Selective Recognition of Nucleobases in Single- and Double-Stranded Polynucleotides. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The model study of zinc enzyme by Zn2+–cyclen complexes (cyclen = 1, 4, 7, 10-tetraazacyclododecane) disclosed the intrinsic properties of zinc(II) as having strong anion affinities and yet the resulting Zn2+–anion bonds have a labile nature. The basic understanding has evolved into novel selective nucleobase recognition by the Zn2+–cyclen complexes. The Zn2+–aromatic pendant cyclen complexes selectively and effectively bind to thymine T (or uracil U) in single- and double-stranded DNA (or RNA). The Zn2+ complexes work like molecular zippers to break A–T pairs in double-stranded DNA, as proven by various physicochemical and DNA footprinting measurements. Moreover, these Zn2+–complexes affect relevant biochemical and ultimately biological properties such as inhibition of a transcriptional factor and antimicrobial activities.
Collapse
Affiliation(s)
- Eiichi Kimura
- Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | - Emiko Kikuta
- Department of Medicinal Chemistry, Faculty of Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
25
|
Carter EK, Laughlin-Toth S, Dodd T, Wilson WD, Ivanov I. Small molecule binders recognize DNA microstructural variations via an induced fit mechanism. Phys Chem Chem Phys 2019; 21:1841-1851. [PMID: 30629058 PMCID: PMC6497476 DOI: 10.1039/c8cp05537h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Regulation of gene-expression by specific targeting of protein-nucleic acid interactions has been a long-standing goal in medicinal chemistry. Transcription factors are considered "undruggable" because they lack binding sites well suited for binding small-molecules. In order to overcome this obstacle, we are interested in designing small molecules that bind to the corresponding promoter sequences and either prevent or modulate transcription factor association via an allosteric mechanism. To achieve this, we must design small molecules that are both sequence-specific and able to target G/C base pair sites. A thorough understanding of the relationship between binding affinity and the structural aspects of the small molecule-DNA complex would greatly aid in rational design of such compounds. Here we present a comprehensive analysis of sequence-specific DNA association of a synthetic minor groove binder using long timescale molecular dynamics. We show how binding selectivity arises from a combination of structural factors. Our results provide a framework for the rational design and optimization of synthetic small molecules in order to improve site-specific targeting of DNA for therapeutic uses in the design of selective DNA binders targeting transcription regulation.
Collapse
Affiliation(s)
- E. Kathleen Carter
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - Sarah Laughlin-Toth
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Dodd
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - W. David Wilson
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| | - Ivaylo Ivanov
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA. ;
| |
Collapse
|
26
|
|
27
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
28
|
Gokduman K, Bestepe F, Li L, Yarmush ML, Usta OB. Dose-, treatment- and time-dependent toxicity of superparamagnetic iron oxide nanoparticles on primary rat hepatocytes. Nanomedicine (Lond) 2018; 13:1267-1284. [PMID: 29949471 PMCID: PMC6219434 DOI: 10.2217/nnm-2017-0387] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
AIM As a first study in literature, to investigate concentration-dependent (0-400 μg/ml) and exposure-dependent (single dosing vs cumulative dosing) effects of superparamagnetic iron oxide nanoparticles (d = 10 nm) on primary rat hepatocytes in a time-dependent manner. MATERIALS & METHODS Sandwich-cultured hepatocyte model was used to evaluate viability, hepatocyte specific functions and reactive oxygen species level. RESULTS In terms of all parameters, generally statistically more significant effects were observed in a concentration- and time-dependent manner. In terms of hepatocyte-specific functions, cumulative dosing caused significantly (p < 0.05) more deleterious effects at 48th hour. CONCLUSION A combination of various biomarkers should be employed for the evaluation of the effect of superparamagnetic iron oxide nanoparticles on liver, and each biomarker should be analyzed in a time- and exposure-dependent manner.
