1
|
Gao S, Wu F, Gurcha SS, Batt SM, Besra GS, Rao Z, Zhang L. Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:976-987. [PMID: 38491273 PMCID: PMC10994848 DOI: 10.1038/s41564-024-01643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
In Mycobacterium tuberculosis, Rv3806c is a membrane-bound phosphoribosyltransferase (PRTase) involved in cell wall precursor production. It catalyses pentosyl phosphate transfer from phosphoribosyl pyrophosphate to decaprenyl phosphate, to generate 5-phospho-β-ribosyl-1-phosphoryldecaprenol. Despite Rv3806c being an attractive drug target, structural and molecular mechanistic insight into this PRTase is lacking. Here we report cryogenic electron microscopy structures for Rv3806c in the donor- and acceptor-bound states. In a lipidic environment, Rv3806c is trimeric, creating a UbiA-like fold. Each protomer forms two helical bundles, which, alongside the bound lipids, are required for PRTase activity in vitro. Mutational and functional analyses reveal that decaprenyl phosphate and phosphoribosyl pyrophosphate bind the intramembrane and extramembrane cavities of Rv3806c, respectively, in a distinct manner to that of UbiA superfamily enzymes. Our data suggest a model for Rv3806c-catalysed phosphoribose transfer through an inverting mechanism. These findings provide a structural basis for cell wall precursor biosynthesis that could have potential for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin, China.
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
2
|
Mazzarino RC, Baresova V, Zikánová M, Duval N, Wilkinson TG, Patterson D, Vacano GN. Transcriptome and metabolome analysis of crGART, a novel cell model of de novo purine synthesis deficiency: Alterations in CD36 expression and activity. PLoS One 2021; 16:e0247227. [PMID: 34283828 PMCID: PMC8291708 DOI: 10.1371/journal.pone.0247227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
In humans, GART [phosphoribosylglycinamide formyltransferase (EC 2.1.2.2) / phosphoribosylglycinamide synthetase (EC 6.3.4.13) / phosphoribosylaminoimidazole synthetase (EC 6.3.3.1)] is a trifunctional protein which catalyzes the second, third, and fifth reactions of the ten step de novo purine synthesis (DNPS) pathway. The second step of DNPS is conversion of phosphoribosylamine (5-PRA) to glycineamide ribonucleotide (GAR). 5-PRA is extremely unstable under physiological conditions and is unlikely to accumulate in the absence of GART activity. Recently, a HeLa cell line null mutant for GART was constructed via CRISPR-Cas9 mutagenesis. This cell line, crGART, is an important cellular model of DNPS inactivation that does not accumulate DNPS pathway intermediates. In the current study, we characterized the crGART versus HeLa transcriptomes in purine-supplemented and purine-depleted growth conditions. We observed multiple transcriptome changes and discuss pathways and ontologies particularly relevant to Alzheimer disease and Down syndrome. We selected the Cluster of Differentiation (CD36) gene for initial analysis based on its elevated expression in crGART versus HeLa as well as its high basal expression, high log2 value, and minimal P-value.
Collapse
Affiliation(s)
- Randall C. Mazzarino
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
- Molecular and Cellular Biophysics Program, University of Denver, Denver, Colorado, United States of America
| | - Veronika Baresova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Nathan Duval
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Terry G. Wilkinson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Guido N. Vacano
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, United States of America
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, United States of America
| |
Collapse
|
3
|
Huang Z, Xie N, Illes P, Di Virgilio F, Ulrich H, Semyanov A, Verkhratsky A, Sperlagh B, Yu SG, Huang C, Tang Y. From purines to purinergic signalling: molecular functions and human diseases. Signal Transduct Target Ther 2021; 6:162. [PMID: 33907179 PMCID: PMC8079716 DOI: 10.1038/s41392-021-00553-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/24/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purines and their derivatives, most notably adenosine and ATP, are the key molecules controlling intracellular energy homoeostasis and nucleotide synthesis. Besides, these purines support, as chemical messengers, purinergic transmission throughout tissues and species. Purines act as endogenous ligands that bind to and activate plasmalemmal purinoceptors, which mediate extracellular communication referred to as "purinergic signalling". Purinergic signalling is cross-linked with other transmitter networks to coordinate numerous aspects of cell behaviour such as proliferation, differentiation, migration, apoptosis and other physiological processes critical for the proper function of organisms. Pathological deregulation of purinergic signalling contributes to various diseases including neurodegeneration, rheumatic immune diseases, inflammation, and cancer. Particularly, gout is one of the most prevalent purine-related disease caused by purine metabolism disorder and consequent hyperuricemia. Compelling evidence indicates that purinoceptors are potential therapeutic targets, with specific purinergic agonists and antagonists demonstrating prominent therapeutic potential. Furthermore, dietary and herbal interventions help to restore and balance purine metabolism, thus addressing the importance of a healthy lifestyle in the prevention and relief of human disorders. Profound understanding of molecular mechanisms of purinergic signalling provides new and exciting insights into the treatment of human diseases.
