1
|
Chen PH, Guo XS, Zhang HE, Dubey GK, Geng ZZ, Fierke CA, Xu S, Hampton JT, Liu WR. Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS CENTRAL SCIENCE 2024; 10:782-792. [PMID: 38680566 PMCID: PMC11046469 DOI: 10.1021/acscentsci.3c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 05/01/2024]
Abstract
Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.
Collapse
Affiliation(s)
- Peng-Hsun
Chase Chen
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xuejiao Shirley Guo
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hanyuan Eric Zhang
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Gopal K. Dubey
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zhi Zachary Geng
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Carol A. Fierke
- Department
of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Shiqing Xu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Kumar P, Osahon OW, Sekhar RV. GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Old Mice Improves Brain Glutathione Deficiency, Oxidative Stress, Glucose Uptake, Mitochondrial Dysfunction, Genomic Damage, Inflammation and Neurotrophic Factors to Reverse Age-Associated Cognitive Decline: Implications for Improving Brain Health in Aging. Antioxidants (Basel) 2023; 12:antiox12051042. [PMID: 37237908 DOI: 10.3390/antiox12051042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cognitive decline frequently occurs with increasing age, but mechanisms contributing to age-associated cognitive decline (ACD) are not well understood and solutions are lacking. Understanding and reversing mechanisms contributing to ACD are important because increased age is identified as the single most important risk factor for dementia. We reported earlier that ACD in older humans is associated with glutathione (GSH) deficiency, oxidative stress (OxS), mitochondrial dysfunction, glucose dysmetabolism and inflammation, and that supplementing GlyNAC (glycine and N-acetylcysteine) improved these defects. To test whether these defects occur in the brain in association with ACD, and could be improved/reversed with GlyNAC supplementation, we studied young (20-week) and old (90-week) C57BL/6J mice. Old mice received either regular or GlyNAC supplemented diets for 8 weeks, while young mice received the regular diet. Cognition and brain outcomes (GSH, OxS, mitochondrial energetics, autophagy/mitophagy, glucose transporters, inflammation, genomic damage and neurotrophic factors) were measured. Compared to young mice, the old-control mice had significant cognitive impairment and multiple brain defects. GlyNAC supplementation improved/corrected the brain defects and reversed ACD. This study finds that naturally-occurring ACD is associated with multiple abnormalities in the brain, and provides proof-of-concept that GlyNAC supplementation corrects these defects and improves cognitive function in aging.
Collapse
Affiliation(s)
- Premranjan Kumar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ob W Osahon
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rajagopal V Sekhar
- Translational Metabolism Unit, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Carugo O. Interplay between hydrogen and chalcogen bonds in cysteine. Proteins 2023; 91:395-399. [PMID: 36250971 PMCID: PMC10092013 DOI: 10.1002/prot.26437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Protein structures are stabilized by several types of chemical interactions between amino acids, which can compete with each other. This is the case of chalcogen and hydrogen bonds formed by the thiol group of cysteine, which can form three hydrogen bonds with one hydrogen acceptor and two hydrogen donors and a chalcogen bond with a nucleophile along the extension of the CS bond. A survey of the Protein Data Bank shows that hydrogen bonds are about 40-50 more common than chalcogen bonds, suggesting that they are stronger and, consequently, prevail, though not always. It is also observed that frequently a thiol group that forms a chalcogen bond is also involved, as a hydrogen donor, in a hydrogen bond.
Collapse
Affiliation(s)
- Oliviero Carugo
- Department of Chemistry, University of Pavia, Pavia, Italy.,Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Yamada M, Kurihara Y, Koizumi M, Tsuji K, Maeda Y, Suzuki M. Understanding the Nature and Strength of Noncovalent Face‐to‐Face Arene–Fullerene Interactions. Angew Chem Int Ed Engl 2022; 61:e202212279. [DOI: 10.1002/anie.202212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Michio Yamada
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Yukiyo Kurihara
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Masaaki Koizumi
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Kasumi Tsuji
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Yutaka Maeda
- Department of Chemistry Tokyo Gakugei University Nukuikitamachi 4-1-1, Koganei Tokyo 184-8501 Japan
| | - Mitsuaki Suzuki
- Department of Chemistry Josai University Sakado Saitama 350-0295 Japan
| |
Collapse
|
5
|
Yamada M, Kurihara Y, Koizumi M, Tsuji K, Maeda Y, Suzuki M. Understanding the Nature and Strength of Noncovalent Face‐to‐Face Arene–Fullerene Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202212279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michio Yamada
- Tokyo Gakugei University Department of Chemistry 4-1-1 Nukuikitamachi 184-8501 Koganei, Tokyo JAPAN
| | - Yukiyo Kurihara
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Masaaki Koizumi
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Kasumi Tsuji
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Yutaka Maeda
- Tokyo Gakugei University: Tokyo Gakugei Daigaku Department of Chemistry JAPAN
| | - Mitsuaki Suzuki
- Josai University: Josai Daigaku Department of Chemistry JAPAN
| |
Collapse
|
6
|
Pak VV, Khojimatov OK, Pak AV, Sh. Sagdullaev S. Design of competitive inhibitory peptides for HMG-CoA reductase and modeling structural preference for short linear peptides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Savino RJ, Kempisty B, Mozdziak P. The Potential of a Protein Model Synthesized Absent of Methionine. Molecules 2022; 27:3679. [PMID: 35744804 PMCID: PMC9230714 DOI: 10.3390/molecules27123679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Methionine is an amino acid long thought to be essential, but only in the case of protein synthesis initiation. In more recent years, methionine has been found to play an important role in antioxidant defense, stability, and modulation of cell and protein activity. Though these findings have expanded the previously held sentiment of methionine having a singular purpose within cells and proteins, the essential nature of methionine can still be challenged. Many of the features that give methionine its newfound functions are shared by the other sulfur-containing amino acid: cysteine. While the antioxidant, stabilizing, and cell/protein modulatory functions of cysteine have already been well established, recent findings have shown a similar hydrophobicity to methionine which suggests cysteine may be able to replace methionine in all functions outside of protein synthesis initiation with little effect on cell and protein function. Furthermore, a number of novel mechanisms for alternative initiation of protein synthesis have been identified that suggest a potential to bypass the traditional methionine-dependent initiation during times of stress. In this review, these findings are discussed with a number of examples that demonstrate a potential model for synthesizing a protein in the absence of methionine.