Collapse
Affiliation(s)
- Kurtulus Gokduman
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| | - Furkan Bestepe
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- School of Medicine, Ankara University, Ankara 06100, Turkey
| | - Lei Li
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- Key Laboratory of Cryogenics, Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Martin L Yarmush
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers State University, Piscataway, NJ 08854, USA
| | - O Berk Usta
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospitals, Boston, MA 02114, USA
| |
Collapse
|
29
|
Zehra S, Shavez Khan M, Ahmad I, Arjmand F. New tailored substituted benzothiazole Schiff base Cu(II)/Zn(II) antitumor drug entities: effect of substituents on DNA binding profile, antimicrobial and cytotoxic activity. J Biomol Struct Dyn 2018; 37:1863-1879. [DOI: 10.1080/07391102.2018.1467794] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University , Aligarh
202002, Uttar Pradesh, India
| | - Mohammad Shavez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University , Aligarh
202002, Uttar Pradesh, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University , Aligarh
202002, Uttar Pradesh, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University , Aligarh
202002, Uttar Pradesh, India
| |
Collapse
|
30
|
Holmgaard List N, Knoops J, Rubio-Magnieto J, Idé J, Beljonne D, Norman P, Surin M, Linares M. Origin of DNA-Induced Circular Dichroism in a Minor-Groove Binder. J Am Chem Soc 2017; 139:14947-14953. [DOI: 10.1021/jacs.7b05994] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nanna Holmgaard List
- School of Biotechnology, Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, Roslagstullsbacken 15, 114 21 Stockholm, Sweden
| | - Jérémie Knoops
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Jenifer Rubio-Magnieto
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Julien Idé
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - David Beljonne
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Patrick Norman
- School of Biotechnology, Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, Roslagstullsbacken 15, 114 21 Stockholm, Sweden
| | - Mathieu Surin
- Laboratory
for Chemistry of Novel Materials, Center for Innovation and Research
in Materials and Polymers, University of Mons−UMONS, Place
du Parc, 20, 7000 Mons, Belgium
| | - Mathieu Linares
- School of Biotechnology, Division of Theoretical Chemistry & Biology, KTH Royal Institute of Technology, Roslagstullsbacken 15, 114 21 Stockholm, Sweden
- Swedish
e-Science Research Centre, KTH Royal Institute of Technology, 104 50 Stockholm, Sweden
| |
Collapse
|
31
|
Shweta H, Singh MK, Yadav K, Verma SD, Pal N, Sen S. Effect of T·T Mismatch on DNA Dynamics Probed by Minor Groove Binders: Comparison of Dynamic Stokes Shifts of Hoechst and DAPI. J Phys Chem B 2017; 121:10735-10748. [PMID: 28922599 DOI: 10.1021/acs.jpcb.7b06937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recognition of DNA base mismatches and their subsequent repair by enzymes is vital for genomic stability. However, it is difficult to comprehend such a process in which enzymes sense and repair different types of mismatches with different ability. It has been suggested that the differential structural changes of mismatched bases act as cues to the repair enzymes, although the effect of such DNA structural changes on surrounding water and ion dynamics is inevitable due to strong electrostatic coupling among them. Thus, collective dynamics of DNA, water, and ions near the mismatch site is believed to be important for mismatch recognition and repair mechanism. Here we show that introduction of a T·T mismatch in the minor groove of DNA induces dispersed (collective) power-law solvation dynamics (of exponent ∼0.24), measured by monitoring the time-resolved fluorescence Stokes shifts (TRFSS) of two popular minor groove binders (Hoechst 33258 and DAPI) over five decades of time from 100 fs to 10 ns. The same ligands however sense different dynamics (power-law of exponent ∼0.15 or power-law multiplied with biexponential relaxation) in the minor groove of normal-DNA. The similar fluorescence anisotropy decays of ligands measured in normal- and T·T-DNA suggest that Stokes shift dynamics and their changes in T·T-DNA purely originate from the solvation process, and not from any internal rotational motion of probe-ligands. The dispersed power-law solvation dynamics seen in T·T-DNA indicate that the ligands do not sense any particular (exponential) relaxation specific to T·T wobbling and/or other conformational changes. This could be the reason why T·T mismatch is recognized by enzymes with lower efficiency compared to purine-pyrimidine and purine-purine mismatches.
