1
|
Masuda I, Hou YM. A tRNA modification pattern that facilitates interpretation of the genetic code. Front Microbiol 2024; 15:1415100. [PMID: 38933027 PMCID: PMC11199890 DOI: 10.3389/fmicb.2024.1415100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Interpretation of the genetic code from triplets of nucleotides to amino acids is fundamental to life. This interpretation is achieved by cellular tRNAs, each reading a triplet codon through its complementary anticodon (positions 34-36) while delivering the amino acid charged to its 3'-end. This amino acid is then incorporated into the growing polypeptide chain during protein synthesis on the ribosome. The quality and versatility of the interpretation is ensured not only by the codon-anticodon pairing, but also by the post-transcriptional modifications at positions 34 and 37 of each tRNA, corresponding to the wobble nucleotide at the first position of the anticodon and the nucleotide on the 3'-side of the anticodon, respectively. How each codon is read by the matching anticodon, and which modifications are required, cannot be readily predicted from the codon-anticodon pairing alone. Here we provide an easily accessible modification pattern that is integrated into the genetic code table. We focus on the Gram-negative bacterium Escherichia coli as a model, which is one of the few organisms whose entire set of tRNA modifications and modification genes is identified and mapped. This work provides an important reference tool that will facilitate research in protein synthesis, which is at the core of the cellular life.
Collapse
|
2
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Fujino T, Sonoda R, Higashinagata T, Mishiro-Sato E, Kano K, Murakami H. Ser/Leu-swapped cell-free translation system constructed with natural/in vitro transcribed-hybrid tRNA set. Nat Commun 2024; 15:4143. [PMID: 38755134 PMCID: PMC11099018 DOI: 10.1038/s41467-024-48056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
The Ser/Leu-swapped genetic code can act as a genetic firewall, mitigating biohazard risks arising from horizontal gene transfer in genetically modified organisms. Our prior work demonstrated the orthogonality of this swapped code to the standard genetic code using a cell-free translation system comprised of 21 in vitro transcribed tRNAs. In this study, to advance this system for protein engineering, we introduce a natural/in vitro transcribed-hybrid tRNA set. This set combines natural tRNAs from Escherichia coli (excluding Ser, Leu, and Tyr) and in vitro transcribed tRNAs, encompassing anticodon-swapped tRNASerGAG and tRNALeuGGA. This approach reduces the number of in vitro transcribed tRNAs required from 21 to only 4. In this optimized system, the production of a model protein, superfolder green fluorescent protein, increases to 3.5-fold. With this hybrid tRNA set, the Ser/Leu-swapped cell-free translation system will stand as a potent tool for protein production with reduced biohazard concerns in future biological endeavors.
Collapse
MESH Headings
- Cell-Free System
- Protein Biosynthesis
- Escherichia coli/genetics
- Escherichia coli/metabolism
- RNA, Transfer, Leu/genetics
- RNA, Transfer, Leu/metabolism
- RNA, Transfer, Ser/metabolism
- RNA, Transfer, Ser/genetics
- Genetic Code
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Green Fluorescent Proteins/metabolism
- Green Fluorescent Proteins/genetics
- Protein Engineering/methods
- Transcription, Genetic
- Anticodon/genetics
- Anticodon/metabolism
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Ryogo Sonoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Taito Higashinagata
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Emi Mishiro-Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Keiko Kano
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.
| |
Collapse
|
4
|
Pichler A, Hillmeier M, Heiss M, Peev E, Xefteris S, Steigenberger B, Thoma I, Müller M, Borsò M, Imhof A, Carell T. Synthesis and Structure Elucidation of Glutamyl-Queuosine. J Am Chem Soc 2023; 145:25528-25532. [PMID: 37967838 PMCID: PMC10690763 DOI: 10.1021/jacs.3c10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Queuosine is one of the most complex hypermodified RNA nucleosides found in the Wobble position of tRNAs. In addition to Queuosine itself, several further modified derivatives are known, where the cyclopentene ring structure is additionally modified by a galactosyl-, a mannosyl-, or a glutamyl-residue. While sugar-modified Queuosine derivatives are found in the tRNAs of vertebrates, glutamylated Queuosine (gluQ) is only known in bacteria. The exact structure of gluQ, particularly with respect to how and where the glutamyl side chain is connected to the Queuosine cyclopentene side chain, is unknown. Here we report the first synthesis of gluQ and, using UHPLC-MS-coinjection and NMR studies, we show that the isolated natural gluQ is the α-allyl-connected gluQ compound.
Collapse
Affiliation(s)
- Alexander Pichler
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Hillmeier
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Matthias Heiss
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Elsa Peev
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Stylianos Xefteris
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Barbara Steigenberger
- Mass
Spectrometry Core Facility, Max Planck Institute
of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Planegg, Germany
| | - Ines Thoma
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Markus Müller
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Marco Borsò
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Axel Imhof
- Department
of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, Martinsried, 82152 Planegg, Germany
| | - Thomas Carell
- Department
of Chemistry, Institute of Chemical Epigenetics,
Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
5
|
Díaz-Rullo J, González-Pastor JE. tRNA queuosine modification is involved in biofilm formation and virulence in bacteria. Nucleic Acids Res 2023; 51:9821-9837. [PMID: 37638766 PMCID: PMC10570037 DOI: 10.1093/nar/gkad667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
tRNA modifications are crucial for fine-tuning of protein translation. Queuosine (Q) modification of tRNAs is thought to modulate the translation rate of NAU codons, but its physiological role remains elusive. Therefore, we hypothesize that Q-tRNAs control those physiological processes involving NAU codon-enriched genes (Q-genes). Here, we report a novel bioinformatic strategy to predict Q-genes, revealing a widespread enrichment in functions, especially those related to biofilm formation and virulence in bacteria, and particularly in human pathogens. Indeed, we experimentally verified that these processes were significantly affected by altering the degree of tRNA Q-modification in different model bacteria, representing the first report of a general mechanism controlling biofilm formation and virulence in Gram-positive and Gram-negative bacteria possibly through the coordination of the expression of functionally related genes. Furthermore, we propose that changes in Q availability in a microbiome would affect its functionality. Our findings open the door to the control of bacterial infections and biofilm formation by inhibition of tRNA Q-modification.
Collapse
Affiliation(s)
- Jorge Díaz-Rullo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, Torrejón de Ardoz 28850, Madrid, Spain
| | - José Eduardo González-Pastor
- Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, Torrejón de Ardoz 28850, Madrid, Spain
| |
Collapse
|
6
|
Vignon M, Bastide A, Attina A, David A, Bousquet P, Orti V, Vialaret J, Lehmann S, Periere DD, Hirtz C. Multiplexed LC-MS/MS quantification of salivary RNA modifications in periodontitis. J Periodontal Res 2023; 58:959-967. [PMID: 37349891 DOI: 10.1111/jre.13155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE To analyse the salivary epitranscriptomic profiles as periodontitis biomarkers using multiplexed mass spectrometry (MS). BACKGROUND The field of epitranscriptomics, which relates to RNA chemical modifications, opens new perspectives in the discovery of diagnostic biomarkers, especially in periodontitis. Recently, the modified ribonucleoside N6-methyladenosine (m6A) was revealed as a crucial player in the etiopathogenesis of periodontitis. However, no epitranscriptomic biomarker has been identified in saliva to date. MATERIALS AND METHODS Twenty-four saliva samples were collected from periodontitis patients (n = 16) and from control subjects (n = 8). Periodontitis patients were stratified according to stage and grade. Salivary nucleosides were directly extracted and, in parallel, salivary RNA was digested into its constituent nucleosides. Nucleoside samples were then quantified by multiplexed MS. RESULTS Twenty-seven free nucleosides were detected and an overlapping set of 12 nucleotides were detected in digested RNA. Among the free nucleosides, cytidine and three other modified nucleosides (inosine, queuosine and m6Am) were significantly altered in periodontitis patients. In digested RNA, only uridine was significantly higher in periodontitis patients. Importantly there was no correlation between free salivary nucleoside levels and the levels of those same nucleotides in digested salivary RNA, except for cytidine, m5C and uridine. This statement implies that the two detection methods are complementary. CONCLUSION The high specificity and sensitivity of MS allowed the detection and quantification of multiple nucleosides from RNA and free nucleosides in saliva. Some ribonucleosides appear to be promising biomarkers of periodontitis. Our analytic pipeline opens new perspectives for diagnostic periodontitis biomarkers.
