1
|
Abuelrub A, Erol I, Nalbant Bingol N, Ozemri Sag S, Temel SG, Durdağı S. Computational Analysis of CC2D1A Missense Mutations: Insight into Protein Structure and Interaction Dynamics. ACS Chem Neurosci 2025. [PMID: 39791913 DOI: 10.1021/acschemneuro.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
CC2D1A is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.1552G > A (GLU518LYS) missense mutation in the CC2D1A in an 18-year-old male, linking it to intellectual disability and autism. In addition to the GLU518LYS mutation, we conducted a comprehensive analysis of other predefined missense mutations (i.e., PRO192LEU, GLN506ARG, PRO532LEU, GLY781VAL, and GLY781GLU) found within the CC2D1A. Utilizing all-atom molecular dynamics (MD) simulations and neighborhood interaction analyses, we delve into the impact of these mutations on protein structure and function at an atomic level, aiming to shed light on their contribution to the pathogenesis of related diseases. The results suggest that GLU518LYS, GLY781VAL, and GLY781GLU mutations did not significantly alter overall global protein structure compared to the wild type, while PRO192LEU, GLN506ARG, and PRO532LEU exhibited slightly higher protein root-mean-square deviation (RMSD) values, which may indicate potential impacts on whole protein stability. Moreover, neighborhood interaction analysis indicated that ASP85 emerges as a unique interaction partner specifically associated with the GLU518LYS mutation, whereas LYS75, which interacts with the ASP85 in the mutated form, is absent in the wild type. This alteration signifies a crucial reconfiguration in the local interaction network at the site of the mutation.
Collapse
Affiliation(s)
- Anwar Abuelrub
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734 Istanbul, Türkiye
- Graduate School of Natural and Applied Sciences, Artificial Intelligence Program, Bahçeşehir University, 34734 Istanbul, Turkey
| | - Ismail Erol
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye
- Department of Analytical Chemistry, School of Pharmacy, Bahçeşehir University, 34351 İstanbul, Türkiye
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
| | - Serdar Durdağı
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734 Istanbul, Türkiye
- Molecular Therapy Laboratory, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, 34351 İstanbul, Türkiye
| |
Collapse
|
2
|
de Bartolomeis A, Ciccarelli M, De Simone G, Mazza B, Barone A, Vellucci L. Canonical and Non-Canonical Antipsychotics' Dopamine-Related Mechanisms of Present and Next Generation Molecules: A Systematic Review on Translational Highlights for Treatment Response and Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24065945. [PMID: 36983018 PMCID: PMC10051989 DOI: 10.3390/ijms24065945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Schizophrenia is a severe psychiatric illness affecting almost 25 million people worldwide and is conceptualized as a disorder of synaptic plasticity and brain connectivity. Antipsychotics are the primary pharmacological treatment after more than sixty years after their introduction in therapy. Two findings hold true for all presently available antipsychotics. First, all antipsychotics occupy the dopamine D2 receptor (D2R) as an antagonist or partial agonist, even if with different affinity; second, D2R occupancy is the necessary and probably the sufficient mechanism for antipsychotic effect despite the complexity of antipsychotics' receptor profile. D2R occupancy is followed by coincident or divergent intracellular mechanisms, implying the contribution of cAMP regulation, β-arrestin recruitment, and phospholipase A activation, to quote some of the mechanisms considered canonical. However, in recent years, novel mechanisms related to dopamine function beyond or together with D2R occupancy have emerged. Among these potentially non-canonical mechanisms, the role of Na2+ channels at the dopamine at the presynaptic site, dopamine transporter (DAT) involvement as the main regulator of dopamine concentration at synaptic clefts, and the putative role of antipsychotics as chaperones for intracellular D2R sequestration, should be included. These mechanisms expand the fundamental role of dopamine in schizophrenia therapy and may have relevance to considering putatively new strategies for treatment-resistant schizophrenia (TRS), an extremely severe condition epidemiologically relevant and affecting almost 30% of schizophrenia patients. Here, we performed a critical evaluation of the role of antipsychotics in synaptic plasticity, focusing on their canonical and non-canonical mechanisms of action relevant to the treatment of schizophrenia and their subsequent implication for the pathophysiology and potential therapy of TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Dentistry, University Medical School of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