Collapse
Grants
- National Key R&D Program of China (2019YFC1709101,2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251, 81373735, 81972665), Guangdong Basic and Applied Basic Research Foundation (2019B030302012), the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), São Paulo Research Foundation (FAPESP 2018/07366-4), Russian Science Foundation grant 20-14-00241, NSFC-BFBR;and Science and Technology Program of Sichuan Province, China (2019YFH0108)
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251).
- National Key R&D Program of China (2020YFA0509400, 2020YFC2002705), the National Natural Science Foundation of China (81821002, 81790251), Guangdong Basic and Applied Basic Research Foundation (2019B030302012).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901) and Science and Technology Program of Sichuan Province, China (2019YFH0108).
- the Project First-Class Disciplines Development of Chengdu University of Traditional Chinese Medicine (CZYHW1901), and Science and Technology Program of Sichuan Province, China (2019YFH0108).
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Peter Illes
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universitaet Leipzig, Leipzig, Germany
| | | | - Henning Ulrich
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexei Verkhratsky
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Sechenov First Moscow State Medical University, Moscow, Russia
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Beata Sperlagh
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Shu-Guang Yu
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
4
|
Mazzarino RC, Baresova V, Zikánová M, Duval N, Wilkinson TG, Patterson D, Vacano GN. The CRISPR-Cas9 crATIC HeLa transcriptome: Characterization of a novel cellular model of ATIC deficiency and ZMP accumulation. Mol Genet Metab Rep 2020; 25:100642. [PMID: 32939338 PMCID: PMC7479443 DOI: 10.1016/j.ymgmr.2020.100642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In de novo purine biosynthesis (DNPS), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (EC 2.1.2.3)/inosine monophosphate cyclohydrolase (EC 3.5.4.10) (ATIC) catalyzes the last two reactions of the pathway: conversion of 5-aminoimidazole-4-carboxamide ribonucleotide [aka Z-nucleotide monophosphate (ZMP)] to 5-formamido-4-imidazolecarboxamide ribonucleotide (FAICAR) then to inosine monophosphate (IMP). Mutations in ATIC cause an untreatable and devastating inborn error of metabolism in humans. ZMP is an adenosine monophosphate (AMP) mimetic and a known activator of AMP-activated protein kinase (AMPK). Recently, a HeLa cell line null mutant for ATIC was constructed via CRISPR-Cas9 mutagenesis. This mutant, crATIC, accumulates ZMP during purine starvation. Given that the mutant can accumulate ZMP in the absence of treatment with exogenous compounds, crATIC is likely an important cellular model of DNPS inactivation and ZMP accumulation. In the current study, we characterize the crATIC transcriptome versus the HeLa transcriptome in purine-supplemented and purine-depleted growth conditions. We report and discuss transcriptome changes with particular relevance to Alzheimer's disease and in genes relevant to lipid and fatty acid synthesis, neurodevelopment, embryogenesis, cell cycle maintenance and progression, extracellular matrix, immune function, TGFβ and other cellular processes.