Collapse
Affiliation(s)
- Margaux Vignon
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Aurore Attina
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Philippe Bousquet
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
| | - Valérie Orti
- Department of Periodontology, Dental Faculty, University of Montpellier, Montpellier, France
| | - Jérôme Vialaret
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| | | | - Christophe Hirtz
- INM, University of Montpellier, INSERM, Montpellier, France
- LBPC-PPC, University of Montpellier, CHU Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
7
|
Ke N, Kumka JE, Fang M, Weaver B, Burstyn JN, Bauer CE. RedB, a Member of the CRP/FNR Family, Functions as a Transcriptional Redox Brake. Microbiol Spectr 2022; 10:e0235322. [PMID: 36106751 PMCID: PMC9603854 DOI: 10.1128/spectrum.02353-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 01/04/2023] Open
Abstract
Phylogenetic and sequence similarity network analyses of the CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family of transcription factors indicate the presence of numerous subgroups, many of which have not been analyzed. Five homologs of the CRP/FNR family are present in the Rhodobacter capsulatus genome. One is a member of a broadly disseminated, previously uncharacterized CRP/FNR family subgroup encoded by the gene rcc01561. In this study, we utilize mutational disruption, transcriptome sequencing (RNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) to determine the role of RCC01561 in regulating R. capsulatus physiology. This analysis shows that a mutant strain disrupted for rcc01561 exhibits altered expression of 451 genes anaerobically. A detailed analysis of the affected loci shows that RCC01561 represses photosynthesis and favors catabolism over anabolism and the use of the Entner-Doudoroff shunt and glycolysis over that of the tricarboxylic acid (TCA) cycle to limit NADH and ATP formation. This newly characterized CRP/FNR family member with a predominant role in reducing the production of reducing potential and ATP is given the nomenclature RedB as it functions as an energy and redox brake. Beyond limiting energy production, RedB also represses the expression of numerous genes involved in protein synthesis, including those involved in translation initiation, tRNA synthesis and charging, and amino acid biosynthesis. IMPORTANCE CRP and FNR are well-characterized members of the CRP/FNR family of regulatory proteins that function to maximize cellular energy production. In this study, we identify several new subgroups of the CRP/FNR family, many of which have not yet been characterized. Using Rhodobacter capsulatus as a model, we have mutationally disrupted the gene rcc01561, which codes for a transcription factor that is a member of a unique subgroup of the CRP/FNR family. Transcriptomic analysis shows that the disruption of rcc01561 leads to the altered expression of 451 genes anaerobically. Analysis of these regulated genes indicates that RCC01561 has a novel role in limiting cellular energy production. To our knowledge, this is first example of a member of the CRP/FNR family that functions as a brake on cellular energy production.
Collapse
Affiliation(s)
- Nijia Ke
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Joseph E. Kumka
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Mingxu Fang
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Brian Weaver
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Carl E. Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Bessler L, Kaur N, Vogt LM, Flemmich L, Siebenaller C, Winz ML, Tuorto F, Micura R, Ehrenhofer-Murray A, Helm M. Functional integration of a semi-synthetic azido-queuosine derivative into translation and a tRNA modification circuit. Nucleic Acids Res 2022; 50:10785-10800. [PMID: 36169220 PMCID: PMC9561289 DOI: 10.1093/nar/gkac822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Substitution of the queuine nucleobase precursor preQ1 by an azide-containing derivative (azido-propyl-preQ1) led to incorporation of this clickable chemical entity into tRNA via transglycosylation in vitro as well as in vivo in Escherichia coli, Schizosaccharomyces pombe and human cells. The resulting semi-synthetic RNA modification, here termed Q-L1, was present in tRNAs on actively translating ribosomes, indicating functional integration into aminoacylation and recruitment to the ribosome. The azide moiety of Q-L1 facilitates analytics via click conjugation of a fluorescent dye, or of biotin for affinity purification. Combining the latter with RNAseq showed that TGT maintained its native tRNA substrate specificity in S. pombe cells. The semi-synthetic tRNA modification Q-L1 was also functional in tRNA maturation, in effectively replacing the natural queuosine in its stimulation of further modification of tRNAAsp with 5-methylcytosine at position 38 by the tRNA methyltransferase Dnmt2 in S. pombe. This is the first demonstrated in vivo integration of a synthetic moiety into an RNA modification circuit, where one RNA modification stimulates another. In summary, the scarcity of queuosinylation sites in cellular RNA, makes our synthetic q/Q system a 'minimally invasive' system for placement of a non-natural, clickable nucleobase within the total cellular RNA.
Collapse
Affiliation(s)
- Larissa Bessler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Navpreet Kaur
- Institute of Biology, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Lea-Marie Vogt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Laurin Flemmich
- Department of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Carmen Siebenaller
- Department of Chemistry – Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Marie-Luise Winz
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Francesca Tuorto
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ronald Micura
- Department of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| |
Collapse
|
9
|
Pollo-Oliveira L, Davis NK, Hossain I, Ho P, Yuan Y, Salguero García P, Pereira C, Byrne SR, Leng J, Sze M, Blaby-Haas CE, Sekowska A, Montoya A, Begley T, Danchin A, Aalberts DP, Angerhofer A, Hunt J, Conesa A, Dedon PC, de Crécy-Lagard V. The absence of the queuosine tRNA modification leads to pleiotropic phenotypes revealing perturbations of metal and oxidative stress homeostasis in Escherichia coli K12. Metallomics 2022; 14:mfac065. [PMID: 36066904 PMCID: PMC9508795 DOI: 10.1093/mtomcs/mfac065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/09/2022] [Indexed: 02/04/2023]
Abstract
Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.