Collapse
Affiliation(s)
- Him Shweta
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Kavita Yadav
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Sachin Dev Verma
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory, School of Physical Sciences, Jawaharlal Nehru University , New Delhi 110067, India
| |
Collapse
|
32
|
Sbirkova-Dimitrova HI, Shivachev B. Crystal structure of the DNA sequence d(CGTGAATTCACG) 2 with DAPI. Acta Crystallogr F Struct Biol Commun 2017; 73:500-504. [PMID: 28876227 PMCID: PMC5606187 DOI: 10.1107/s2053230x17011384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 11/10/2022] Open
Abstract
The structure of 4',6-diamidine-2-phenylindole (DAPI) bound to the synthetic B-DNA oligonucleotide d(CGTGAATTCACG) has been solved in space group P212121 by single-crystal X-ray diffraction at a resolution of 2.2 Å. The structure is nearly isomorphous to that of the previously reported crystal structure of the oligonucleotide d(CGTGAATTCACG) alone. The adjustments in crystal packing between the native DNA molecule and the DNA-DAPI complex are described. DAPI lies in the narrow minor groove near the centre of the B-DNA fragment, positioned over the A-T base pairs. It is bound to the DNA by hydrogen-bonding and van der Waals interactions. Comparison of the two structures (with and without ligand) shows that DAPI inserts into the minor groove, displacing the ordered spine waters. Indeed, as DAPI is hydrophobic it confers this behaviour on the DNA and thus restricts the presence of water molecules.
Collapse
Affiliation(s)
- Hristina I. Sbirkova-Dimitrova
- Institute of Mineralogy and Crystallography (IMC), Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography (IMC), Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria
| |
Collapse
|
33
|
Paul S, Ahmed T, Samanta A. Influence of Divalent Counterions on the Dynamics in DNA as Probed by Using a Minor-Groove Binder. Chemphyschem 2017; 18:2058-2064. [DOI: 10.1002/cphc.201700251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Tasnim Ahmed
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| | - Anunay Samanta
- School of Chemistry; University of Hyderabad; Hyderabad 500046 India
| |
Collapse
|
34
|
Erlitzki N, Huang K, Xhani S, Farahat AA, Kumar A, Boykin DW, Poon GMK. Investigation of the electrostatic and hydration properties of DNA minor groove-binding by a heterocyclic diamidine by osmotic pressure. Biophys Chem 2017; 231:95-104. [PMID: 28363467 DOI: 10.1016/j.bpc.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 12/29/2022]
Abstract
Previous investigations of sequence-specific DNA binding by model minor groove-binding compounds showed that the ligand/DNA complex was destabilized in the presence of compatible co-solutes. Inhibition was interpreted in terms of osmotic stress theory as the uptake of significant numbers of excess water molecules from bulk solvent upon complex formation. Here, we interrogated the AT-specific DNA complex formed with the symmetric heterocyclic diamidine DB1976 as a model for minor groove DNA recognition using both ionic (NaCl) and non-ionic cosolutes (ethylene glycol, glycine betaine, maltose, nicotinamide, urea). While the non-ionic cosolutes all destabilized the ligand/DNA complex, their quantitative effects were heterogeneous in a cosolute- and salt-dependent manner. Perturbation with NaCl in the absence of non-ionic cosolute showed that preferential hydration water was released upon formation of the DB1976/DNA complex. As salt probes counter-ion release from charged groups such as the DNA backbone, we propose that the preferential hydration uptake in DB1976/DNA binding observed in the presence of osmolytes reflects the exchange of preferentially bound cosolute with hydration water in the environs of the bound DNA, rather than a net uptake of hydration waters by the complex.
Collapse
Affiliation(s)
- Noa Erlitzki
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Kenneth Huang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Suela Xhani
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Abdelbasset A Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
35
|
Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli. PLoS Genet 2017; 13:e1006638. [PMID: 28234902 PMCID: PMC5345879 DOI: 10.1371/journal.pgen.1006638] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/10/2017] [Accepted: 02/15/2017] [Indexed: 11/19/2022] Open
Abstract
Coordination between cell division and chromosome replication is essential for a cell to produce viable progeny. In the commonly accepted view, Escherichia coli realize this coordination via the accurate positioning of its cell division apparatus relative to the nucleoids. However, E. coli lacking proper positioning of its cell division planes can still successfully propagate. Here, we characterize how these cells partition their chromosomes into daughters during such asymmetric divisions. Using quantitative time-lapse imaging, we show that DNA translocase, FtsK, can pump as much as 80% (3.7 Mb) of the chromosome between daughters at an average rate of 1700±800 bp/s. Pauses in DNA translocation are rare, and in no occasions did we observe reversals at experimental time scales of a few minutes. The majority of DNA movement occurs at the latest stages of cell division when the cell division protein ZipA has already dissociated from the septum, and the septum has closed to a narrow channel with a diameter much smaller than the resolution limit of the microscope (~250 nm). Our data suggest that the narrow constriction is necessary for effective translocation of DNA by FtsK. DNA translocases are conserved throughout bacteria. While at atomic and molecular levels they have been well characterized, their ability to partition DNA in vegetatively growing cells has remained less clear. Here we show that E. coli translocase, FtsK, can move as much as 80% (3.7 Mb) of the chromosomal DNA across the closing septum in asymmetrically dividing cells at an average rate of 1700 bp/s. The majority of DNA movement occurs at the latest stages of cell division when the septum has closed to a narrow channel. Our data implies that a narrow septal opening is needed for effective translocation of DNA by FtsK.