Collapse
Affiliation(s)
- Ronald J. Savino
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| | - Bartosz Kempisty
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Histology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Paul Mozdziak
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| |
Collapse
|
8
|
O‧‧‧C═O interaction, its occurrence and implications for protein structure and folding. Proteins 2022; 90:1159-1169. [DOI: 10.1002/prot.26298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/07/2022]
|
9
|
Islam MS, Junod SL, Zhang S, Buuh ZY, Guan Y, Zhao M, Kaneria KH, Kafley P, Cohen C, Maloney R, Lyu Z, Voelz VA, Yang W, Wang RE. Unprotected peptide macrocyclization and stapling via a fluorine-thiol displacement reaction. Nat Commun 2022; 13:350. [PMID: 35039490 PMCID: PMC8763920 DOI: 10.1038/s41467-022-27995-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
We report the discovery of a facile peptide macrocyclization and stapling strategy based on a fluorine thiol displacement reaction (FTDR), which renders a class of peptide analogues with enhanced stability, affinity, cellular uptake, and inhibition of cancer cells. This approach enabled selective modification of the orthogonal fluoroacetamide side chains in unprotected peptides in the presence of intrinsic cysteines. The identified benzenedimethanethiol linker greatly promoted the alpha helicity of a variety of peptide substrates, as corroborated by molecular dynamics simulations. The cellular uptake of benzenedimethanethiol stapled peptides appeared to be universally enhanced compared to the classic ring-closing metathesis (RCM) stapled peptides. Pilot mechanism studies suggested that the uptake of FTDR-stapled peptides may involve multiple endocytosis pathways in a distinct pattern in comparison to peptides stapled by RCM. Consistent with the improved cell permeability, the FTDR-stapled lead Axin and p53 peptide analogues demonstrated enhanced inhibition of cancer cells over the RCM-stapled analogues and the unstapled peptides. Strategies capable of stapling unprotected peptides in a straightforward, chemoselective, and clean manner, as well as promoting cellular uptake are of great interest. Here the authors report a peptide macrocyclization and stapling strategy which satisfies those criteria, based on a fluorine thiol displacement reaction.
Collapse
Affiliation(s)
- Md Shafiqul Islam
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Si Zhang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zakey Yusuf Buuh
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yifu Guan
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Kishan H Kaneria
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Parmila Kafley
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Carson Cohen
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Robert Maloney
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Zhigang Lyu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Vincent A Voelz
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA.
| |
Collapse
|
10
|
GlyNAC (Glycine and N-Acetylcysteine) Supplementation Improves Impaired Mitochondrial Fuel Oxidation and Lowers Insulin Resistance in Patients with Type 2 Diabetes: Results of a Pilot Study. Antioxidants (Basel) 2022; 11:antiox11010154. [PMID: 35052658 PMCID: PMC8773349 DOI: 10.3390/antiox11010154] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with type 2 diabetes (T2D) are known to have mitochondrial dysfunction and increased insulin resistance (IR), but the underlying mechanisms are not well understood. We reported previously that (a) adequacy of the antioxidant glutathione (GSH) is necessary for optimal mitochondrial fatty-acid oxidation (MFO); (b) supplementing the GSH precursors glycine and N-acetylcysteine (GlyNAC) in mice corrected GSH deficiency, reversed impaired MFO, and lowered oxidative stress (OxS) and IR; and (c) supplementing GlyNAC in patients with T2D improved GSH synthesis and concentrations, and lowered OxS. However, the effect of GlyNAC on MFO, MGO (mitochondrial glucose oxidation), IR and plasma FFA (free-fatty acid) concentrations in humans with T2D remains unknown. This manuscript reports the effect of supplementing GlyNAC for 14-days on MFO, MGO, IR and FFA in 10 adults with T2D and 10 unsupplemented non-diabetic controls. Fasted T2D participants had 36% lower MFO (p < 0.001), 106% higher MGO (p < 0.01), 425% higher IR (p < 0.001) and 76% higher plasma FFA (p < 0.05). GlyNAC supplementation significantly improved fasted MFO by 30% (p < 0.001), lowered MGO by 47% (p < 0.01), decreased IR by 22% (p < 0.01) and lowered FFA by 25% (p < 0.01). These results provide proof-of-concept that GlyNAC supplementation could improve mitochondrial dysfunction and IR in patients with T2D, and warrant additional research.
Collapse
|
11
|
Sinelnikov IG, Siedhoff NE, Chulkin AM, Zorov IN, Schwaneberg U, Davari MD, Sinitsyna OA, Shcherbakova LA, Sinitsyn AP, Rozhkova AM. Expression and Refolding of the Plant Chitinase From Drosera capensis for Applications as a Sustainable and Integrated Pest Management. Front Bioeng Biotechnol 2021; 9:728501. [PMID: 34621729 PMCID: PMC8490864 DOI: 10.3389/fbioe.2021.728501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, the study of chitinases has become an important target of numerous research projects due to their potential for applications, such as biocontrol pest agents. Plant chitinases from carnivorous plants of the genus Drosera are most aggressive against a wide range of phytopathogens. However, low solubility or insolubility of the target protein hampered application of chitinases as biofungicides. To obtain plant chitinase from carnivorous plants of the genus Drosera in soluble form in E.coli expression strains, three different approaches including dialysis, rapid dilution, and refolding on Ni-NTA agarose to renaturation were tested. The developed « Rapid dilution » protocol with renaturation buffer supplemented by 10% glycerol and 2M arginine in combination with the redox pair of reduced/oxidized glutathione, increased the yield of active soluble protein to 9.5 mg per 1 g of wet biomass. A structure-based removal of free cysteines in the core domain based on homology modeling of the structure was carried out in order to improve the soluble of chitinase. One improved chitinase variant (C191A/C231S/C286T) was identified which shows improved expression and solubility in E. coli expression systems compared to wild type. Computational analyzes of the wild-type and the improved variant revealed overall higher fluctuations of the structure while maintaining a global protein stability. It was shown that free cysteines on the surface of the protein globule which are not involved in the formation of inner disulfide bonds contribute to the insolubility of chitinase from Drosera capensis. The functional characteristics showed that chitinase exhibits high activity against colloidal chitin (360 units/g) and high fungicidal properties of recombinant chitinases against Parastagonospora nodorum. Latter highlights the application of chitinase from D. capensis as a promising enzyme for the control of fungal pathogens in agriculture.
Collapse
Affiliation(s)
- Igor G Sinelnikov
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey M Chulkin
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan N Zorov
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Olga A Sinitsyna
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Arkady P Sinitsyn
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Aleksandra M Rozhkova
- Federal Research Centre Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Poghosyan AH, Shahinyan AA, Kirakosyan GR, Ayvazyan NM, Mamasakhlisov YS, Papoian GA. A molecular dynamics study of protein denaturation induced by sulfonate-based surfactants. J Mol Model 2021; 27:261. [PMID: 34432183 DOI: 10.1007/s00894-021-04882-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Microsecond timescale explicit-solvent atomistic simulations were carried out to investigate how anionic surfactants modulate protein structure and dynamics. We found that lysozyme undergoes near-complete denaturation at the high concentration (> 0.1 M) of sodium pentadecyl sulfonate (SPDS), while only partial denaturation occurs at the concentration slightly below 0.1 M. In large part, protein denaturation is structurally manifested by disappearance of helical segments and loss of tertiary interactions. The computational prediction of the extent of burial of cysteine residues was experimentally validated by measuring the accessibility of the respective sulfhydryl groups. Overall, our work indicates an interesting synergy between electrostatic and hydrophobic contributions to lysozyme's denaturation process by anionic surfactants. In fact, first disulfide bridges and hydrogen bonds from protein surface to SPDS head groups loosen the protein globule followed by fuller denaturation via insertion of the surfactant's hydrophobic tails into the protein core.