Collapse
Affiliation(s)
- Leticia Pollo-Oliveira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Nick K Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Intekhab Hossain
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | - Peiying Ho
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Pedro Salguero García
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia 46022, Spain
| | - Cécile Pereira
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiapeng Leng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melody Sze
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Crysten E Blaby-Haas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | | - Alvaro Montoya
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Thomas Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY 12222, USA
| | - Antoine Danchin
- Kodikos Labs, 23 rue Baldassini, Lyon 69007, France
- School of Biomedical Sciences, Li Kashing Faculty of Medicine, University of Hong Kong, Pokfulam, SAR Hong Kong
| | - Daniel P Aalberts
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | | | - John Hunt
- Department of Biological Sciences, Columbia University, New York, NY 10024, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna 46980, Spain
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
- Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Katanski CD, Watkins CP, Zhang W, Reyer M, Miller S, Pan T. Analysis of queuosine and 2-thio tRNA modifications by high throughput sequencing. Nucleic Acids Res 2022; 50:e99. [PMID: 35713550 PMCID: PMC9508811 DOI: 10.1093/nar/gkac517] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
Queuosine (Q) is a conserved tRNA modification at the wobble anticodon position of tRNAs that read the codons of amino acids Tyr, His, Asn, and Asp. Q-modification in tRNA plays important roles in the regulation of translation efficiency and fidelity. Queuosine tRNA modification is synthesized de novo in bacteria, whereas in mammals the substrate for Q-modification in tRNA is queuine, the catabolic product of the Q-base of gut bacteria. This gut microbiome dependent tRNA modification may play pivotal roles in translational regulation in different cellular contexts, but extensive studies of Q-modification biology are hindered by the lack of high throughput sequencing methods for its detection and quantitation. Here, we describe a periodate-treatment method that enables single base resolution profiling of Q-modification in tRNAs by Nextgen sequencing from biological RNA samples. Periodate oxidizes the Q-base, which results in specific deletion signatures in the RNA-seq data. Unexpectedly, we found that periodate-treatment also enables the detection of several 2-thio-modifications including τm5s2U, mcm5s2U, cmnm5s2U, and s2C by sequencing in human and E. coli tRNA. We term this method periodate-dependent analysis of queuosine and sulfur modification sequencing (PAQS-seq). We assess Q- and 2-thio-modifications at the tRNA isodecoder level, and 2-thio modification changes in stress response. PAQS-seq should be widely applicable in the biological studies of Q- and 2-thio-modifications in mammalian and microbial tRNAs.
Collapse
Affiliation(s)
- Christopher D Katanski
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher P Watkins
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Reyer
- Program of Biophysics, University of Chicago, Chicago, IL 60637, USA
| | - Samuel Miller
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Arsenite toxicity is regulated by queuine availability and oxidation-induced reprogramming of the human tRNA epitranscriptome. Proc Natl Acad Sci U S A 2022; 119:e2123529119. [PMID: 36095201 PMCID: PMC9499598 DOI: 10.1073/pnas.2123529119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The ∼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.
Collapse
|
12
|
Pust MM, Timmis KN, Tümmler B. Bacterial tRNA landscape revisited. Environ Microbiol 2022; 24:2890-2894. [PMID: 35570829 DOI: 10.1111/1462-2920.16033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
The updated Wobble Hypothesis reasonably explains why some 40 tRNA species are sufficient to decode the 61 amino acid codons of the Universal Genetic Code. However, we still have no clue why eubacteria lack tRNA isoacceptors with ANN anticodons, whereas eukaryotes universally lack eight GNN anticodons, only one of which is also absent in bacteria. Direct tRNA sequencing could resolve the patterns of nucleoside modification that had been driving the divergent evolution in prokaryotes and eukaryotes, but this task will require the development of AI-supported base-callers that can recognize modified nucleosides without any subsequent analytical verification. Our knowledge of the bacterial tRNA landscape is moreover broadened by the recent discovery of antisense tRNAs and tRNA-derived fragments that should be examined in their roles for gene expression, translation, bacterial physiology or metabolism.
Collapse
Affiliation(s)
- Marie-Madlen Pust
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Hillmeier M, Wagner M, Ensfelder T, Korytiakova E, Thumbs P, Müller M, Carell T. Synthesis and structure elucidation of the human tRNA nucleoside mannosyl-queuosine. Nat Commun 2021; 12:7123. [PMID: 34880214 PMCID: PMC8654956 DOI: 10.1038/s41467-021-27371-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
Queuosine (Q) is a structurally complex, non-canonical RNA nucleoside. It is present in many eukaryotic and bacterial species, where it is part of the anticodon loop of certain tRNAs. In higher vertebrates, including humans, two further modified queuosine-derivatives exist - galactosyl- (galQ) and mannosyl-queuosine (manQ). The function of these low abundant hypermodified RNA nucleosides remains unknown. While the structure of galQ was elucidated and confirmed by total synthesis, the reported structure of manQ still awaits confirmation. By combining total synthesis and LC-MS-co-injection experiments, together with a metabolic feeding study of labelled hexoses, we show here that the natural compound manQ isolated from mouse liver deviates from the literature-reported structure. Our data show that manQ features an α-allyl connectivity of its sugar moiety. The yet unidentified glycosylases that attach galactose and mannose to the Q-base therefore have a maximally different constitutional connectivity preference. Knowing the correct structure of manQ will now pave the way towards further elucidation of its biological function.
Collapse
Affiliation(s)
- Markus Hillmeier
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Mirko Wagner
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Timm Ensfelder
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Eva Korytiakova
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Peter Thumbs
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Markus Müller
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany
| | - Thomas Carell
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377, München, Germany.
| |
Collapse
|
14
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
15
|
Kulkarni S, Rubio MAT, Hegedűsová E, Ross RL, Limbach PA, Alfonzo JD, Paris Z. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res 2021; 49:8247-8260. [PMID: 34244755 PMCID: PMC8373054 DOI: 10.1093/nar/gkab567] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems. However, since a lack of tRNA genes in T. brucei mitochondria makes it essential to import a complete set from the cytoplasm, we surprisingly found that Q-modified tRNAs are preferentially imported over their unmodified counterparts. In turn, their absence from mitochondria has a pronounced effect on organellar translation and affects function. Although Q modification in T. brucei is globally important for codon selection, it is more so for mitochondrial protein synthesis. These results provide a unique example of the combined regulatory effect of codon usage and wobble modifications on protein synthesis; all driven by tRNA intracellular transport dynamics.
Collapse
Affiliation(s)
- Sneha Kulkarni
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mary Anne T Rubio
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Eva Hegedűsová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Robert L Ross
- Metabolomics Mass Spectrometry Core, Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Huang X, Jiao N, Zhang R. The genomic content and context of auxiliary metabolic genes in roseophages. Environ Microbiol 2021; 23:3743-3757. [PMID: 33511765 DOI: 10.1111/1462-2920.15412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Marine bacteriophages frequently possess auxiliary metabolic genes (AMGs) that accelerate host metabolism during phage infection. The significance of AMGs in phage infecting the ecologically important Roseobacter clade, found predominantly in marine environments, remains to be determined. Here, we analysed the distribution and genomic context of 180 AMGs, annotated into 20 types, across 50 roseophage genomes. Roseophages share seven high-frequency AMGs (trx, grx, RNR, thyX, DCD, phoH, and mazG), most of them involved in the nucleotide biosynthesis pathway that represent conserved intra and inter operational taxonomic units (OTUs), and share ≥97% full-length DNA sequence similarity. Sporadic AMGs (dUTPase, lexA, degS, Que, NAPRT, AHL, pcnB, ctrA, RTX, RNR-nrdA, RNR-nrdE, wclP, and flgJ), present in only one or two OTUs, show high functional diversity. The roseophage AMG repertoire weakly correlates with environmental factors, while host range partially explains the sporadic AMG distribution. Locally co-linear blocks distribution index (LDI) analysis indicated that high-frequency roseopodovirus AMGs are restricted to particular genomic islands, possibly originating from limited historical acquisition events. Low-frequency roseopodovirus AMGs and all roseosiphovirus AMGs have high LDI values, implying multiple historical acquisition events. In summary, roseophages have acquired a range of AMGs through horizontal gene transfer, and the forces shaping the evolution of roseophages are described.