3
|
Bhunia SS, Saxena AK. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors. Curr Top Med Chem 2021; 21:269-294. [PMID: 32901584 DOI: 10.2174/1568026620666200908165250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular docking is in regular practice to assess ligand affinity on a target protein crystal structure. In the absence of protein crystal structure, the homology modeling or comparative modeling is the best alternative to elucidate the relationship details between a ligand and protein at the molecular level. The development of accurate homology modeling (HM) and its integration with molecular docking (MD) is essential for successful, rational drug discovery. OBJECTIVE The G-protein coupled receptors (GPCRs) are attractive therapeutic targets due to their immense role in human pharmacology. The GPCRs are membrane-bound proteins with the complex constitution, and the understanding of their activation and inactivation mechanisms is quite challenging. Over the past decade, there has been a rapid expansion in the number of solved G-protein-coupled receptor (GPCR) crystal structures; however, the majority of the GPCR structures remain unsolved. In this context, HM guided MD has been widely used for structure-based drug design (SBDD) of GPCRs. METHODS The focus of this review is on the recent (i) developments on HM supported GPCR drug discovery in the absence of GPCR crystal structures and (ii) application of HM in understanding the ligand interactions at the binding site, virtual screening, determining receptor subtype selectivity and receptor behaviour in comparison with GPCR crystal structures. RESULTS The HM in GPCRs has been extremely challenging due to the scarcity in template structures. In such a scenario, it is difficult to get accurate HM that can facilitate understanding of the ligand-receptor interactions. This problem has been alleviated to some extent by developing refined HM based on incorporating active /inactive ligand information and inducing protein flexibility. In some cases, HM proteins were found to outscore crystal structures. CONCLUSION The developments in HM have been highly operative to gain insights about the ligand interaction at the binding site and receptor functioning at the molecular level. Thus, HM guided molecular docking may be useful for rational drug discovery for the GPCRs mediated diseases.
Collapse
Affiliation(s)
- Shome S Bhunia
- Global Institute of Pharmaceutical Education and Research, Kashipur, Uttarakhand, India
| | - Anil K Saxena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow 226031, India
| |
Collapse
|
4
|
Bueschbell B, Barreto CAV, Preto AJ, Schiedel AC, Moreira IS. A Complete Assessment of Dopamine Receptor- Ligand Interactions through Computational Methods. Molecules 2019; 24:E1196. [PMID: 30934701 PMCID: PMC6479630 DOI: 10.3390/molecules24071196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Selectively targeting dopamine receptors (DRs) has been a persistent challenge in the last years for the development of new treatments to combat the large variety of diseases involving these receptors. Although, several drugs have been successfully brought to market, the subtype-specific binding mode on a molecular basis has not been fully elucidated. Methods: Homology modeling and molecular dynamics were applied to construct robust conformational models of all dopamine receptor subtypes (D₁-like and D₂-like). Fifteen structurally diverse ligands were docked. Contacts at the binding pocket were fully described in order to reveal new structural findings responsible for selective binding to DR subtypes. Results: Residues of the aromatic microdomain were shown to be responsible for the majority of ligand interactions established to all DRs. Hydrophobic contacts involved a huge network of conserved and non-conserved residues between three transmembrane domains (TMs), TM2-TM3-TM7. Hydrogen bonds were mostly mediated by the serine microdomain. TM1 and TM2 residues were main contributors for the coupling of large ligands. Some amino acid groups form electrostatic interactions of particular importance for D₁R-like selective ligands binding. Conclusions: This in silico approach was successful in showing known receptor-ligand interactions as well as in determining unique combinations of interactions, which will support mutagenesis studies to improve the design of subtype-specific ligands.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, D-53121 Bonn, Germany.