Collapse
Affiliation(s)
- Armen H Poghosyan
- The International Scientific-Educational Center of NAS RA, M. Baghramyan 24d, 0019, Yerevan, Armenia.
| | - Aram A Shahinyan
- The International Scientific-Educational Center of NAS RA, M. Baghramyan 24d, 0019, Yerevan, Armenia
| | - Gayane R Kirakosyan
- Orbeli Institute of Physiology of NAS RA, Orbely str. 22, 0019, Yerevan, Armenia
| | - Naira M Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbely str. 22, 0019, Yerevan, Armenia
| | | | - Garegin A Papoian
- Department of Chemistry and Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
13
|
Khare B, Klose T, Fang Q, Rossmann MG, Kuhn RJ. Structure of Usutu virus SAAR-1776 displays fusion loop asymmetry. Proc Natl Acad Sci U S A 2021; 118:e2107408118. [PMID: 34417300 PMCID: PMC8403871 DOI: 10.1073/pnas.2107408118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Usutu virus (USUV) is an emerging arbovirus in Europe that has been increasingly identified in asymptomatic humans and donated blood samples and is a cause of increased incidents of neuroinvasive human disease. Treatment or prevention options for USUV disease are currently nonexistent, the result of a lack of understanding of the fundamental elements of USUV pathogenesis. Here, we report two structures of the mature USUV virus, determined at a resolution of 2.4 Å, using single-particle cryogenic electron microscopy. Mature USUV is an icosahedral shell of 180 copies of envelope (E) and membrane (M) proteins arranged in the classic herringbone pattern. However, unlike previous reports of flavivirus structures, we observe virus subpopulations and differences in the fusion loop disulfide bond. Presence of a second, unique E glycosylation site could elucidate host interactions, contributing to the broad USUV tissue tropism. The structures provide a basis for exploring USUV interactions with glycosaminoglycans and lectins, the role of the RGD motif as a receptor, and the inability of West Nile virus therapeutic antibody E16 to neutralize the mature USUV strain SAAR-1776. Finally, we identify three lipid binding sites and predict key residues that likely participate in virus stability and flexibility during membrane fusion. Our findings provide a framework for the development of USUV therapeutics and expand the current knowledge base of flavivirus biology.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
14
|
Bhattacharyya R, Dhar J, Ghosh Dastidar S, Chakrabarti P, Weiss MS. The susceptibility of disulfide bonds towards radiation damage may be explained by S⋯O interactions. IUCRJ 2020; 7:825-834. [PMID: 32939274 PMCID: PMC7467163 DOI: 10.1107/s2052252520008520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/25/2020] [Indexed: 05/30/2023]
Abstract
Radiation-induced damage to protein crystals during X-ray diffraction data collection is a major impediment to obtaining accurate structural information on macromolecules. Some of the specific impairments that are inflicted upon highly brilliant X-ray irradiation are metal-ion reduction, disulfide-bond cleavage and a loss of the integrity of the carboxyl groups of acidic residues. With respect to disulfide-bond reduction, previous results have indicated that not all disulfide bridges are equally susceptible to damage. A careful analysis of the chemical environment of disulfide bonds in the structures of elastase, lysozyme, acetylcholinesterase and other proteins suggests that S-S bonds which engage in a close contact with a carbonyl O atom along the extension of the S-S bond vector are more susceptible to reduction than the others. Such an arrangement predisposes electron transfer to occur from the O atom to the disulfide bond, leading to its reduction. The interaction between a nucleophile and an electrophile, akin to hydrogen bonding, stabilizes protein structures, but it also provides a pathway of electron transfer to the S-S bond, leading to its reduction during exposure of the protein crystal to an intense X-ray beam. An otherwise stabilizing interaction can thus be the cause of destabilization under the condition of radiation exposure.
Collapse
Affiliation(s)
- Rajasri Bhattacharyya
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Jesmita Dhar
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700 054, India
| | - Manfred S. Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| |
Collapse
|
15
|
Chand A, Sahoo DK, Rana A, Jena S, Biswal HS. The Prodigious Hydrogen Bonds with Sulfur and Selenium in Molecular Assemblies, Structural Biology, and Functional Materials. Acc Chem Res 2020; 53:1580-1592. [PMID: 32677432 DOI: 10.1021/acs.accounts.0c00289] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.
Collapse
Affiliation(s)
- Apramita Chand
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S. Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO Bhimpur-Padanpur, Via-Jatni, District Khurda, 752050 Bhubaneswar, India
- Homi Bhabha National Institute, Training School
Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
16
|
Kunstmann S, Engström O, Wehle M, Widmalm G, Santer M, Barbirz S. Increasing the Affinity of an O-Antigen Polysaccharide Binding Site in Shigella flexneri Bacteriophage Sf6 Tailspike Protein. Chemistry 2020; 26:7263-7273. [PMID: 32189378 PMCID: PMC7463171 DOI: 10.1002/chem.202000495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Broad and unspecific use of antibiotics accelerates spread of resistances. Sensitive and robust pathogen detection is thus important for a more targeted application. Bacteriophages contain a large repertoire of pathogen-binding proteins. These tailspike proteins (TSP) often bind surface glycans and represent a promising design platform for specific pathogen sensors. We analysed bacteriophage Sf6 TSP that recognizes the O-polysaccharide of dysentery-causing Shigella flexneri to develop variants with increased sensitivity for sensor applications. Ligand polyrhamnose backbone conformations were obtained from 2D 1 H,1 H-trNOESY NMR utilizing methine-methine and methine-methyl correlations. They agreed well with conformations obtained from molecular dynamics (MD), validating the method for further predictions. In a set of mutants, MD predicted ligand flexibilities that were in good correlation with binding strength as confirmed on immobilized S. flexneri O-polysaccharide (PS) with surface plasmon resonance. In silico approaches combined with rapid screening on PS surfaces hence provide valuable strategies for TSP-based pathogen sensor design.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physikalische BiochemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
- Theory and BiosystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Current address: Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads2800 Kgs.LyngbyDenmark
| | - Olof Engström
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Marko Wehle
- Theory and BiosystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Göran Widmalm
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Mark Santer
- Theory and BiosystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Stefanie Barbirz
- Physikalische BiochemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| |
Collapse
|
17
|
Wu SY, Chou HY, Tsai HC, Anbazhagan R, Yuh CH, Yang JM, Chang YH. Amino acid-modified PAMAM dendritic nanocarriers as effective chemotherapeutic drug vehicles in cancer treatment: a study using zebrafish as a cancer model. RSC Adv 2020; 10:20682-20690. [PMID: 35517745 PMCID: PMC9054295 DOI: 10.1039/d0ra01589j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
The use of nanomaterials for drug delivery offers many advantages including the targeted delivery of drugs and their controlled release. Nonetheless, entry into the target cells remains a challenge for many nanomaterials used for drug delivery. Moreover, cellular uptake limits the therapeutic efficiency of many anticancer drugs. An important goal is to increase the specific accumulation of these nanoparticles (NPs) at the desired cancerous tissues. Notably, cancer cells show a high demand for some amino acids and we have used this knowledge to develop novel carrier systems. In this study, drug carriers were produced by the conjugation of multiple amino acids such as l-histidine (H) and l-cysteine (C) or single amino acids such as only H with the G4.5 dendrimers (G) to produce GHC aggregates and GH NP carriers, respectively. Doxorubicin was loaded into the G4.5, GH, and GHC dendrimers (G/DOX, GH/DOX and GHC/DOX, respectively) and the release mechanism was demonstrated at pH 7.4 and pH 5.0. GH/DOX and GHC/DOX showed better stability under physiological conditions than the dendrimer alone (G/DOX). GH/DOX and GHC/DOX exhibited higher inhibition of HeLa cell proliferation in in vitro and in vivo studies in zebrafish, confirming the early release of DOX by disrupting the endosomal membrane and triggering the destabilization of carriers at a lower pH of 5.0.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University Taichung Taiwan