Collapse
Affiliation(s)
- Xingyu Huang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
17
|
Seelam Prabhakar P, Takyi NA, Wetmore SD. Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations. RNA (NEW YORK, N.Y.) 2021; 27:202-220. [PMID: 33214333 PMCID: PMC7812866 DOI: 10.1261/rna.078097.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Isopentenyladenosine/chemistry
- Isopentenyladenosine/metabolism
- Molecular Dynamics Simulation
- Nucleic Acid Conformation
- Nucleosides/chemistry
- Nucleosides/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
18
|
Zhang J, Lu R, Zhang Y, Matuszek Ż, Zhang W, Xia Y, Pan T, Sun J. tRNA Queuosine Modification Enzyme Modulates the Growth and Microbiome Recruitment to Breast Tumors. Cancers (Basel) 2020; 12:E628. [PMID: 32182756 PMCID: PMC7139606 DOI: 10.3390/cancers12030628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transfer RNA (tRNA) queuosine (Q)-modifications occur specifically in 4 cellular tRNAs at the wobble anticodon position. tRNA Q-modification in human cells depends on the gut microbiome because the microbiome product queuine is required for its installation by the enzyme Q tRNA ribosyltransferase catalytic subunit 1 (QTRT1) encoded in the human genome. Queuine is a micronutrient from diet and microbiome. Although tRNA Q-modification has been studied for a long time regarding its properties in decoding and tRNA fragment generation, how QTRT1 affects tumorigenesis and the microbiome is still poorly understood. RESULTS We generated single clones of QTRT1-knockout breast cancer MCF7 cells using Double Nickase Plasmid. We also established a QTRT1-knockdown breast MDA-MB-231 cell line. The impacts of QTRT1 deletion or reduction on cell proliferation and migration in vitro were evaluated using cell culture, while the regulations on tumor growth in vivo were evaluated using a xenograft BALB/c nude mouse model. We found that QTRT1 deficiency in human breast cancer cells could change the functions of regulation genes, which are critical in cell proliferation, tight junction formation, and migration in human breast cancer cells in vitro and a breast tumor mouse model in vivo. We identified that several core bacteria, such as Lachnospiraceae, Lactobacillus, and Alistipes, were markedly changed in mice post injection with breast cancer cells. The relative abundance of bacteria in tumors induced from wildtype cells was significantly higher than those of QTRT1 deficiency cells. CONCLUSIONS Our results demonstrate that the QTRT1 gene and tRNA Q-modification altered cell proliferation, junctions, and microbiome in tumors and the intestine, thus playing a critical role in breast cancer development.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Rong Lu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Żaneta Matuszek
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Wen Zhang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
| | - Tao Pan
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA; (Ż.M.); (T.P.)
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.Z.); (R.L.); (Y.Z.); (Y.X.)
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Diwan GD, Agashe D. Wobbling Forth and Drifting Back: The Evolutionary History and Impact of Bacterial tRNA Modifications. Mol Biol Evol 2019; 35:2046-2059. [PMID: 29846694 PMCID: PMC6063277 DOI: 10.1093/molbev/msy110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Along with tRNAs, enzymes that modify anticodon bases are a key aspect of translation across the tree of life. tRNA modifications extend wobble pairing, allowing specific (“target”) tRNAs to recognize multiple codons and cover for other (“nontarget”) tRNAs, often improving translation efficiency and accuracy. However, the detailed evolutionary history and impact of tRNA modifying enzymes has not been analyzed. Using ancestral reconstruction of five tRNA modifications across 1093 bacteria, we show that most modifications were ancestral to eubacteria, but were repeatedly lost in many lineages. Most modification losses coincided with evolutionary shifts in nontarget tRNAs, often driven by increased bias in genomic GC and associated codon use, or by genome reduction. In turn, the loss of tRNA modifications stabilized otherwise highly dynamic tRNA gene repertoires. Our work thus traces the complex history of bacterial tRNA modifications, providing the first clear evidence for their role in the evolution of bacterial translation.
Collapse
Affiliation(s)
- Gaurav D Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,SASTRA University, Thanjavur, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| |
Collapse
|
20
|
Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:429-446. [PMID: 30529456 PMCID: PMC6414753 DOI: 10.1016/j.bbagrm.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M, Ehrenhofer-Murray AE, Dittmar G, Gröne HJ, Lyko F. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J 2018; 37:embj.201899777. [PMID: 30093495 PMCID: PMC6138434 DOI: 10.15252/embj.201899777] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Cansu Cirzi
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Reinhard Liebers
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Martin Müller
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
22
|
Devi M, Chingbiaknem E, Lyngdoh RHD. A molecular mechanics study on GA codon box translation. J Theor Biol 2018; 441:28-43. [PMID: 29305181 DOI: 10.1016/j.jtbi.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
Abstract
The GA codon box incorporates the two-fold degeneracy of aspartic acid and of glutamic acid. Using the molecular mechanics approach of the AMBER suite, the four codons of the GA box are paired via H-bonding with two aspartic acid anticodons and two glutamic acid anticodons to yield 8 cognate and 11 non-cognate codon-anticodon duplexes. In addition four select non-cognate duplexes between the GA box codons and three alanine anticodons are also studied. These 23 duplexes display a variety of base-pairing possibilities at the wobble position. Cognate duplexes are differentiated from non-cognate duplexes on the grounds of structure and stability (chiefly the former). The results are in line with Crick's wobble hypothesis, and corroborate the observed reading properties of the aspartic acid anticodons GUC and QUC and of the glutamic acid anticodons CUC and SmnUC.
Collapse
Affiliation(s)
- Martina Devi
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Esther Chingbiaknem
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - R H Duncan Lyngdoh
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
23
|
Agris PF, Eruysal ER, Narendran A, Väre VYP, Vangaveti S, Ranganathan SV. Celebrating wobble decoding: Half a century and still much is new. RNA Biol 2017; 15:537-553. [PMID: 28812932 PMCID: PMC6103715 DOI: 10.1080/15476286.2017.1356562] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022] Open
Abstract
A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.