Collapse
Key Words
- 5-aminoimidazole-4-carboxamide ribonucleoside, (AICAr)
- 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase, (ATIC)
- 5-aminoimidazole-4-carboxamide ribonucleotide, (ZMP)
- 5-formamido-4-imidazolecarboxamide ribonucleotide, (FAICAR)
- AICA-ribosiduria
- AMP-activated protein kinase, (AMPK)
- Alzheimer's disease
- Development
- Purine synthesis
- RNA-seq
- Tuberous Sclerosis Complex 1 and 2, (TSC1 and TSC2)
- adenine phosphoribosyltransferase, (APRT)
- adenosine monophosphate, (AMP)
- adenosine triphosphate, (ATP)
- adenylosuccinate lyase, (ADSL)
- arachidonic acid, (AA)
- cyclooxygenase, (COX)
- cytochrome, P450 (CYP)
- cytosolic phospholipase A2, (cPLA2)
- de novo purine synthesis, (DNPS)
- differentially expressed gene, (DEG)
- false discovery rate, (FDR)
- fatty acid amide hydrolase, (FAAH)
- fetal calf macroserum, (FCM)
- fetal calf serum, (FCS)
- fragments per kilobase of exon per million reads mapped, (FPKM)
- gene ontology, (GO)
- guanosine monophosphate, (GMP)
- inosine monophosphate, (IMP)
- interferon, (INF)
- lipoxygenase, (LOX)
- mammalian Target of Rapamycin, (mTOR)
- minus adenine crATIC to minus adenine WT comparison, (MM)
- phospholipase, (PLA)
- phosphoribosyl pyrophosphate, (PRPP)
- phosphoribosylaminoimidazole carboxylase/phosphoribosylaminoimidazole succinocarboxamide synthetase, (PAICS)
- plus adenine crATIC to plus adenine WT comparison, (PP)
- xanthine monophosphate, (XMP)
Collapse
Affiliation(s)
- Randall C Mazzarino
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80210, USA.,Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA.,Department of Biological Sciences, University of Denver, Denver, CO 80210, USA.,Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| | - Veronika Baresova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Marie Zikánová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nathan Duval
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80210, USA.,Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA.,Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Terry G Wilkinson
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80210, USA.,Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80210, USA.,Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA.,Molecular and Cellular Biophysics Program, University of Denver, Denver, CO 80210, USA
| | - Guido N Vacano
- Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80210, USA.,Eleanor Roosevelt Institute, University of Denver, Denver, CO 80210, USA
| |
Collapse
|
5
|
Ionescu MI. Molecular docking investigation of the amantadine binding to the enzymes upregulated or downregulated in Parkinson's disease. ADMET AND DMPK 2020; 8:149-175. [PMID: 35300368 PMCID: PMC8915579 DOI: 10.5599/admet.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/01/2020] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease. Levodopa in combination with amantadine has a demonstrated efficacy in motility impairment. An extensive investigation of some enzymes described to be upregulated or downregulated in PD was made - adenylate kinase (AK), adenine phosphoribosyltransferase (APRT), ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1), nucleoside-diphosphate kinase 3 (NDK3), purine nucleoside phosphorylase 1 (PNP1), and ecto-5'-nucleotidase (NT5E). Also, creatine kinase (CK) was included in the study because it is one of the main enzymes involved in the regulation of the nucleotide ratio in energy metabolism. To date, there is no proven link between amantadine treatment of PD and these enzymes. Because there are many AKs isoforms modified in PD, the AK was the first investigated. The molecular docking experiments allow the analysis of the selective binding of amantadine - unionized (with -NH2 group) and ionized form (with -NH3 + group) - to the AKs' isoforms implicated in PD. Using available X-ray 3D structures of human AKs in closed-conformation, it was demonstrated that there are notable differences between the interactions of the two forms of amantadine for the zebrafish AK1 (5XZ2), human AK2 (2C9Y), human AK5 (2BWJ), and AK from B.stearothermophilus. The cytosolic human AK1 and human AK2 mostly interact with ionized amantadine by AMP binding residues. The human AK5 interaction with ionized amantadine does not involve the residues from the catalytic site. Among other enzymes tested in the present study, APRT revealed the best results in respect of binding amantadine ionized form. The results offer a new perspective for further investigation of the connections between amantadine treatment of PD and some enzymes involved in purine metabolism.