- Division of Radiation Oncology, Lo-Hsu Medical Foundation, LotungPoh-Ai Hospital Yilan Taiwan
- Big Data Center, Lo-Hsu Medical Foundation, LotungPoh-Ai Hospital Yilan 265 Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University Taichung 41354 Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University Taipei 110 Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei Taiwan +886-2-27303625 +886-984252998
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taipei Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei Taiwan +886-2-27303625 +886-984252998
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taipei Taiwan
| | - Rajeshkumar Anbazhagan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology Taipei Taiwan +886-2-27303625 +886-984252998
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology Taipei Taiwan
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes Zhunan Miaoli Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University Hsinchu Taiwan
- Department of Biological Science and Technology, National Chiao Tung University Hsinchu Taiwan
| | - Jen Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University Tao-Yuan Taiwan +886-3-2118800-529
- Department of General Dentistry, Chang Gung Memorial Hospital Tao-Yuan, 333 Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital Tao-Yuan, 333 Taiwan
| |
Collapse
|
18
|
Discovery of Novel Druggable Sites on Zika Virus NS3 Helicase Using X-ray Crystallography-Based Fragment Screening. Int J Mol Sci 2018; 19:ijms19113664. [PMID: 30463319 PMCID: PMC6274715 DOI: 10.3390/ijms19113664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
The flavivirus family contains several important human pathogens, such as Zika virus (ZIKV), dengue, West Nile, and Yellow Fever viruses, that collectively lead to a large, global disease burden. Currently, there are no approved medicines that can target these viruses. The sudden outbreak of ZIKV infections in 2015⁻2016 posed a serious threat to global public health. While the epidemic has receded, persistent reservoirs of ZIKV infection can cause reemergence. Here, we have used X-ray crystallography-based screening to discover two novel sites on ZIKV NS3 helicase that can bind drug-like fragments. Both sites are structurally conserved in other flaviviruses, and mechanistically significant. The binding poses of four fragments, two for each of the binding sites, were characterized at atomic precision. Site A is a surface pocket on the NS3 helicase that is vital to its interaction with NS5 polymerase and formation of the flaviviral replication complex. Site B corresponds to a flexible, yet highly conserved, allosteric site at the intersection of the three NS3 helicase domains. Saturation transfer difference nuclear magnetic resonance (NMR) experiments were additionally used to evaluate the binding strength of the fragments, revealing dissociation constants (KD) in the lower mM range. We conclude that the NS3 helicase of flaviviruses is a viable drug target. The data obtained open opportunities towards structure-based design of first-in-class anti-ZIKV compounds, as well as pan-flaviviral therapeutics.
Collapse
|
19
|
Weber DS, Warren JJ. A survey of methionine-aromatic interaction geometries in the oxidoreductase class of enzymes: What could Met-aromatic interactions be doing near metal sites? J Inorg Biochem 2018; 186:34-41. [DOI: 10.1016/j.jinorgbio.2018.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 10/16/2022]
|
20
|
Orabi EA, English AM. Modeling Protein S-Aromatic Motifs Reveals Their Structural and Redox Flexibility. J Phys Chem B 2018. [PMID: 29533644 DOI: 10.1021/acs.jpcb.8b00089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-aromatic motifs are important noncovalent forces for protein stability and function but remain poorly understood. Hence, we performed quantum calculations at the MP2(full)/6-311++G(d,p) level on complexes between Cys (H2S, MeSH) and Met (Me2S) models with models of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol), and His (imidazole, 4-methylimidazole). The most stable gas-phase conformers exhibit binding energies of -2 to -6 kcal/mol, and the S atom lies perpendicular to the ring plane. This reveals preferential interaction with the ring π-system, except in the imidazoles where S binds edge-on to an N atom. Complexation tunes the gas-phase vertical ionization potentials of the ligands over as much as 1 eV, and strong σ- or π-type H-bonding supports charge transfer to the H-bond donor, rendering it more oxidizable. When the S atom acts as an H-bond acceptor (N/O-Har···S), calibration of the CHARMM36 force field (by optimizing pair-specific Lennard-Jones parameters) is required. Implementing the optimized parameters in molecular dynamics simulations in bulk water, we find stable S-aromatic complexes with binding free energies of -0.6 to -1.1 kcal/mol at ligand separations up to 8 Å. The aqueous S-aromatics exhibit flexible binding conformations, but edge-on conformers are less stable in water. Reflecting this, only 0.3 to 10% of the S-indole, S-phenol, and S-imidazole structures are stabilized by N/O-Har···S or S-H···Oar/Nar σ-type H-bonding. The wide range of energies and geometries found for S-aromatic interactions and their tunable redox properties expose the versatility and variability of the S-aromatic motif in proteins and allow us to predict a number of their reported properties.
Collapse
Affiliation(s)
- Esam A Orabi
- Centre for Research in Molecular Modeling (CERMM) and PROTEO , Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke Street West , Montréal , Québec H4B 1R6 , Canada
| | - Ann M English
- Centre for Research in Molecular Modeling (CERMM) and PROTEO , Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke Street West , Montréal , Québec H4B 1R6 , Canada
| |
Collapse
|
21
|
Bittner HJ, Guixà-González R, Hildebrand PW. Structural basis for the interaction of the beta-secretase with copper. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1105-1113. [PMID: 29391167 DOI: 10.1016/j.bbamem.2018.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
The β-secretase (BACE1) features a unique sulfur rich motif (M462xxxC466xxxM470xxxC474xxxC478) in its transmembrane helix (BACE1-TM) which is characteristic for proteins involved in copper ion storage and transport. While this motif has been shown to promote BACE1-TM trimerization and binding of copper ions in vitro, the structural basis for the interaction of copper ions with the BACE1-TM is still not well understood. Using molecular dynamics (MD) simulations, we show that membrane embedded BACE1-TMs adopt a flexible trimeric structure that binds and conducts copper ions through variable coordination. In coarse-grained (CG) MD simulations, the spontaneous assembly of BACE1-TMs trimers results in a right-handed helix packing arrangement. In subsequent atomistic MD simulations the sulfur rich motif defines characteristic copper ion coordination sites along a constricted partially solvated axial pore. Sliding and tilting of BACE1-TMs along smooth A459xxxA463/464xxA467 surfaces, facilitated by a central P472 induced kink, enables copper ions to alternate between different coordination sites, including the prominent C466 and M470. We shed light into the structural arrangement of BACE1-TM trimers and propose a mechanism for copper ion conduction that might also apply to other proteins involved in metal ion transport.
Collapse
Affiliation(s)
- Heiko J Bittner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, AG ProteInFormatics, Charitéplatz 1, 10117 Berlin, Germany; Faculty of Medicine, Leipzig University, Institute for Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Ramon Guixà-González
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, AG ProteInFormatics, Charitéplatz 1, 10117 Berlin, Germany.
| | - Peter W Hildebrand
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, AG ProteInFormatics, Charitéplatz 1, 10117 Berlin, Germany; Faculty of Medicine, Leipzig University, Institute for Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
22
|
Orabi EA, English AM. Predicting structural and energetic changes in Met–aromatic motifs on methionine oxidation to the sulfoxide and sulfone. Phys Chem Chem Phys 2018; 20:23132-23141. [DOI: 10.1039/c8cp03277g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Methionine oxidation increases its affinity for aromatics in the gas phase but lowers it for most complexes in water.