Collapse
Affiliation(s)
- Paul F. Agris
- The RNA Institute, State University of New York, Albany, NY, USA
- Department of Biology, State University of New York, Albany, NY, USA
- Department of Chemistry, State University of New York, Albany, NY, USA
| | - Emily R. Eruysal
- Department of Biology, State University of New York, Albany, NY, USA
| | - Amithi Narendran
- Department of Biology, State University of New York, Albany, NY, USA
| | - Ville Y. P. Väre
- Department of Biology, State University of New York, Albany, NY, USA
| | - Sweta Vangaveti
- The RNA Institute, State University of New York, Albany, NY, USA
| | | |
Collapse
|
24
|
Nagao A, Ohara M, Miyauchi K, Yokobori SI, Yamagishi A, Watanabe K, Suzuki T. Hydroxylation of a conserved tRNA modification establishes non-universal genetic code in echinoderm mitochondria. Nat Struct Mol Biol 2017; 24:778-782. [PMID: 28783151 DOI: 10.1038/nsmb.3449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
The genetic code is not frozen but still evolving, which can result in the acquisition of 'dialectal' codons that deviate from the universal genetic code. RNA modifications in the anticodon region of tRNAs play a critical role in establishing such non-universal genetic codes. In echinoderm mitochondria, the AAA codon specifies asparagine instead of lysine. By analyzing mitochondrial (mt-) tRNALys isolated from the sea urchin (Mesocentrotus nudus), we discovered a novel modified nucleoside, hydroxy-N6-threonylcarbamoyladenosine (ht6A), 3' adjacent to the anticodon (position 37). Biochemical analysis revealed that ht6A37 has the ability to prevent mt-tRNALys from misreading AAA as lysine, thereby indicating that hydroxylation of N6-threonylcarbamoyladenosine (t6A) contributes to the establishment of the non-universal genetic code in echinoderm mitochondria.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Ohara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Yokobori
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kimitsuna Watanabe
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Bohnsack MT, Sloan KE. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci 2017; 75:241-260. [PMID: 28752201 PMCID: PMC5756263 DOI: 10.1007/s00018-017-2598-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Mitochondrial protein synthesis is essential for the production of components of the oxidative phosphorylation system. RNA modifications in the mammalian mitochondrial translation apparatus play key roles in facilitating mitochondrial gene expression as they enable decoding of the non-conventional genetic code by a minimal set of tRNAs, and efficient and accurate protein synthesis by the mitoribosome. Intriguingly, recent transcriptome-wide analyses have also revealed modifications in mitochondrial mRNAs, suggesting that the concept of dynamic regulation of gene expression by the modified RNAs (the “epitranscriptome”) extends to mitochondria. Furthermore, it has emerged that defects in RNA modification, arising from either mt-DNA mutations or mutations in nuclear-encoded mitochondrial modification enzymes, underlie multiple mitochondrial diseases. Concomitant advances in the identification of the mitochondrial RNA modification machinery and recent structural views of the mitochondrial translation apparatus now allow the molecular basis of such mitochondrial diseases to be understood on a mechanistic level.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
26
|
Duechler M, Leszczyńska G, Sochacka E, Nawrot B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell Mol Life Sci 2016; 73:3075-95. [PMID: 27094388 PMCID: PMC4951516 DOI: 10.1007/s00018-016-2217-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/25/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Both, DNA and RNA nucleoside modifications contribute to the complex multi-level regulation of gene expression. Modified bases in tRNAs modulate protein translation rates in a highly dynamic manner. Synonymous codons, which differ by the third nucleoside in the triplet but code for the same amino acid, may be utilized at different rates according to codon-anticodon affinity. Nucleoside modifications in the tRNA anticodon loop can favor the interaction with selected codons by stabilizing specific base pairs. Similarly, weakening of base pairing can discriminate against binding to near-cognate codons. mRNAs enriched in favored codons are translated in higher rates constituting a fine-tuning mechanism for protein synthesis. This so-called codon bias establishes a basic protein level, but sometimes it is necessary to further adjust the production rate of a particular protein to actual requirements, brought by, e.g., stages in circadian rhythms, cell cycle progression or exposure to stress. Such an adjustment is realized by the dynamic change of tRNA modifications resulting in the preferential translation of mRNAs coding for example for stress proteins to facilitate cell survival. Furthermore, tRNAs contribute in an entirely different way to another, less specific stress response consisting in modification-dependent tRNA cleavage that contributes to the general down-regulation of protein synthesis. In this review, we summarize control functions of nucleoside modifications in gene regulation with a focus on recent findings on protein synthesis control by tRNA base modifications.
Collapse
Affiliation(s)
- Markus Duechler
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland.
| | - Grażyna Leszczyńska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
27
|
Müller M, Hartmann M, Schuster I, Bender S, Thüring KL, Helm M, Katze JR, Nellen W, Lyko F, Ehrenhofer-Murray AE. Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res 2015; 43:10952-62. [PMID: 26424849 PMCID: PMC4678861 DOI: 10.1093/nar/gkv980] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023] Open
Abstract
Dnmt2 enzymes are cytosine-5 methyltransferases that methylate C38 of several tRNAs. We report here that the activities of two Dnmt2 homologs, Pmt1 from Schizosaccharomyces pombe and DnmA from Dictyostelium discoideum, are strongly stimulated by prior queuosine (Q) modification of the substrate tRNA. In vivo tRNA methylation levels were stimulated by growth of cells in queuine-containing medium; in vitro Pmt1 activity was enhanced on Q-containing RNA; and queuine-stimulated in vivo methylation was abrogated by the absence of the enzyme that inserts queuine into tRNA, eukaryotic tRNA-guanine transglycosylase. Global analysis of tRNA methylation in S. pombe showed a striking selectivity of Pmt1 for tRNA(Asp) methylation, which distinguishes Pmt1 from other Dnmt2 homologs. The present analysis also revealed a novel Pmt1- and Q-independent tRNA methylation site in S. pombe, C34 of tRNA(Pro). Notably, queuine is a micronutrient that is scavenged by higher eukaryotes from the diet and gut microflora. This work therefore reveals an unanticipated route by which the environment can modulate tRNA modification in an organism.
Collapse
Affiliation(s)
- Martin Müller
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mark Hartmann
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Sebastian Bender
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Kathrin L Thüring
- Institut für Pharmakologie und Biochemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Mark Helm
- Institut für Pharmakologie und Biochemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Jon R Katze
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wolfgang Nellen
- Abteilung für Genetik, Universität Kassel, 34132 Kassel, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | |
Collapse
|
28
|
Fergus C, Barnes D, Alqasem MA, Kelly VP. The queuine micronutrient: charting a course from microbe to man. Nutrients 2015; 7:2897-929. [PMID: 25884661 PMCID: PMC4425180 DOI: 10.3390/nu7042897] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
Abstract
Micronutrients from the diet and gut microbiota are essential to human health and wellbeing. Arguably, among the most intriguing and enigmatic of these micronutrients is queuine, an elaborate 7-deazaguanine derivative made exclusively by eubacteria and salvaged by animal, plant and fungal species. In eubacteria and eukaryotes, queuine is found as the sugar nucleotide queuosine within the anticodon loop of transfer RNA isoacceptors for the amino acids tyrosine, asparagine, aspartic acid and histidine. The physiological requirement for the ancient queuine molecule and queuosine modified transfer RNA has been the subject of varied scientific interrogations for over four decades, establishing relationships to development, proliferation, metabolism, cancer, and tyrosine biosynthesis in eukaryotes and to invasion and proliferation in pathogenic bacteria, in addition to ribosomal frameshifting in viruses. These varied effects may be rationalized by an important, if ill-defined, contribution to protein translation or may manifest from other presently unidentified mechanisms. This article will examine the current understanding of queuine uptake, tRNA incorporation and salvage by eukaryotic organisms and consider some of the physiological consequence arising from deficiency in this elusive and lesser-recognized micronutrient.
Collapse
Affiliation(s)
- Claire Fergus
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Dominic Barnes
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Mashael A Alqasem
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Vincent P Kelly
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
29
|
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 2015; 6:79. [PMID: 25806043 PMCID: PMC4354410 DOI: 10.3389/fgene.2015.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.