Collapse
|
36
|
Reis LA, Rocha MS. DNA interaction with DAPI fluorescent dye: Force spectroscopy decouples two different binding modes. Biopolymers 2017; 107. [DOI: 10.1002/bip.23015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 01/10/2023]
Affiliation(s)
- L. A. Reis
- Laboratório de Física Biológica, Departamento de Física; Universidade Federal de Viçosa; Minas Gerais Brazil
| | - M. S. Rocha
- Laboratório de Física Biológica, Departamento de Física; Universidade Federal de Viçosa; Minas Gerais Brazil
| |
Collapse
|
37
|
From Function to Phenotype: Impaired DNA Binding and Clustering Correlates with Clinical Severity in Males with Missense Mutations in MECP2. Sci Rep 2016; 6:38590. [PMID: 27929079 PMCID: PMC5144150 DOI: 10.1038/srep38590] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the MECP2 gene cause Rett syndrome (RTT). MeCP2 binds to chromocentric DNA through its methyl CpG-binding domain (MBD) to regulate gene expression. In heterozygous females the variable phenotypic severity is modulated by non-random X-inactivation, thus making genotype-phenotype comparisons unreliable. However, genotype-phenotype correlations in males with hemizygousMECP2 mutations can provide more accurate insights in to the true biological effect of specific mutations. Here, we compared chromatin organization and binding dynamics for twelve MeCP2 missense mutations (including two novel and the five most common MBD missense RTT mutations) and identifiedacorrelation with phenotype in hemizygous males. We observed impaired interaction of MeCP2-DNA for mutations around the MBD-DNA binding interface, and defective chromatin clustering for distal MBD mutations. Furthermore, binding and mobility dynamics show a gradient of impairment depending on the amino acid properties and tertiary structure within the MBD. Interestingly, a wide range of phenotypic/clinical severity, ranging from neonatal encephalopathy to mild psychiatric abnormalities were observed and all are consistent with our functional/molecular results. Overall, clinical severity showed a direct correlation with the functional impairment of MeCP2. These mechanistic and phenotypic correlations of MeCP2 mutations will enable improved and individualized diagnostics, and may lead to personalized therapeutic interventions.
Collapse
|
38
|
Kasyanenko N, Bakulev V, Perevyazko I, Nekrasova T, Nazarova O, Slita A, Zolotova Y, Panarin E. Model system for multifunctional delivery nanoplatforms based on DNA-Polymer complexes containing silver nanoparticles and fluorescent dye. J Biotechnol 2016; 236:78-87. [DOI: 10.1016/j.jbiotec.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/07/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
39
|
Kalel R, Mora AK, Ghosh R, Dhavale DD, Palit DK, Nath S. Interaction of a Julolidine-Based Neutral Ultrafast Molecular Rotor with Natural DNA: Spectroscopic and Molecular Docking Studies. J Phys Chem B 2016; 120:9843-53. [DOI: 10.1021/acs.jpcb.6b04811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rahul Kalel
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aruna K. Mora
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Dilip D. Dhavale
- Department
of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Dipak K. Palit
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sukhendu Nath
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
40
|
Patra A, Hazra S, Samanta N, Suresh Kumar G, Mitra RK. Micelle induced dissociation of DNA–ligand complexes: The effect of ligand binding specificity. Int J Biol Macromol 2016; 82:418-24. [DOI: 10.1016/j.ijbiomac.2015.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/19/2015] [Accepted: 11/05/2015] [Indexed: 11/16/2022]
|
41
|
An on-line high-performance liquid chromatography−diode-array detector−multi-stage mass spectrometry−deoxyribonucleic acid−4′,6-diamidino-2-phenylindole−fluorescence detector system for screening the DNA-binding active compounds in Fufang Banbianlian Injection. J Chromatogr A 2015; 1424:37-50. [DOI: 10.1016/j.chroma.2015.10.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 11/20/2022]
|
42
|
Basu A, Suresh Kumar G. Studies on the interaction of the food colorant tartrazine with double stranded deoxyribonucleic acid. J Biomol Struct Dyn 2015; 34:935-42. [DOI: 10.1080/07391102.2015.1057766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anirban Basu
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
43
|
Abassi Joozdani F, Yari F, Abassi Joozdani P, Nafisi S. Interaction of sulforaphane with DNA and RNA. PLoS One 2015; 10:e0127541. [PMID: 26030290 PMCID: PMC4452540 DOI: 10.1371/journal.pone.0127541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN-DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV-Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN-phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN-DNA)=3.01 (± 0.035)×10(4) M(-1) and K(SFN-RNA)= 6.63 (±0.042)×10(3) M(-1). At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure.