Collapse
Affiliation(s)
- Esam A. Orabi
- Center for Research in Molecular Modeling (CERMM)
- Quebec Network for Research on Protein Function
- Engineering, and Applications (PROTEO), and Department of Chemistry and Biochemistry
- Concordia University
- Montréal
| | - Ann M. English
- Center for Research in Molecular Modeling (CERMM)
- Quebec Network for Research on Protein Function
- Engineering, and Applications (PROTEO), and Department of Chemistry and Biochemistry
- Concordia University
- Montréal
| |
Collapse
|
23
|
Computational study of red- and blue-shifted C H⋯Se hydrogen bond in Q 3 C H⋯SeH 2 (Q = Cl, F, H) complexes. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2017.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Ikeda K, Horiuchi A, Egawa A, Tamaki H, Fujiwara T, Nakano M. Nanodisc-to-Nanofiber Transition of Noncovalent Peptide-Phospholipid Assemblies. ACS OMEGA 2017; 2:2935-2944. [PMID: 31457628 PMCID: PMC6641012 DOI: 10.1021/acsomega.7b00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/09/2017] [Indexed: 06/10/2023]
Abstract
We report a novel molecular architecture of peptide-phospholipid coassemblies. The amphiphilic peptide Ac-18A-NH2 (18A), which was designed to mimic apolipoprotein α-helices, has been shown to form nanodisc structures with phospholipid bilayers. We show that an 18A peptide cysteine substitution at residue 11, 18A[A11C], forms fibrous assemblies with 1-palmitoyl-2-oleoyl-phosphatidylcholine at a lipid-to-peptide (L/P) molar ratio of 1, a fiber diameter of 10-20 nm, and a length of more than 1 μm. Furthermore, 18A[A11C] can form nanodiscs with these lipid bilayers at L/P ratios of 4-6. The peptide adopts α-helical structures in both the nanodisc and nanofiber assemblies, although the α-helical bundle structures were evident only in the nanofibers, and the phospholipids of the nanofibers were not lamellar. Fluorescence spectroscopic analysis revealed that the peptide and lipid molecules in the nanofibers exhibited different solvent accessibility and hydrophobicity from those of the nanodiscs. Furthermore, the cysteine substitution at residue 11 did not result in disulfide bond formation, although it was responsible for the nanofiber formation, suggesting that this free sulfhydryl group has an important functional role. Alternatively, the disulfide dimer of 18A[A11C] preferentially formed nanodiscs, even at an L/P ratio of 1. Interconversions of these discoidal and fibrous assemblies were induced by the stepwise addition of free 18A[A11C] or liposomes into the solution. Furthermore, these structural transitions could also be induced by the introduction of oxidative and reductive stresses to the assemblies. Our results demonstrate that heteromolecular lipid-peptide complexes represent a novel approach to the construction of controllable and functional nanoscale assemblies.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayame Horiuchi
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayako Egawa
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hajime Tamaki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Minoru Nakano
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
25
|
Forbes CR, Sinha SK, Ganguly HK, Bai S, Yap GPA, Patel S, Zondlo NJ. Insights into Thiol-Aromatic Interactions: A Stereoelectronic Basis for S-H/π Interactions. J Am Chem Soc 2017; 139:1842-1855. [PMID: 28080040 PMCID: PMC5890429 DOI: 10.1021/jacs.6b08415] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thiols can engage favorably with aromatic rings in S-H/π interactions, within abiological systems and within proteins. However, the underlying bases for S-H/π interactions are not well understood. The crystal structure of Boc-l-4-thiolphenylalanine tert-butyl ester revealed crystal organization centered on the interaction of the thiol S-H with the aromatic ring of an adjacent molecule, with a through-space Hthiol···Caromatic distance of 2.71 Å, below the 2.90 Å sum of the van der Waals radii of H and C. The nature of this interaction was further examined by DFT calculations, IR spectroscopy, solid-state NMR spectroscopy, and analysis of the Cambridge Structural Database. The S-H/π interaction was found to be driven significantly by favorable molecular orbital interactions, between an aromatic π donor orbital and the S-H σ* acceptor orbital (a π → σ* interaction). For comparison, a structural analysis of O-H/π interactions and of cation/π interactions of alkali metal cations with aromatic rings was conducted. Na+ and K+ exhibit a significant preference for the centroid of the aromatic ring and distances near the sum of the van der Waals and ionic radii, as expected for predominantly electrostatic interactions. Li+ deviates substantially from Na+ and K+. The S-H/π interaction differs from classical cation/π interactions by the preferential alignment of the S-H σ* toward the ring carbons and an aromatic π orbital rather than toward the aromatic centroid. These results describe a potentially broadly applicable approach to understanding the interactions of weakly polar bonds with π systems.
Collapse
Affiliation(s)
- Christina R. Forbes
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | | | | | - Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | - Sandeep Patel
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark DE 19716, United States
| |
Collapse
|
26
|
Das B, Chakraborty A, Chakraborty S. Effect of ionic charge on O H⋯Se hydrogen bond: A computational study. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2016.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Bazylewski P, Divigalpitiya R, Fanchini G. In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in l-cysteine. RSC Adv 2017. [DOI: 10.1039/c6ra25879d] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reversibility of disulphide formation and breakage on l-cysteine examined through vibrational modes using in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Paul Bazylewski
- Department of Physics and Astronomy
- University of Western Ontario
- London
- Canada
| | | | - Giovanni Fanchini
- Department of Physics and Astronomy
- University of Western Ontario
- London
- Canada
- Department of Chemistry
| |
Collapse
|
28
|
Orabi EA, English AM. Sulfur-Aromatic Interactions: Modeling Cysteine and Methionine Binding to Tyrosinate and Histidinium Ions to Assess Their Influence on Protein Electron Transfer. Isr J Chem 2016. [DOI: 10.1002/ijch.201600047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Esam A. Orabi
- Department of Chemistry and Biochemistry; Concordia University; 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
- Center for Research in Molecular Modeling (CERMM)Quebec; Network for Research on Protein Function, Engineering, and Applications (PROTEO)
- On leave from Department of Chemistry, Faculty of Science; Assiut University; Assiut 71516 Egypt
| | - Ann M. English
- Department of Chemistry and Biochemistry; Concordia University; 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
- Center for Research in Molecular Modeling (CERMM)Quebec; Network for Research on Protein Function, Engineering, and Applications (PROTEO)
| |
Collapse
|
29
|
Gómez-Tamayo JC, Cordomí A, Olivella M, Mayol E, Fourmy D, Pardo L. Analysis of the interactions of sulfur-containing amino acids in membrane proteins. Protein Sci 2016; 25:1517-24. [PMID: 27240306 DOI: 10.1002/pro.2955] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 01/17/2023]
Abstract
The interactions of Met and Cys with other amino acid side chains have received little attention, in contrast to aromatic-aromatic, aromatic-aliphatic or/and aliphatic-aliphatic interactions. Precisely, these are the only amino acids that contain a sulfur atom, which is highly polarizable and, thus, likely to participate in strong Van der Waals interactions. Analysis of the interactions present in membrane protein crystal structures, together with the characterization of their strength in small-molecule model systems at the ab-initio level, predicts that Met-Met interactions are stronger than Met-Cys ≈ Met-Phe ≈ Cys-Phe interactions, stronger than Phe-Phe ≈ Phe-Leu interactions, stronger than the Met-Leu interaction, and stronger than Leu-Leu ≈ Cys-Leu interactions. These results show that sulfur-containing amino acids form stronger interactions than aromatic or aliphatic amino acids. Thus, these amino acids may provide additional driving forces for maintaining the 3D structure of membrane proteins and may provide functional specificity.