Collapse
Affiliation(s)
- Christopher A Powell
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Thomas J Nicholls
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| |
Collapse
|
30
|
Zhang YM, Shao ZQ, Yang LT, Sun XQ, Mao YF, Chen JQ, Wang B. Non-random arrangement of synonymous codons in archaea coding sequences. Genomics 2013; 101:362-7. [PMID: 23603537 DOI: 10.1016/j.ygeno.2013.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/28/2023]
Abstract
Non-random arrangement of synonymous codons in coding sequences has been recently reported in eukaryotic and bacterial genomes, but the case in archaeal genomes is largely undetermined. Here, we systematically investigated 122 archaeal genomes for their synonymous codon co-occurrence patterns. We found that in most archaeal coding sequences, the order of synonymous codons is not arranged randomly, but rather some successive codon pairs appear significantly more often than expected. Importantly, such codon pairing bias (CPB) pattern in archaea does not seem to completely follow the co-tRNA codon pairing (CCP) rule previously reported for eukaryotes, but largely obeys an identical codon pairing (ICP) rule. Further, synonymous codon permutation test demonstrated that in many archaeal genomes, random mutation alone is unable to cause the observed high level of ICP bias, which strongly indicates that selection force has been involved to shape synonymous codon orders, potentially meeting a global requirement to optimize translation rate.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, 210093, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nomura Y, Onda Y, Ohno S, Taniguchi H, Ando K, Oka N, Nishikawa K, Yokogawa T. Purification and comparison of native and recombinant tRNA-guanine transglycosylases from Methanosarcina acetivorans. Protein Expr Purif 2012. [PMID: 23201278 DOI: 10.1016/j.pep.2012.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many archaeal tRNAs have archaeosine (G(+)) at position 15 in the D-loop and this is thought to strengthen the tertiary interaction with C48 in the V-loop. In the first step of G(+) biosynthesis, archaeosine tRNA-guanine transglycosylase (ArcTGT)(1) catalyzes the base exchange reaction from guanine to 7-cyano-7-deazaguanine (preQ(0)). ArcTGT is classified into full-size or split types, according to databases of genomic information. Although the full-size type forms a homodimeric structure, the split type has been assumed to form a heterotetrameric structure, consisting of two kinds of peptide. However, there has been no definitive evidence for this presented to date. Here, we show that native ArcTGT could be isolated from Methanosarcina acetivorans and two peptides formed a robust complex in cells. Consequently, the two peptides function as actual subunits of ArcTGT. We also overexpressed recombinant ArcTGT in Escherichia coli cells. Product was successfully obtained by co-overexpression of the two subunits but one subunit alone was not adequately expressed in soluble fractions. This result suggests that interaction between the two subunits may contribute to the conformational stability of split ArcTGT. The values of the kinetic parameters for the recombinant and native ArcTGT were closely similar. Moreover, tRNA transcript with preQ(0) at position 15 was successfully prepared using the recombinant ArcTGT. This tRNA transcript is expected to be useful as a substrate for studies seeking the enzymes responsible for G(+) biosynthesis.
Collapse
Affiliation(s)
- Yuichiro Nomura
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Caballero VC, Toledo VP, Maturana C, Fisher CR, Payne SM, Salazar JC. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator. BMC Microbiol 2012; 12:226. [PMID: 23035718 PMCID: PMC3542578 DOI: 10.1186/1471-2180-12-226] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/11/2012] [Indexed: 12/01/2022] Open
Abstract
Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.
Collapse
Affiliation(s)
- Valeria C Caballero
- Program of Microbiology and Mycology, Institute of Biomedical Science-ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
33
|
Rakovich T, Boland C, Bernstein I, Chikwana VM, Iwata-Reuyl D, Kelly VP. Queuosine deficiency in eukaryotes compromises tyrosine production through increased tetrahydrobiopterin oxidation. J Biol Chem 2011; 286:19354-63. [PMID: 21487017 DOI: 10.1074/jbc.m111.219576] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Queuosine is a modified pyrrolopyrimidine nucleoside found in the anticodon loop of transfer RNA acceptors for the amino acids tyrosine, asparagine, aspartic acid, and histidine. Because it is exclusively synthesized by bacteria, higher eukaryotes must salvage queuosine or its nucleobase queuine from food and the gut microflora. Previously, animals made deficient in queuine died within 18 days of withdrawing tyrosine, a nonessential amino acid, from the diet (Marks, T., and Farkas, W. R. (1997) Biochem. Biophys. Res. Commun. 230, 233-237). Here, we show that human HepG2 cells deficient in queuine and mice made deficient in queuosine-modified transfer RNA, by disruption of the tRNA guanine transglycosylase enzyme, are compromised in their ability to produce tyrosine from phenylalanine. This has similarities to the disease phenylketonuria, which arises from mutation in the enzyme phenylalanine hydroxylase or from a decrease in the supply of its cofactor tetrahydrobiopterin (BH4). Immunoblot and kinetic analysis of liver from tRNA guanine transglycosylase-deficient animals indicates normal expression and activity of phenylalanine hydroxylase. By contrast, BH4 levels are significantly decreased in the plasma, and both plasma and urine show a clear elevation in dihydrobiopterin, an oxidation product of BH4, despite normal activity of the salvage enzyme dihydrofolate reductase. Our data suggest that queuosine modification limits BH4 oxidation in vivo and thereby potentially impacts on numerous physiological processes in eukaryotes.
Collapse
Affiliation(s)
- Tatsiana Rakovich
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
34
|
Ran W, Higgs PG. The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria. Mol Biol Evol 2010; 27:2129-40. [PMID: 20403966 DOI: 10.1093/molbev/msq102] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most transfer RNAs (tRNAs) can translate more than one synonymous codon, and most codons can be translated by more than one isoacceptor tRNA. The rates of translation of synonymous codons are dependent on the concentrations of the tRNAs and on the rates of pairing of each anticodon-codon combination. Translational selection causes a significant bias in codon frequencies in highly expressed genes in most bacteria. By comparing codon frequencies in high and low-expression genes, we determine which codons are preferred for each amino acid in a large sample of bacterial genomes. We relate this to the number of copies of each tRNA gene in each genome. In two-codon families, preferred codons have Watson-Crick pairs (GC and AU) between the third codon base and the wobble base of the anticodon rather than GU pairs. This suggests that these combinations are more rapidly recognized by the ribosome. In contrast, in four-codon families, preferred codons do not correspond to Watson-Crick rules. In some cases, a wobble-U tRNA can pair with all four codons. In these cases, A and U codons are preferred over G and C. This indicates that the nonstandard UU combination appears to be translated surprisingly well. Differences in modified bases at the wobble position of the anticodon appear to be responsible for the differences in behavior of tRNAs in two- and four-codon families. We discuss the way changes in the bases in the anticodon influence both the speed and the accuracy of translation. The number of tRNA gene copies and the strength of translational selection correlate with the growth rate of the organism, as we would expect if the primary cause of translational selection in bacteria is the requirement to optimize the speed of protein production.
Collapse
Affiliation(s)
- Wenqi Ran
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
35
|
Kosenkov D, Kholod YA, Gorb L, Shishkin OV, Kuramshina GM, Dovbeshko GI, Leszczynski J. Effect of a pH change on the conformational stability of the modified nucleotide queuosine monophosphate. J Phys Chem A 2009; 113:9386-95. [PMID: 19630370 DOI: 10.1021/jp903993s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The naturally occurring modified nucleotide queuosine 5'-monophosphate (QMP) related to biochemical regulatory pathways in the cell was investigated using quantum chemical approaches. The relative stability of biologically relevant conformations of QMP in solvent under a pH change was predicted at the BVP86/TZVP and MP2/TZVP levels of theory. Hydrogen bonding in QMP was studied using Bader's approach. The acidity constants of QMP were estimated using the COSMO-RS theory. It has been found that the neutral and anionic forms of QMP are the most stable in the physiological pH range. These forms correspond to the anti/north conformation and exist as zwitterionic tautomers having a negatively charged phosphate group (-1 for neutral and -2 for anionic) and a positively charged secondary amine group in the side chain. It was also found that QMP possesses the syn conformation in the cationic state at pH < 5.0 and undergoes syn to anti conformation transition when the pH increases, remaining in the anti conformation at the higher pH values. The marker IR bands specific for the anionic and neutral QMP forms in the 2300-2700 cm(-1) region were assigned to H-bonded NH groups of the QMP side chain. The bands between 800 and 1300 cm(-1) of the "fingerprint" (400-1500 cm(-1)) region were assigned to the vibrations of the ribose ring, the phosphate group and the side chain of QMP. The predicted IR spectra can be useful for the assignment of vibration bands in the experiential spectra of QMP or identification of the QMP forms. The revealed peculiarities of the QMP conformation sensitivity to a pH change as well as additional formed H-bonds could be responsible for specific nucleotide interactions with enzymes.