Collapse
Affiliation(s)
| | - Faramarz Yari
- Department of Biology, IAU, Science and Research Branch, Tehran, Iran
| | | | - Shohreh Nafisi
- Department of Chemistry, IAU, Central Tehran Branch, Tehran, Iran
- Department of Dermatology, University of California, San Francisco, California, United States of America
| |
Collapse
|
44
|
Verma SD, Pal N, Singh MK, Sen S. Sequence-Dependent Solvation Dynamics of Minor-Groove Bound Ligand Inside Duplex-DNA. J Phys Chem B 2015; 119:11019-29. [DOI: 10.1021/acs.jpcb.5b01977] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sachin Dev Verma
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nibedita Pal
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Moirangthem Kiran Singh
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sobhan Sen
- Spectroscopy Laboratory,
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
45
|
Japaridze A, Benke A, Renevey S, Benadiba C, Dietler G. Influence of DNA Binding Dyes on Bare DNA Structure Studied with Atomic Force Microscopy. Macromolecules 2015. [DOI: 10.1021/ma502537g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aleksandre Japaridze
- Laboratory of Physics of Living Matter and ‡Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| | - Alexander Benke
- Laboratory of Physics of Living Matter and ‡Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| | - Sylvain Renevey
- Laboratory of Physics of Living Matter and ‡Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| | - Carine Benadiba
- Laboratory of Physics of Living Matter and ‡Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter and ‡Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
46
|
Deligkaris C, Ascone AT, Sweeney KJ, Greene AJQ. Validation of a computational docking methodology to identify the non-covalent binding site of ligands to DNA. MOLECULAR BIOSYSTEMS 2015; 10:2106-25. [PMID: 24853173 DOI: 10.1039/c4mb00239c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Despite the biomedical consequences of carcinogen-DNA interactions and the potential of DNA as a drug target in medicinal chemistry, only a small number of studies have validated or used docking methods for the prediction of the physical binding of small molecules to DNA. Knowledge of the DNA-physically-bound ligand geometry can lead to the elucidation of the molecular-level mechanism of drugs as well as predicting the subsequent chemical interactions that lead to DNA damage from carcinogens. We sought to validate AutoDock 4.2, a docking method that includes a physics-based free energy function and a Lamarckian Genetic Algorithm, for the prediction of ligand geometries upon physical binding to DNA. We performed simulations by systematically changing the length of the search process for a comprehensive set of 32 ligand-DNA molecular systems with different physico-chemical properties, and we used a free-energy-based convergence criterion to terminate our simulations. For 11 out of 28 molecular systems for which convergence was achieved, the lowest binding free energy geometries were within 2 Å of the experimentally determined geometry. Considering all predicted sites with free energy changes within 20% of the lowest binding free energy site, we found a site within 2 Å of the experimentally determined geometry for 24 out of the 28 systems. However, the predicted hydrogen bonding interactions were different for most molecular systems compared to the same interactions in the experimentally determined geometry. We discuss reasons for the successes and failures, implications, and the importance of ensuring an adequate search in docking calculations. Overall, we concluded that AutoDock 4.2 can be used to predict the non-covalent binding geometry of a small molecule to DNA with some limitations.