Collapse
Affiliation(s)
- Mihaela Ileana Ionescu
- Department of Microbiology, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Louis Pasteur, 400349, Cluj-Napoca, Romania, .,Department of Microbiology, County Emergency Clinical Hospital, 400006, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Wang H, Diaz AK, Shaw TI, Li Y, Niu M, Cho JH, Paugh BS, Zhang Y, Sifford J, Bai B, Wu Z, Tan H, Zhou S, Hover LD, Tillman HS, Shirinifard A, Thiagarajan S, Sablauer A, Pagala V, High AA, Wang X, Li C, Baker SJ, Peng J. Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes. Nat Commun 2019; 10:3718. [PMID: 31420543 PMCID: PMC6697699 DOI: 10.1038/s41467-019-11661-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Collapse
Affiliation(s)
- Hong Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Alexander K Diaz
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mingming Niu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara S Paugh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Sifford
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bing Bai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Zhiping Wu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Laura D Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Thiagarajan
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Andras Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Vishwajeeth Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anthony A High
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xusheng Wang
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chunliang Li
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
7
|
Ozeir M, Huyet J, Burgevin MC, Pinson B, Chesney F, Remy JM, Siddiqi AR, Lupoli R, Pinon G, Saint-Marc C, Gibert JF, Morales R, Ceballos-Picot I, Barouki R, Daignan-Fornier B, Olivier-Bandini A, Augé F, Nioche P. Structural basis for substrate selectivity and nucleophilic substitution mechanisms in human adenine phosphoribosyltransferase catalyzed reaction. J Biol Chem 2019; 294:11980-11991. [PMID: 31160323 DOI: 10.1074/jbc.ra119.009087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 11/06/2022] Open
Abstract
The reversible adenine phosphoribosyltransferase enzyme (APRT) is essential for purine homeostasis in prokaryotes and eukaryotes. In humans, APRT (hAPRT) is the only enzyme known to produce AMP in cells from dietary adenine. APRT can also process adenine analogs, which are involved in plant development or neuronal homeostasis. However, the molecular mechanism underlying substrate specificity of APRT and catalysis in both directions of the reaction remains poorly understood. Here we present the crystal structures of hAPRT complexed to three cellular nucleotide analogs (hypoxanthine, IMP, and GMP) that we compare with the phosphate-bound enzyme. We established that binding to hAPRT is substrate shape-specific in the forward reaction, whereas it is base-specific in the reverse reaction. Furthermore, a quantum mechanics/molecular mechanics (QM/MM) analysis suggests that the forward reaction is mainly a nucleophilic substitution of type 2 (SN2) with a mix of SN1-type molecular mechanism. Based on our structural analysis, a magnesium-assisted SN2-type mechanism would be involved in the reverse reaction. These results provide a framework for understanding the molecular mechanism and substrate discrimination in both directions by APRTs. This knowledge can play an instrumental role in the design of inhibitors, such as antiparasitic agents, or adenine-based substrates.
Collapse
Affiliation(s)
- Mohammad Ozeir
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, Centre Interdisciplinaire Chimie Biologie-Paris, Paris, 75006, France; INSERM, UMR 1124, Paris, 75006, France
| | - Jessica Huyet
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, Centre Interdisciplinaire Chimie Biologie-Paris, Paris, 75006, France; INSERM, UMR 1124, Paris, 75006, France
| | | | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux cedex, 33077, France
| | - Françoise Chesney
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin, 91385, France
| | - Jean-Marc Remy
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin, 91385, France
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, 45550, Pakistan
| | - Roland Lupoli
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, Centre Interdisciplinaire Chimie Biologie-Paris, Paris, 75006, France; INSERM, UMR 1124, Paris, 75006, France
| | - Grégory Pinon
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, Centre Interdisciplinaire Chimie Biologie-Paris, Paris, 75006, France; INSERM, UMR 1124, Paris, 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris, 75006, France
| | - Christelle Saint-Marc
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux cedex, 33077, France
| | | | - Renaud Morales
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin, 91385, France
| | - Irène Ceballos-Picot
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, 75006, France
| | - Robert Barouki
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, Centre Interdisciplinaire Chimie Biologie-Paris, Paris, 75006, France; INSERM, UMR 1124, Paris, 75006, France; Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, 75006, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux cedex, 33077, France
| | | | - Franck Augé
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin, 91385, France.
| | - Pierre Nioche
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR 1124, Centre Interdisciplinaire Chimie Biologie-Paris, Paris, 75006, France; INSERM, UMR 1124, Paris, 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris, 75006, France.