Collapse
Affiliation(s)
- Dmytro Kosenkov
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Agris PF. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep 2008; 9:629-35. [PMID: 18552770 DOI: 10.1038/embor.2008.104] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 05/13/2008] [Indexed: 11/09/2022] Open
Abstract
The biosynthesis of RNA includes its post-transcriptional modifications, and the crucial functions of these modifications have supported their conservation within all three kingdoms. For example, the modifications located within or adjacent to the anticodon of the transfer RNA (tRNA) enhance the accuracy of codon binding, maintain the translational reading frame and enable translocation of the tRNA from the A-site to the P-site of the ribosome. Although composed of different chemistries, the more than 70 known modifications of tRNA have in common their ability to reduce conformational dynamics, and to bring order to the internal loops and hairpin structures of RNA. The modified nucleosides of the anticodon domain of tRNA restrict its dynamics and shape its architecture; therefore, the need of the ribosome to constrain or remodel each tRNA to fit the decoding site is diminished. This concept reduces an entropic penalty for translation and provides a physicochemical basis for the conservation of RNA modifications in general.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, North Carolina 27695-7622, USA.
| |
Collapse
|
37
|
Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 2007; 64:662-88. [PMID: 17541678 PMCID: PMC1894752 DOI: 10.1007/s00239-006-0284-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.
Collapse
Affiliation(s)
- Supratim Sengupta
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 Canada
| | - Xiaoguang Yang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| | - Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| |
Collapse
|
38
|
Yan H, Tram K. Glycotargeting to improve cellular delivery efficiency of nucleic acids. Glycoconj J 2007; 24:107-23. [PMID: 17268860 DOI: 10.1007/s10719-006-9023-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/07/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Nucleic acids bearing glycans of various structures have been under vigorous investigation in the past decade. The carbohydrate moieties of such complexes can serve as recognition sites for carbohydrate-binding proteins-lectins-and initiate receptor-mediated endocytosis. Therefore, carbohydrates can enhance cell targeting and internalization of nucleic acids that are associated with them and thus improve the bioavailability of nucleic acids as therapeutic agents. This review summarizes nucleic acid glycosylation in nature and approaches for the preparation of both non-covalently associated and covalently-linked carbohydrate-nucleic acid complexes.
Collapse
Affiliation(s)
- Hongbin Yan
- Department of Chemistry, Brock University, 500 Glenridge Ave., St. Catharines, ON, Canada.
| | | |
Collapse
|
39
|
Sabina J, Söll D. The RNA-binding PUA domain of archaeal tRNA-guanine transglycosylase is not required for archaeosine formation. J Biol Chem 2006; 281:6993-7001. [PMID: 16407303 DOI: 10.1074/jbc.m512841200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial tRNA-guanine transglycosylase (TGT) replaces the G in position 34 of tRNA with preQ(1), the precursor to the modified nucleoside queuosine. Archaeal TGT, in contrast, substitutes preQ(0) for the G in position 15 of tRNA as the first step in archaeosine formation. The archaeal enzyme is about 60% larger than the bacterial protein; a carboxyl-terminal extension of 230 amino acids contains the PUA domain known to contact the four 3'-terminal nucleotides of tRNA. Here we show that the C-terminal extension of the enzyme is not required for the selection of G15 as the site of base exchange; truncated forms of Pyrococcus furiosus TGT retain their specificity for guanine exchange at position 15. Deletion of the PUA domain causes a 4-fold drop in the observed k(cat) (2.8 x 10(-3) s(-1)) and results in a 75-fold increased K(m) for tRNA(Asp)(1.2 x 10(-5) m) compared with full-length TGT. Mutations in tRNA(Asp) altering or abolishing interactions with the PUA domain can compete with wild-type tRNA(Asp) for binding to full-length and truncated TGT enzymes. Whereas the C-terminal domains do not appear to play a role in selection of the modification site, their relevance for enzyme function and their role in vivo remains to be discovered.
Collapse
Affiliation(s)
- Jeffrey Sabina
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
40
|
Blaise M, Becker HD, Lapointe J, Cambillau C, Giegé R, Kern D. Glu-Q-tRNAAsp synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNAAsp anticodon. Biochimie 2005; 87:847-61. [PMID: 16164993 DOI: 10.1016/j.biochi.2005.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 02/18/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Abstract
Analysis of the completed genome sequences revealed presence in various bacteria of an open reading frame (ORF) encoding a polypeptide chain presenting important similarities with the catalytic domain of glutamyl-tRNA synthetases but deprived of the C-terminal anticodon-binding domain. This paralog of glutamyl-tRNA synthetases, the YadB protein, activates glutamate in the absence of tRNA and transfers the activated glutamate not on tRNA(Glu) but instead on tRNA(Asp). It has been shown that tRNA(Asp) is able to accept two amino acids: aspartate charged by aspartyl-tRNA synthetase and glutamate charged by YadB. The functional properties of YadB contrast with those of the canonical glutamyl-tRNA synthetases, which activate Glu only in presence of the cognate tRNA before aminoacylation of the 3'-end of tRNA. Biochemical approaches and mass spectrometry investigations revealed that YadB transfers the activated glutamate on the cyclopenthene-diol ring of the modified nucleoside queuosine posttranscriptionally inserted at the wobble position of the anticodon-loop to form glutamyl-queuosine. Unstability of the ester bond between the glutamate residue and the cyclopenthene-diol (half-life 7.5 min) explains why until now this modification escaped detection. Among Escherichia coli tRNAs containing queuosine in the wobble position, only tRNA(Asp) is substrate of YadB. Sequence comparison reveals a structural mimicry between the anticodon-stem and loop of tRNA(Asp) and the amino acid acceptor-stem of tRNA(Glu). YadB, renamed glutamyl-Q-tRNA(Asp) synthetase, constitutes the first enzyme structurally related to aminoacyl-tRNA synthetases which catalyzes a hypermodification in tRNA, and whose function seems to be conserved among prokaryotes. The discovery of glutamyl-Q-tRNA(Asp) synthetase breaks down the current paradigm according to which the catalytic domain of aminoacyl-tRNA synthetases recognizes the amino acid acceptor-stem of tRNA and aminoacylates the 3'-terminal ribose. The evolutionary significance of the existence of an aminoacyl-tRNA synthetase paralog dedicated to the hypermodification of a tRNA anticodon will be discussed.