Collapse
|
47
|
Harris RC, Boschitsch AH, Fenley MO. Sensitivities to parameterization in the size-modified Poisson-Boltzmann equation. J Chem Phys 2014; 140:075102. [PMID: 24559370 DOI: 10.1063/1.4864460] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental results have demonstrated that the numbers of counterions surrounding nucleic acids differ from those predicted by the nonlinear Poisson-Boltzmann equation, NLPBE. Some studies have fit these data against the ion size in the size-modified Poisson-Boltzmann equation, SMPBE, but the present study demonstrates that other parameters, such as the Stern layer thickness and the molecular surface definition, can change the number of bound ions by amounts comparable to varying the ion size. These parameters will therefore have to be fit simultaneously against experimental data. In addition, the data presented here demonstrate that the derivative, SK, of the electrostatic binding free energy, ΔGel, with respect to the logarithm of the salt concentration is sensitive to these parameters, and experimental measurements of SK could be used to parameterize the model. However, although better values for the Stern layer thickness and ion size and better molecular surface definitions could improve the model's predictions of the numbers of ions around biomolecules and SK, ΔGel itself is more sensitive to parameters, such as the interior dielectric constant, which in turn do not significantly affect the distributions of ions around biomolecules. Therefore, improved estimates of the ion size and Stern layer thickness to use in the SMPBE will not necessarily improve the model's predictions of ΔGel.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3408, USA
| | | | - Marcia O Fenley
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-3408, USA
| |
Collapse
|
48
|
Kilgore JA, Dolman NJ, Davidson MW. A review of reagents for fluorescence microscopy of cellular compartments and structures, Part II: reagents for non-vesicular organelles. ACTA ACUST UNITED AC 2013; 66:12.31.1-12.31.24. [PMID: 24510724 DOI: 10.1002/0471142956.cy1231s66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A wide range of fluorescent dyes and reagents exist for labeling organelles in live and fixed cells. Choosing between them can sometimes be confusing, and optimization for many of them can be challenging. Presented here is a discussion on the commercially-available reagents that have shown the most promise for each organelle of interest, including endoplasmic reticulum/nuclear membrane, Golgi apparatus, mitochondria, nucleoli, and nuclei, with an emphasis on localization of these structures for microscopy. Included is a featured reagent for each structure with a recommended protocol, troubleshooting guide, and example image.
Collapse
Affiliation(s)
- Jason A Kilgore
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, Oregon
| | - Nick J Dolman
- Molecular Probes Labeling and Detection, Life Technologies, Eugene, Oregon
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
49
|
Biancardi A, Biver T, Secco F, Mennucci B. An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum-mechanical and spectroscopic tools. Phys Chem Chem Phys 2013; 15:4596-603. [PMID: 23423468 DOI: 10.1039/c3cp44058c] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescent probe 4',6-diamidino-2-phenylindole (DAPI) is a dye known to interact with polynucleotides in a non-univocal manner, both intercalation and minor groove binding modes being possible, and to specifically change its photophysical properties according to the different environments. To investigate this behavior, quantum-mechanical calculations using time-dependent density functional theory (TDDFT), coupled with polarizable continuum and/or atomistic models, were performed in combination with spectroscopic measurements of the probe in the different environments, ranging from a homogeneous solution to the minor groove or intercalation pockets of double stranded nucleic acids. According to our simulation, the electronic transition involves a displacement of the electron charge towards the external amidine groups and this feature makes the absorption energies very environment-sensitive while a much smaller sensitivity is seen in the fluorescence energies. Moreover, the calculations show that the DAPI molecule, when minor groove bound to the nucleic acid, presents both a reduced geometrical flexibility because of the rigid DNA pocket and a reduced polarization due to the very "apolar" microenvironment. All these effects can be used to better understand the observed enhancement of the fluorescence, which makes it an excellent marker for DNA.
Collapse
Affiliation(s)
- Alessandro Biancardi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento, 35-56126 Pisa, Italy.
| | | | | | | |
Collapse
|
50
|
Wang G, Yan C, Lu Y. Exploring DNA binding properties and biological activities of dihydropyrimidinones derivatives. Colloids Surf B Biointerfaces 2013; 106:28-36. [DOI: 10.1016/j.colsurfb.2013.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/10/2013] [Indexed: 11/29/2022]
|