| |
Collapse
|
8
|
Zayats EA, Timofeev VI, Kostromina MA, Esipov RS. An explanation for the narrow carbohydrate substrate specificity of adenine phosphoribosyltransferase from Thermus thermophilus from the model of the enzyme, substrate, and magnesium cation cofactor complex. J Biomol Struct Dyn 2018; 37:4460-4464. [PMID: 30451097 DOI: 10.1080/07391102.2018.1550020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Evgeniy A Zayats
- Shemyakin & Ovchinnikov Institute of Bioorganic chemistry RAS , Moscow , Russian Federation
| | - Vladimir I Timofeev
- Shemyakin & Ovchinnikov Institute of Bioorganic chemistry RAS , Moscow , Russian Federation.,Federal Scientific Research Center "Crystallography and Photonics" RAS , Moscow , Russian Federation.,National Research Centre "Kurchatov Institute ," Moscow , Russian Federation
| | - Maria A Kostromina
- Shemyakin & Ovchinnikov Institute of Bioorganic chemistry RAS , Moscow , Russian Federation
| | - Roman S Esipov
- Shemyakin & Ovchinnikov Institute of Bioorganic chemistry RAS , Moscow , Russian Federation
| |
Collapse
|
9
|
Esipov RS, Timofeev VI, Sinitsyna EV, Tuzova ES, Esipova LV, Kostromina MA, Kuranova IP, Miroshnikov AI. Three-Dimensional Structure of Recombinant Adenine Phosphoribosyltransferase from Thermophilic Bacterial Strain Thermus thermophilus HB27. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018050047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Huyet J, Ozeir M, Burgevin MC, Pinson B, Chesney F, Remy JM, Siddiqi AR, Lupoli R, Pinon G, Saint-Marc C, Gibert JF, Morales R, Ceballos-Picot I, Barouki R, Daignan-Fornier B, Olivier-Bandini A, Augé F, Nioche P. Structural Insights into the Forward and Reverse Enzymatic Reactions in Human Adenine Phosphoribosyltransferase. Cell Chem Biol 2018; 25:666-676.e4. [PMID: 29576532 DOI: 10.1016/j.chembiol.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway. We show that a single oxygen atom from the Tyr105 side chain is responsible for selecting the active conformation of the 12 amino acid long catalytic loop. Using in vitro, cellular, and in crystallo approaches, we demonstrated that Tyr105 is key for the fine-tuning of the kinetic activity efficiencies of the forward and reverse reactions. Together, our results reveal an evolutionary pressure on the strictly conserved Tyr105 and on the dynamic motion of the flexible loop in phosphoribosyltransferases that is essential for purine biosynthesis in cells. These data also provide the framework for designing novel adenine derivatives that could modulate, through hAPRT, diseases-involved cellular pathways.
Collapse
Affiliation(s)
- Jessica Huyet
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France
| | - Mohammad Ozeir
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France
| | | | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | - Françoise Chesney
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Jean-Marc Remy
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Roland Lupoli
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France
| | - Gregory Pinon
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France
| | - Christelle Saint-Marc
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | | | - Renaud Morales
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Irène Ceballos-Picot
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, Paris 75015, France
| | - Robert Barouki
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, Paris 75015, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | | | - Franck Augé
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France.
| | - Pierre Nioche
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France.
| |
Collapse
|
11
|
Evans GL, Furkert DP, Abermil N, Kundu P, de Lange KM, Parker EJ, Brimble MA, Baker EN, Lott JS. Anthranilate phosphoribosyltransferase: Binding determinants for 5'-phospho-alpha-d-ribosyl-1'-pyrophosphate (PRPP) and the implications for inhibitor design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:264-274. [PMID: 28844746 DOI: 10.1016/j.bbapap.2017.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC50 values of 10-60μM, and Ki values of 1.3-15μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops.
Collapse
Affiliation(s)
- Genevieve L Evans
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand.
| | - Daniel P Furkert
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Nacim Abermil
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Preeti Kundu
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; Biomolecular Interaction Centre, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand; Department of Chemistry, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand
| | - Katrina M de Lange
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - Emily J Parker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; Biomolecular Interaction Centre, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand; Department of Chemistry, University of Canterbury, P. O. Box 4800, Christchurch 8140, New Zealand
| | - Margaret A Brimble
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1142, New Zealand
| | - Edward N Baker
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand
| | - J Shaun Lott
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, 3 Symonds Street, Auckland 1142, New Zealand.
| |
Collapse
|
12
|
Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Microbiol Mol Biol Rev 2016; 81:81/1/e00040-16. [PMID: 28031352 DOI: 10.1128/mmbr.00040-16] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species.
Collapse
|
13
|
Cui Y, Piao CS, Ha KC, Kim DS, Lee GH, Kim HK, Chae SW, Lee YC, Park SJ, Yoo WH, Kim HR, Chae HJ. Measuring adriamycin-induced cardiac hemodynamic dysfunction with a proteomics approach. Immunopharmacol Immunotoxicol 2010; 32:376-86. [DOI: 10.3109/08923970903440168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|