Collapse
Affiliation(s)
- Mickael Blaise
- Département Machineries Traductionnelles, UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, rue René Descartes, 67084 Strasbourg cedex, France
| | | | | | | | | | | |
Collapse
|
41
|
Brenk R, Stubbs MT, Heine A, Reuter K, Klebe G. Flexible adaptations in the structure of the tRNA-modifying enzyme tRNA-guanine transglycosylase and their implications for substrate selectivity, reaction mechanism and structure-based drug design. Chembiochem 2004; 4:1066-77. [PMID: 14523925 DOI: 10.1002/cbic.200300644] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The enzyme tRNA-guanine transglycosylase (TGT, EC 2.4.2.29) catalyses a base-exchange reaction that leads to anticodon modifications of certain tRNAs. The TGT enzymes of the eubacteria Zymomonas mobilis (Z. mobilis TGT) and Escherichia coli (E. coli TGT) show a different behaviour in the presence of competitive inhibitors. The active sites of both enzymes are identical apart from a single conservative amino acid exchange, namely Tyr106 of Z. mobilis TGT is replaced by a Phe in E. coli TGT. Although Tyr106 is, in contrast to Phe106, hydrogen bonded in the ligand-free structure, we can show by a mutational study of TGT(Y106F) that this is not the reason for the different responses upon competition. The TGT enzymes of various species differ in their substrate selectivity. Depending on the applied pH conditions and/or induced by ligand binding, a peptide-bond flip modulates the recognition properties of the substrate binding site, which changes between donor and acceptor functionality. Furthermore interstitial water molecules play an important role in these adaptations of the pocket. The flip of the peptide bond is further stabilised by a glutamate residue that operates as general acid/base. An active-site aspartate residue, presumed to operate as a nucleophile through covalent bonding during the base-exchange reaction, shows different conformations depending on the nature of the bound ligand. The induced-fit adaptations observed in the various TGT complex structures by multiple crystal-structure analyses are in agreement with the functional properties of the enzyme. In consequence, full understanding of this plasticity can be exploited for drug design.
Collapse
Affiliation(s)
- Ruth Brenk
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Agris PF. Decoding the genome: a modified view. Nucleic Acids Res 2004; 32:223-38. [PMID: 14715921 PMCID: PMC384350 DOI: 10.1093/nar/gkh185] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 12/02/2003] [Accepted: 12/02/2003] [Indexed: 11/12/2022] Open
Abstract
Transfer RNA's role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA's ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA's anticodon and those 3'-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U*U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon-codon interactions and expanding others.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA.
| |
Collapse
|
43
|
Sonavane UB, Sonawane KD, Tewari R. Conformational preferences of the base substituent in hypermodified nucleotide queuosine 5'-monophosphate 'pQ' and protonated variant 'pQH+'. J Biomol Struct Dyn 2002; 20:473-85. [PMID: 12437386 DOI: 10.1080/07391102.2002.10506866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Conformational preferences of the base substituent in hypermodified nucleotide queuosine 5'-monophosphate 'pQ' and its protonated form 'pQH+' have been studied using quantum chemical Perturbative Configuration Interaction with Localized Orbitals PCILO method. The salient points have also been examined using molecular mechanics force field MMFF, parameterized modified neglect of differential overlap PM3 and Hartree Fock-Density Functional Theory HF DFT (pBP/DN*) approaches. Aqueous solvation of pQ and pQH+ has also been studied using molecular dynamics simulations. Consistent with the observed crystal structure, in isolated protonated form pQH+, the quaternary amine HN(13)(+)H, of the sidechain having 7-aminomethyl linkage, hydrogen bonds with the carbonyl oxygen O(10) of the base. However, N(13)H-O(10) hydrogen bonding is not preferred for unprotonated pQ, whether isolated or hydrated. Interaction between the 5'-phosphate and the 7-aminomethyl group is more likely for isolated pQ. The cyclopentenediol hydroxyl group O4"H may hydrogen bond with the O(10) in isolated pQ as well as in pQH+. The O4"H may hydrogen bond with the 5'-phosphate as well. The presence of -CH2-NH- and O"H groups in pQ and pQH+ allows interesting possibilities for intranucleotide hydrogen bonds and interactions across the anticodon loop. Simultaneous hydrogen bonds O2P-HN(13)+H-O(10) are indicated for hydrated pQH+. Unlike weak involvement of O4"H, these interactions also persist in hydrated pQH+ and may much reduce backbone flexibility. Resulting sub-optimal Q:C base pairing leads to unbiased reading of U or C as the third codon letter. Cyclopentenediol hydroxyl groups may interact with other biomolecules, allowing specific recognition. Prospective pQ(34) and pQ(34)H+ sites for codon-anticodon base pairing remain unhindered, but non canonical Q:G base pairing (amber-suppression) is ruled out.
Collapse
Affiliation(s)
- Uddhavesh B Sonavane
- Physical Chemistry Division, National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
| | | | | |
Collapse
|
44
|
Dineshkumar TK, Thanedar S, Subbulakshmi C, Varshney U. An unexpected absence of queuosine modification in the tRNAs of an Escherichia coli B strain. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3779-3787. [PMID: 12480882 DOI: 10.1099/00221287-148-12-3779] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The post-transcriptional processing of tRNAs decorates them with a number of modified bases important for their biological functions. Queuosine, found in the tRNAs with GUN anticodons (Asp, Asn, His, Tyr), is an extensively modified base whose biosynthetic pathway is still unclear. In this study, it was observed that the tRNA(Tyr) from Escherichia coli B105 (a B strain) migrated faster than that from E. coli CA274 (a K-12 strain) on acid urea gels. The organization of tRNA(Tyr) genes in E. coli B105 was found to be typical of the B strains. Subsequent analysis of tRNA(Tyr) and tRNA(His) from several strains of E. coli on acid urea gels, and modified base analysis of tRNA preparations enriched for tRNA(Tyr), showed that E. coli B105 lacked queuosine in its tRNAs. However, the lack of queuosine in tRNAs was not a common feature of all E. coli B strains. The tgt and queA genes in B105 were shown to be functional by their ability to complement tgt and queA mutant strains. These observations suggested a block at the step of the biosynthesis of preQ(1) (or preQ(0)) in the B105 strain. Interestingly, a multicopy vector harbouring a functional tgt gene was toxic to E. coli B105 but not to CA274. Also, in mixed cultures, E. coli B105 was readily competed out by the CA274 strain. The importance of these observations and this novel strain (E. coli B105) in unravelling the mechanism of preQ(1) or preQ(0) biosynthesis is discussed.
Collapse
MESH Headings
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Nucleoside Q/metabolism
- Pentosyltransferases/metabolism
- Pyrimidinones/metabolism
- Pyrroles/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Urea
Collapse
Affiliation(s)
- T K Dineshkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India1
| | - Swapna Thanedar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India1
| | - C Subbulakshmi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India1
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India1
| |
Collapse
|
45
|
Abstract
We explore adaptive theories for the diversity of translational binding based on the genetic code viewed as a primitive mechanism of resistance. Modifying the set of codons bound by tRNA anticodon molecules or changing the specificity of binding, reduces the replication rate of translational parasites such as viruses. Increased translational efficiency of the parasite requires a high degree of specificity of host tRNAs for the parasite codons. This suggests that the genetic code might serve as the first line of defense against infection. We construct a red queen theory for translational diversity: a theory in which host-translational strategies- as defined by the degree of redundancy (a single anticodon binding many codons for a single amino acid) or degeneracy (many anticodons binding many codons for a single amino acid)-are constantly shifting through time to evade parasitism but where neither parasite nor host gain a systematic advantage.
Collapse
|
46
|
Abstract
Queuosine is a hypermodified nucleoside found in position 34, the anticodon wobble position, of four tRNA species. This modification is distributed with near uniformity across all life forms found on this planet. Yet the molecular mechanisms involved with accomplishing this ubiquitous posttranscriptional modification of tRNA are dramatically different between prokaryotic and eukaryotic organisms, which suggests that these were formed by convergent evolution of a fundamental life process essential to nearly all life forms. This minireview describes the differences between these modification systems and points to a new direction for developing research on the molecular function queuosine-modified tRNA in diverse species.
Collapse
Affiliation(s)
- R C Morris
- The Center for Pediatric Research, Eastern Virginia Medical School, 855 West Brambleton Avenue, Norfolk, Virginia 23510, USA.
| | | |
Collapse
|
47
|
|