Collapse
Affiliation(s)
- José C Gómez-Tamayo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, E-08193, Bellaterra, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, E-08193, Bellaterra, Spain
| | - Mireia Olivella
- Departament de Biologia de Sistemes, Universitat de Vic, Vic, 08500, Spain
| | - Eduardo Mayol
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, E-08193, Bellaterra, Spain
| | - Daniel Fourmy
- Laboratoire de Physique et Chimie des Nano-Objets University of Toulouse, CNRS, INSA, INSERM, Toulouse, France
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, E-08193, Bellaterra, Spain
| |
Collapse
|
30
|
Faraj SE, González-Lebrero RM, Roman EA, Santos J. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region. Sci Rep 2016; 6:20782. [PMID: 26856628 PMCID: PMC4746760 DOI: 10.1038/srep20782] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 11/30/2022] Open
Abstract
The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich's Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics.
Collapse
Affiliation(s)
- Santiago E. Faraj
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Rodolfo M. González-Lebrero
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Ernesto A. Roman
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Javier Santos
- Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| |
Collapse
|
31
|
Frieg B, Görg B, Homeyer N, Keitel V, Häussinger D, Gohlke H. Molecular Mechanisms of Glutamine Synthetase Mutations that Lead to Clinically Relevant Pathologies. PLoS Comput Biol 2016; 12:e1004693. [PMID: 26836257 PMCID: PMC4737493 DOI: 10.1371/journal.pcbi.1004693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically. Glutamine synthetase (GS) catalyzes the ATP-dependent ligation of ammonia and glutamate to glutamine, which makes the enzyme essential for human nitrogen metabolism. Three mutations in human GS, R324C, R324S, and R341C, had been identified previously that lead to a glutamine deficiency, resulting in neonatal death in the case of R324C and R341C. However, the molecular mechanisms underlying this impairment of GS activity have remained elusive. Our results from computational biophysics approaches suggest that all three mutants influence the first step of GS’ catalytic cycle, namely ATP or glutamate binding. The analyses reveal a complex set of effects including the loss of direct interactions to substrates, the involvement of water-mediated interactions that alleviate part of the mutation effect, and long-range effects between the catalytic site and structural parts distant from it. As to the latter, experimental validation is in line with our prediction of a significant destabilization of helix H8 in the R341C mutant, which should negatively affect glutamate binding. Finally, our findings could stimulate the development of ATP-binding enhancing molecules for the R324S mutant, which has been suggested to have residual activity, that way extrinsically “repairing” the mutant.
Collapse
Affiliation(s)
- Benedikt Frieg
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadine Homeyer
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (DH); (HG)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (DH); (HG)
| |
Collapse
|
32
|
Biswal HS, Bhattacharyya S, Bhattacherjee A, Wategaonkar S. Nature and strength of sulfur-centred hydrogen bonds: laser spectroscopic investigations in the gas phase and quantum-chemical calculations. INT REV PHYS CHEM 2015. [DOI: 10.1080/0144235x.2015.1022946] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA. A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. J Med Chem 2015; 58:4383-438. [DOI: 10.1021/jm501853m] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brett R. Beno
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway Wallingford Connecticut 06492, United States
| | - Kap-Sun Yeung
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway Wallingford Connecticut 06492, United States
| | - Michael D. Bartberger
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive Thousand Oaks California 91320, United States
| | - Lewis D. Pennington
- Department of Therapeutic Discovery, Amgen Inc., One Amgen Center Drive Thousand Oaks California 91320, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway Wallingford Connecticut 06492, United States
| |
Collapse
|
34
|
Schamnad S, Chakraborty S. Substituent effect in O H⋯Se hydrogen bond—Density Functional Theory study of para -substituted phenol–SeH 2 complexes. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Hydrogen Bonds Involving Sulfur: New Insights from ab Initio Calculations and Gas Phase Laser Spectroscopy. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2015. [DOI: 10.1007/978-3-319-14163-3_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Hussain HB, Wilson KA, Wetmore SD. Serine and Cysteine π-Interactions in Nature: A Comparison of the Frequency, Structure, and Stability of Contacts Involving Oxygen and Sulfur. Aust J Chem 2015. [DOI: 10.1071/ch14598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite many DNA–protein π-interactions in high-resolution crystal structures, only four X–H···π or X···π interactions were found between serine (Ser) or cysteine (Cys) and DNA nucleobase π-systems in over 100 DNA–protein complexes (where X = O for Ser and X = S for Cys). Nevertheless, 126 non-covalent contacts occur between Ser or Cys and the aromatic amino acids in many binding arrangements within proteins. Furthermore, Ser and Cys protein–protein π-interactions occur with similar frequencies and strengths. Most importantly, due to the great stability that can be provided to biological macromolecules (up to –20 kJ mol–1 for neutral π-systems or –40 kJ mol–1 for cationic π-systems), Ser and Cys π-interactions should be considered when analyzing protein stability and function.
Collapse
|
37
|
Alauddin M, Biswal HS, Gloaguen E, Mons M. Intra-residue interactions in proteins: interplay between serine or cysteine side chains and backbone conformations, revealed by laser spectroscopy of isolated model peptides. Phys Chem Chem Phys 2014; 17:2169-78. [PMID: 25482851 DOI: 10.1039/c4cp04449e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intra-residue interactions play an important role in proteins by influencing local folding of the backbone. Taking advantage of the capability of gas phase experiments to provide relevant information on the intrinsic H-bonding pattern of isolated peptide chains, the intra-residue interactions of serine and cysteine residues, i.e., OH/SH···OC(i) C6 and NH(i···)O/S C5 interactions in Ser/Cys residues, are probed by laser spectroscopy of isolated peptides. The strength of these local side chain-main chain interactions, elegantly documented from their IR spectral features for well-defined conformations of the main chain, demonstrates that a subtle competition exists between the two types of intra-residue bond: the C6 H-bond is the major interaction with Ser, in contrast to Cys where C5 interaction takes over. The restricted number of conformers observed in the gas phase experiment with Ser compared to Cys (where both extended and folded forms are observed) also suggests a significant mediation role of these intra-residue interactions on the competition between the several main chain folding patterns.