| | - Carlos A V Barreto
- Center for Neuroscience and Cell Biology, UC- Biotech Parque Tecnológico de Cantanhede, Núcleo 04, Lote B, 3060-197 Cantanhede, Portugal.
| | - António J Preto
- Center for Neuroscience and Cell Biology, UC- Biotech Parque Tecnológico de Cantanhede, Núcleo 04, Lote B, 3060-197 Cantanhede, Portugal.
| | - Anke C Schiedel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, D-53121 Bonn, Germany.
| | - Irina S Moreira
- Center for Neuroscience and Cell Biology, UC- Biotech Parque Tecnológico de Cantanhede, Núcleo 04, Lote B, 3060-197 Cantanhede, Portugal.
- Institute for Interdisciplinary Research, University of Coimbra, 3004-531 Coimbra, Portugal.
| |
Collapse
|
5
|
Montgomery D, Campbell A, Sullivan HJ, Wu C. Molecular dynamics simulation of biased agonists at the dopamine D2 receptor suggests the mechanism of receptor functional selectivity. J Biomol Struct Dyn 2018; 37:3206-3225. [PMID: 30124143 DOI: 10.1080/07391102.2018.1513378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson's disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein-ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Montgomery
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Alexandra Campbell
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Holli-Joi Sullivan
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| | - Chun Wu
- a College of Science and Mathematics , Rowan University , Glassboro , NJ , USA
| |
Collapse
|
6
|
Li AJ, Xie W, Wang M, Xu SC. Molecular Mechanism and Dynamics of S-Deoxyephedrine Moving through Molecular Channels within D 3R. ACS OMEGA 2017; 2:8896-8910. [PMID: 31457418 PMCID: PMC6645573 DOI: 10.1021/acsomega.7b01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/17/2017] [Indexed: 06/10/2023]
Abstract
In this article, the trajectories of S-deoxyephedrine (SBD) along molecular channels within the complex protein structure of third dopamine receptor (D3R) are analyzed via molecular dynamic techniques, including potential mean force calculations of umbrella samplings from the 4.5 version of the GROMACS program. Changes in free energy due to the movement of SBD within D3R are determined, and the molecular dynamic mechanisms of SBD transmitting along molecular channels are probed. Molecular simulated results show that the change in free energy is calculated as 171.7 kJ·mol-1 for the transmission of SBD toward the outside of the cell along the y+ axis functional molecular channel and is 275.0 kJ·mol-1 for movement toward the intracellular structure along the y- axis. Within the internal structure of D3R, the changes in free energy are determined to be 103.6, 242.1, 459.7, and 127.8 kJ·mol-1 for transmission of SBD along the x+, x-, z+, and z- axes, respectively, toward the cell bilayer membrane, which indicates that SBD leaves much more easily along the x+ axis through the gap between the TM5 (the fifth transmembrane helix) and TM6 (the sixth transmembrane helix) from the internal structure of D3R. The values of free-energy changes indicate that SBD molecules can clear the protective channel within D3R, which helps dopamine molecules to leave the D3R internal structure along the x+ axis and to prevent them for exerting excessive neurotransmitter function. Therefore, our results suggest that SBD is effective for development as a drug for treating schizophrenia and its pharmacology is closely related to its dynamics and mechanisms within the molecular pathway of dopamine receptors.
Collapse
Affiliation(s)
- Ai Jing Li
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Wei Xie
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Ming Wang
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| | - Si Chuan Xu
- College
of Chemical Science and Technology and Pharmacy and Key Laboratory
of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University, Kunming 650091, P. R.