Collapse
Affiliation(s)
- Mohammad Alauddin
- CEA, IRAMIS, Laboratoire Interactions, Dynamique et Lasers, CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
38
|
Mukherjee D, Datta AB, Chakrabarti P. Crystal structure of HlyU, the hemolysin gene transcription activator, from Vibrio cholerae N16961 and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2346-54. [PMID: 25450504 DOI: 10.1016/j.bbapap.2014.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022]
Abstract
HlyU in Vibrio cholerae is known to be the transcriptional activator of the hemolysin gene, HlyA and possibly a regulator of other virulence factors influencing growth, colonization and pathogenicity of this infective agent. Here we report the crystal structure of HlyU from V. cholerae N16961 (HlyU_Vc) at 1.8Å. The protein, with five α-helices and three β-strands in the topology of α1-α2-β1-α3-α4-β2-β3-α5, forms a homodimer. Helices α3-α4 and a β sheet form the winged helix-turn-helix (wHTH) DNA-binding motif common to the transcription regulators of the SmtB/ArsR family. In spite of an overall fold similar to SmtB/ArsR family, it lacks any metal binding site seen in SmtB. A comparison of the dimeric interfaces showed that the one in SmtB is much larger and have salt bridges that can be disrupted to accommodate metal ions. A model of HlyU-DNA complex suggests bending of the DNA. Cys38 in the structure was found to be modified as sulfenic acid; the oxidized form was not seen in another structure solved under reducing condition. Although devoid of any metal binding site, the presence of a Cys residue exhibiting oxidation-reduction suggests the possibility of the existence of a redox switch in transcription regulation. A structure-based phylogenetic analysis of wHTH proteins revealed the segregation of metal and non-metal binding proteins as well as those in the latter group that are under redox control.
Collapse
Affiliation(s)
- Debadrita Mukherjee
- Bioinformatics Centre, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Bikram Datta
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Pinak Chakrabarti
- Bioinformatics Centre, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India; Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India.
| |
Collapse
|
39
|
Crystal structure of the extended-spectrum β-lactamase PER-2 and insights into the role of specific residues in the interaction with β-lactams and β-lactamase inhibitors. Antimicrob Agents Chemother 2014; 58:5994-6002. [PMID: 25070104 DOI: 10.1128/aac.00089-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PER-2 belongs to a small (7 members to date) group of extended-spectrum β-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most β-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward β-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A β-lactamases. PER β-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER β-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different β-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.
Collapse
|
40
|
Minkov VS, Boldyreva EV. Contribution of Weak S–H···O Hydrogen Bonds to the Side Chain Motions in d,l-Homocysteine on Cooling. J Phys Chem B 2014; 118:8513-23. [DOI: 10.1021/jp503154x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vasily S. Minkov
- Novosibirsk State University, 2 Pirogov
str., 630090 Novosibirsk, Russian Federation
- Institute
of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Sciences, 18 Kutateladze str., 630128 Novosibirsk, Russian Federation
| | - Elena V. Boldyreva
- Novosibirsk State University, 2 Pirogov
str., 630090 Novosibirsk, Russian Federation
- Institute
of Solid State Chemistry and Mechanochemistry Siberian Branch of Russian Academy of Sciences, 18 Kutateladze str., 630128 Novosibirsk, Russian Federation
| |
Collapse
|
41
|
Makwana KM, Raghothama S, Mahalakshmi R. Stabilizing effect of electrostatic vs. aromatic interactions in diproline nucleated peptide β-hairpins. Phys Chem Chem Phys 2014; 15:15321-4. [PMID: 23942893 DOI: 10.1039/c3cp52770k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The contribution of Tyr-His vs. Cys-His interacting pairs to the scaffold stability of (D)Pro-(L)Pro nucleated peptide β-hairpins has been examined. We present direct evidence for the superiority of the Cys-His pairs, mediated by sulphur-imidazole interactions, as added stabilizing agents of the β-hairpin scaffold.
Collapse
|
42
|
Kaur D, Aulakh D, Khanna S, Singh H. Theoretical study on the nature of S···H and O ··· H hydrogen bonds. J Sulphur Chem 2014. [DOI: 10.1080/17415993.2013.874425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Minkov VS, Boldyreva EV. Weak hydrogen bonds formed by thiol groups in N-acetyl-(L)-cysteine and their response to the crystal structure distortion on increasing pressure. J Phys Chem B 2013; 117:14247-60. [PMID: 24102610 DOI: 10.1021/jp4068872] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of hydrostatic pressure on single crystals of N-acetyl-l-cysteine was followed at multiple pressure points from 10(-4) to 6.2 GPa with a pressure step of 0.2-0.3 GPa by Raman spectroscopy and X-ray diffraction. Since in the crystals of N-acetyl-l-cysteine the thiol group is involved in intermolecular hydrogen bonds not as a donor only (bonds S-H···O) but also as an acceptor (bonds N-H···S), increasing the pressure does not result in phase transitions. This makes a contrast with the polymorphs of l- and dl-cysteine, in which multiple phase transitions are observed already at relatively low hydrostatic pressures and are related to the changes in the conformation of the thiol side chains only weakly bound to the neighboring molecules in the structure and thus easily switching over the weak S-H···O and S-H···S hydrogen bonds. No phase transitions occur in N-acetyl-l-cysteine with increasing pressure, and changes in cell parameters and volume vs pressure do not reveal any peculiar features. Nevertheless, a more detailed analysis of the changes in intermolecular distances, in particular, of the geometric parameters of the hydrogen bonds based on X-ray single crystal diffraction analysis, complemented by an equally detailed study of the positions of all the significant bands in Raman spectra, allowed us to study the fine details of subtle changes in the hydrogen bond network. Thus, as pressure increases, a continuous shift of the hydrogen atom of the thiol group from one acceptor (a carboxyl group) to another acceptor (a carbonyl group) is observed. Precise single-crystal X-ray diffraction and polarized Raman spectroscopy structural data reveal the formation of a bifurcated S-H···O hydrogen bond with increasing pressure starting with ∼1.5 GPa. The analysis of the vibrational bands in Raman spectra has shown that different donor and acceptor groups start "feeling" the formation of the bifurcated S-H···O hydrogen bond in different pressure ranges. The results are discussed in relation to some of the previously published data on the effect of high pressure on the polymorphs of l-cysteine, dl-cysteine, and glutathione, that show similarity with the effects reported here for N-acetyl-l-cysteine. The results obtained in this work allow one to suggest new models for the pressure-induced structural rearrangements in the whole family of cysteine-containing crystals.
Collapse
Affiliation(s)
- Vasily S Minkov
- Novosibirsk State University , 2 Pirogov str., 630090 Novosibirsk, Russian Federation
| | | |
Collapse
|
44
|
Francis BR. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. J Mol Evol 2013; 77:134-58. [PMID: 23743924 DOI: 10.1007/s00239-013-9567-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/25/2013] [Indexed: 12/31/2022]
Abstract
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids-valine, alanine, aspartic acid, and glycine-were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071-3944, USA,
| |
Collapse
|
45
|
Klenotic PA, Page RC, Li W, Amick J, Misra S, Silverstein RL. Molecular basis of antiangiogenic thrombospondin-1 type 1 repeat domain interactions with CD36. Arterioscler Thromb Vasc Biol 2013; 33:1655-62. [PMID: 23640500 DOI: 10.1161/atvbaha.113.301523] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Antiangiogenic activity of thrombospondin-1 and related proteins is mediated by interactions between thrombospondin type 1 repeat (TSR) domains and the CD36, LIMP-2, Emp sequence homology (CLESH) domain of the endothelial cell receptor CD36. We sought to characterize key molecular determinants of the interaction between thrombospondin-1 TSR domains and the CD36 CLESH domain. APPROACH AND RESULTS Recombinant thrombospondin-1 TSR2 and TSR(2,3) constructs inhibited microvascular endothelial cell migration, microvascular endothelial cell tube formation, and vessel sprouting in aortic ring assays. Interaction with CD36 CLESH decoy peptides negated these effects. Mutational analyses identified a cluster of residues that confer positive charge to the TSR2 surface and mediate interaction with CD36 CLESH. Antiangiogenic activity was significantly reduced by charge-neutralizing mutations of the Arg-Trp ladder in TSR2, but not TSR3. Additionally, I438 and K464 of TSR2 were shown to be required for CD36 CLESH binding to TSR2. A complementary acidic cluster within CD36 CLESH is also required for antiangiogenic activity. CONCLUSIONS Thrombospondin-1 interacts with CD36 CLESH through electrostatic interactions mediated by a positively charged TSR2 surface and multiple negatively charged CD36 CLESH residues. Two key residues serve as specificity determinants that identify other TSR domains that interact with CD36 CLESH.