China
| |
Collapse
|
7
|
Discovery of Potent Neuraminidase Inhibitors Using a Combination of Pharmacophore-Based Virtual Screening and Molecular Simulation Approach. Appl Biochem Biotechnol 2017; 184:1421-1440. [DOI: 10.1007/s12010-017-2625-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/02/2017] [Indexed: 01/20/2023]
|
8
|
Ekhteiari Salmas R, Serhat Is Y, Durdagi S, Stein M, Yurtsever M. A QM protein–ligand investigation of antipsychotic drugs with the dopamine D2 Receptor (D2R). J Biomol Struct Dyn 2017; 36:2668-2677. [DOI: 10.1080/07391102.2017.1365772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Yusuf Serhat Is
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
- Vocational School Department of Chemistry Technology, Istanbul Gedik University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Matthias Stein
- Molecular Simulations and Design Group, Max-Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Salmas RE, Seeman P, Aksoydan B, Erol I, Kantarcioglu I, Stein M, Yurtsever M, Durdagi S. Analysis of the Glutamate Agonist LY404,039 Binding to Nonstatic Dopamine Receptor D2 Dimer Structures and Consensus Docking. ACS Chem Neurosci 2017; 8:1404-1415. [PMID: 28272861 DOI: 10.1021/acschemneuro.7b00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dopamine receptor D2 (D2R) plays an important role in the human central nervous system and is a focal target of antipsychotic agents. The D2HighR and D2LowR dimeric models previously developed by our group are used to investigate the prediction of binding affinity of the LY404,039 ligand and its binding mechanism within the catalytic domain. The computational data obtained using molecular dynamics simulations fit well with the experimental results. The calculated binding affinities of LY404,039 using MM/PBSA for the D2HighR and D2LowR targets were -12.04 and -9.11 kcal/mol, respectively. The experimental results suggest that LY404,039 binds to D2HighR and D2LowR with binding affinities (Ki) of 8.2 and 1640 nM, respectively. The high binding affinity of LY404,039 in terms of binding to [3H]domperidone was inhibited by the presence of a guanine nucleotide, indicating an agonist action of the drug at D2HighR. The interaction analysis demonstrated that while Asp114 was among the most critical amino acids for D2HighR binding, residues Ser193 and Ser197 were significantly more important within the binding cavity of D2LowR. Molecular modeling analyses are extended to ensemble docking as well as structure-based pharmacophore model (E-pharmacophore) development using the bioactive conformation of LY404,039 at the binding pocket as a template and screening of small-molecule databases with derived pharmacophore models.
Collapse
Affiliation(s)
- Ramin Ekhteiari Salmas
- Computational
Biology and Molecular Simulations Laboratory, Department of Biophysics,
School of Medicine, Bahcesehir University, 34349 Istanbul, Turkey
| | - Philip Seeman
- Departments
of Pharmacology and Psychiatry, University of Toronto, 260 Heath
Street West, Unit 605, Toronto, Ontario M5P 3L6, Canada
| | - Busecan Aksoydan
- Computational
Biology and Molecular Simulations Laboratory, Department of Biophysics,
School of Medicine, Bahcesehir University, 34349 Istanbul, Turkey
| | - Ismail Erol
- Computational
Biology and Molecular Simulations Laboratory, Department of Biophysics,
School of Medicine, Bahcesehir University, 34349 Istanbul, Turkey
- Department
of Chemistry, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Isik Kantarcioglu
- Computational
Biology and Molecular Simulations Laboratory, Department of Biophysics,
School of Medicine, Bahcesehir University, 34349 Istanbul, Turkey
| | - Matthias Stein
- Max-Planck Institute for Dynamics of Complex Technical Systems, Molecular Simulations and Design Group, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Mine Yurtsever
- Department
of Chemistry, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Serdar Durdagi
- Computational
Biology and Molecular Simulations Laboratory, Department of Biophysics,
School of Medicine, Bahcesehir University, 34349 Istanbul, Turkey
| |
Collapse
|
10
|
Dasgupta S, Mukherjee S, Mukhopadhyay BP, Banerjee A, Mishra DK. Recognition dynamics of dopamine to human Monoamine oxidase B: role of Leu171/Gln206 and conserved water molecules in the active site cavity. J Biomol Struct Dyn 2017; 36:1439-1462. [PMID: 28460566 DOI: 10.1080/07391102.2017.1325405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur 713209, West Bengal, India
| | - Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur 713209, West Bengal, India
| | - Bishnu P Mukhopadhyay
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur 713209, West Bengal, India
| | - Avik Banerjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur 713209, West Bengal, India
| | - Deepak K Mishra
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur 713209, West Bengal, India
| |
Collapse
|
11
|
Erdemli ME, Ekhteiari Salmas R, Durdagi S, Akgul H, Demirkol M, Aksungur Z, Selamoglu Z. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: an experimental and in silico study. J Biomol Struct Dyn 2017; 36:993-1008. [PMID: 28279122 DOI: 10.1080/07391102.2017.1305297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, the changes that occur in rat liver tissue as a result of the use of grape seed extract (GSE) and low level laser therapy (LLLT) in intraoral wound (IW) healing are analyzed using biochemical parameters. Diode laser application groups received 8 J/cm2 dose LLLT once a day for 4 days (810 nm wavelength, continuous mode, 0.25 W, 9 s). As a result of the biological parameter analysis, it was determined that the oxidative damage caused by the IWs and recovery period on 7th and 14th days could be substantially removed with GSE applications that have antioxidant capacity especially in rat liver tissue. In addition, the active compound of grape seed, catechin is studied in the active site of glycogen synthase kinase 3 (GSK3) target using molecular modeling approaches. Post-processing molecular dynamics (MD) results for catechin is compared with a standard GSK3 inhibitor. MD simulations assisted for better understanding of inhibition mechanism and the crucial amino acids contributing in the ligand binding. These results along with a through free energy analysis of ligands using sophisticated simulations methods are quite striking and it suggests a greater future role for simulation in deciphering complex patterns of molecular mechanism in combination with methods for understanding drug-receptor interactions.
Collapse
Affiliation(s)
- Mehmet Erman Erdemli
- a Faculty of Medicine, Department of Medical Biochemistry , Omer Halisdemir University , Nigde , Turkey
| | - Ramin Ekhteiari Salmas
- b Computational Biology and Molecular Simulations Laboratory, Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| | - Serdar Durdagi
- b Computational Biology and Molecular Simulations Laboratory, Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| | - Hasan Akgul
- c Faculty of Arts and Science, Department of Biology , Akdeniz University , Antalya , Turkey
| | - Mehmet Demirkol
- d Faculty of Dentistry, Department of Oral and Maxillofacial Surgery , Gaziantep University , Gaziantep , Turkey
| | - Zeynep Aksungur
- e Faculty of Medicine, Department of Medical Biochemistry , Inonu University , Malatya , Turkey
| | - Zeliha Selamoglu
- f Faculty of Arts and Science, Department of Biotechnology , Omer Halisdemir University , Nigde , Turkey
| |
Collapse
|
12
|
Rossi M, Fasciani I, Marampon F, Maggio R, Scarselli M. The First Negative Allosteric Modulator for Dopamine D 2 and D 3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs. Mol Pharmacol 2017; 91:586-594. [PMID: 28265019 DOI: 10.1124/mol.116.107607] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/02/2017] [Indexed: 12/15/2022] Open
Abstract
D2 and D3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiologic functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved, therefore allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically regulated networks. In 2010, our group unexpectedly found that N-[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide (SB269652), a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D2- and D3-receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progress in understanding the molecular mechanisms of interaction between the negative modulator SB269652 and D2 and D3 dopamine receptor monomers and dimers, and surveys the prospects for developing new dopamine receptor allosteric drugs with SB269652 as the leading compound.