Collapse
Affiliation(s)
- Philip A Klenotic
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
46
|
Olivella M, Caltabiano G, Cordomí A. The role of Cysteine 6.47 in class A GPCRs. BMC STRUCTURAL BIOLOGY 2013; 13:3. [PMID: 23497259 PMCID: PMC3610275 DOI: 10.1186/1472-6807-13-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/06/2013] [Indexed: 11/10/2022]
Abstract
Background The CWxP motif of transmembrane helix 6 (x: any residue) is highly conserved in class A GPCRs. Within this motif, W6.48 is a big star in the theory of the global “toggle switch” because of its key role in the activation mechanism of GPCRs upon ligand binding. With all footlights focused on W6.48, the reason why the preceding residue, C6.47, is largely conserved is still unknown. The present study is aimed to fill up this lack of knowledge by characterizing the role of C6.47 of the CWxP motif. Results A complete analysis of available crystal structures has been made alongside with molecular dynamics simulations of model peptides to explore a possible structural role for C6.47. Conclusions We conclude that C6.47 does not modulate the conformation of the TM6 proline kink and propose that C6.47 participates in the rearrangement of the TM6 and TM7 interface accompanying activation.
Collapse
Affiliation(s)
- Mireia Olivella
- Departament de Biologia de Sistemes, Universitat de Vic, Vic, Barcelona 08500, Catalonia
| | | | | |
Collapse
|
47
|
Taygerly JP, McGee LR, Rubenstein SM, Houze JB, Cushing TD, Li Y, Motani A, Chen JL, Frankmoelle W, Ye G, Learned MR, Jaen J, Miao S, Timmermans PB, Thoolen M, Kearney P, Flygare J, Beckmann H, Weiszmann J, Lindstrom M, Walker N, Liu J, Biermann D, Wang Z, Hagiwara A, Iida T, Aramaki H, Kitao Y, Shinkai H, Furukawa N, Nishiu J, Nakamura M. Discovery of INT131: A selective PPARγ modulator that enhances insulin sensitivity. Bioorg Med Chem 2013; 21:979-92. [DOI: 10.1016/j.bmc.2012.11.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 01/08/2023]
|
48
|
Henriksen SB, Mortensen RJ, Geertz-Hansen HM, Neves-Petersen MT, Arnason O, Söring J, Petersen SB. Hyperdimensional analysis of amino acid pair distributions in proteins. PLoS One 2011; 6:e25638. [PMID: 22174733 PMCID: PMC3235099 DOI: 10.1371/journal.pone.0025638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/08/2011] [Indexed: 01/06/2023] Open
Abstract
Our manuscript presents a novel approach to protein structure analyses. We have organized an 8-dimensional data cube with protein 3D-structural information from 8706 high-resolution non-redundant protein-chains with the aim of identifying packing rules at the amino acid pair level. The cube contains information about amino acid type, solvent accessibility, spatial and sequence distance, secondary structure and sequence length. We are able to pose structural queries to the data cube using program ProPack. The response is a 1, 2 or 3D graph. Whereas the response is of a statistical nature, the user can obtain an instant list of all PDB-structures where such pair is found. The user may select a particular structure, which is displayed highlighting the pair in question. The user may pose millions of different queries and for each one he will receive the answer in a few seconds. In order to demonstrate the capabilities of the data cube as well as the programs, we have selected well known structural features, disulphide bridges and salt bridges, where we illustrate how the queries are posed, and how answers are given. Motifs involving cysteines such as disulphide bridges, zinc-fingers and iron-sulfur clusters are clearly identified and differentiated. ProPack also reveals that whereas pairs of Lys residues virtually never appear in close spatial proximity, pairs of Arg are abundant and appear at close spatial distance, contrasting the belief that electrostatic repulsion would prevent this juxtaposition and that Arg-Lys is perceived as a conservative mutation. The presented programs can find and visualize novel packing preferences in proteins structures allowing the user to unravel correlations between pairs of amino acids. The new tools allow the user to view statistical information and visualize instantly the structures that underpin the statistical information, which is far from trivial with most other SW tools for protein structure analysis.
Collapse
Affiliation(s)
- Svend B. Henriksen
- NanoBiotechnology Group, Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Rasmus J. Mortensen
- NanoBiotechnology Group, Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Henrik M. Geertz-Hansen
- NanoBiotechnology Group, Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Maria Teresa Neves-Petersen
- International Iberian Nanotechnol Lab (INL), Braga, Portugal
- Nanobiotechnology Group, Department of Biotechnology, Chemistry and Environmental Sciences, University of Aalborg, Aalborg, Denmark
- * E-mail:
| | - Omar Arnason
- NanoBiotechnology Group, Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Jón Söring
- NanoBiotechnology Group, Department of Physics and Nanotechnology, Aalborg University, Aalborg, Denmark
| | - Steffen B. Petersen
- Nanobiotechnology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- The Institute for Lasers, Photonics and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
49
|
Salonen LM, Ellermann M, Diederich F. Aromatische Ringe in chemischer und biologischer Erkennung: Energien und Strukturen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007560] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Salonen LM, Ellermann M, Diederich F. Aromatic rings in chemical and biological recognition: energetics and structures. Angew Chem Int Ed Engl 2011; 50:4808-42. [PMID: 21538733 DOI: 10.1002/anie.201007560] [Citation(s) in RCA: 1183] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Indexed: 12/12/2022]
Abstract
This review describes a multidimensional treatment of molecular recognition phenomena involving aromatic rings in chemical and biological systems. It summarizes new results reported since the appearance of an earlier review in 2003 in host-guest chemistry, biological affinity assays and biostructural analysis, data base mining in the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB), and advanced computational studies. Topics addressed are arene-arene, perfluoroarene-arene, S⋅⋅⋅aromatic, cation-π, and anion-π interactions, as well as hydrogen bonding to π systems. The generated knowledge benefits, in particular, structure-based hit-to-lead development and lead optimization both in the pharmaceutical and in the crop protection industry. It equally facilitates the development of new advanced materials and supramolecular systems, and should inspire further utilization of interactions with aromatic rings to control the stereochemical outcome of synthetic transformations.
Collapse
Affiliation(s)
- Laura M Salonen
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Hönggerberg, HCI, 8093 Zurich, Switzerland
| | | | | |
Collapse
|