Collapse
Affiliation(s)
- Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Irene Fasciani
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Francesco Marampon
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Roberto Maggio
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| | - Marco Scarselli
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (M.R.); Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy (I.F., F.M., R.M.); Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy (M.S.)
| |
Collapse
|
13
|
Ekhteiari Salmas R, Durdagi S, Gulhan MF, Duruyurek M, Abdullah HI, Selamoglu Z. The effects of pollen, propolis, and caffeic acid phenethyl ester on tyrosine hydroxylase activity and total RNA levels in hypertensive rats caused by nitric oxide synthase inhibition: experimental, docking and molecular dynamic studies. J Biomol Struct Dyn 2017; 36:609-620. [PMID: 28132600 DOI: 10.1080/07391102.2017.1288660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ramin Ekhteiari Salmas
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Mehmet Fuat Gulhan
- Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray, Turkey
| | - Merve Duruyurek
- Faculty of Arts and Science, Department of Biotechnology, Omer Halisdemir University, Nigde 51240, Turkey
| | - Huda I. Abdullah
- Department of Pharmacology, New York Medical College, Valhalla 10595, NY, USA
| | - Zeliha Selamoglu
- Faculty of Arts and Science, Department of Biotechnology, Omer Halisdemir University, Nigde 51240, Turkey
| |
Collapse
|
14
|
Salmas RE, Stein M, Yurtsever M, Seeman P, Erol I, Mestanoglu M, Durdagi S. The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of pharmacophore models for D2R ligands. J Biomol Struct Dyn 2016; 35:2040-2048. [PMID: 27367058 DOI: 10.1080/07391102.2016.1206487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G-protein-coupled receptors (GPCRs) are targets of more than 30% of marketed drugs. Investigation on the GPCRs may shed light on upcoming drug design studies. In the present study, we performed a combination of receptor- and ligand-based analysis targeting the dopamine D2 receptor (D2R). The signaling pathway of D2R activation and the construction of universal pharmacophore models for D2R ligands were also studied. The key amino acids, which contributed to the regular activation of the D2R, were in detail investigated by means of normal mode analysis (NMA). A derived cross-correlation matrix provided us an understanding of the degree of pair residue correlations. Although negative correlations were not observed in the case of the inactive D2R state, a high degree of correlation appeared between the residues in the active state. NMA results showed that the cytoplasmic side of the TM5 plays a significant role in promoting of residue-residue correlations in the active state of D2R. Tracing motions of the amino acids Arg219, Arg220, Val223, Asn224, Lys226, and Ser228 in the position of the TM5 are found to be critical in signal transduction. Complementing the receptor-based modeling, ligand-based modeling was also performed using known D2R ligands. The top-scored pharmacophore models were found as 5-sited (AADPR.671, AADRR.1398, AAPRR.3900, and ADHRR.2864) hypotheses from PHASE modeling from a pool consisting of more than 100 initial candidates. The constructed models using 38 D2R ligands (in the training set) were validated with 15 additional test set compounds. The resulting model correctly predicted the pIC50 values of an additional test set compounds as true unknowns.
Collapse
Affiliation(s)
- Ramin Ekhteiari Salmas
- a Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| | - Matthias Stein
- b Molecular Simulations and Design Group , Max Planck Institute for Dynamics of Complex Technical System , Sandtorstrasse 1, 39106 Magdeburg , Germany
| | - Mine Yurtsever
- c Department of Chemistry , Istanbul Technical University , Istanbul , Turkey
| | - Philip Seeman
- d Department of Pharmacology and Psychiatry , University of Toronto , 260 Heath Street West, Unit 605, M5P 3L6 Toronto , Ontario , Canada
| | - Ismail Erol
- a Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey.,e Department of Chemistry , Gebze Technical University , Gebze , Turkey
| | - Mert Mestanoglu
- a Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| | - Serdar Durdagi
- a Department of Biophysics , School of Medicine, Bahcesehir University , Istanbul , Turkey
| |
Collapse
|
15
|
Ekhteiari Salmas R, Unlu A, Bektaş M, Yurtsever M, Mestanoglu M, Durdagi S. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. J Biomol Struct Dyn 2016; 35:1899-1915. [DOI: 10.1080/07391102.2016.1199328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Ayhan Unlu
- Faculty of Medicine, Department of Biophysics, Trakya University, Edirne, Turkey
| | - Muhammet Bektaş
- Istanbul Faculty of Medicine, Department of Biophysics, Istanbul University, Istanbul, Turkey
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | | | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|