1
|
Haque MA, Singh M, Tripathi MK, Ethayathulla AS, Kaur P. Identification of natural small molecule modulators of MurB from Salmonella enterica serovar Typhi Ty2 strain using computational and biophysical approaches. Proteins 2023; 91:363-379. [PMID: 36193975 DOI: 10.1002/prot.26435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The increase of antibiotic-resistant bacterial pathogens has created challenges in treatment and warranted the design of antibiotics against comparatively less exploited targets. The peptidoglycan (PG) biosynthesis delineates unique pathways for the design and development of a novel class of drugs. Mur ligases are an essential component of bacterial cell wall synthesis that play a pivotal role in PG biosynthesis to maintain internal osmotic pressure and cell shape. Inhibition of these enzymes can interrupt bacterial replication and hence, form attractive targets for drug discovery. In the present work, we focused on the PG biosynthesis pathway enzyme, UDP-N-acetylpyruvylglucosamine reductase, from Salmonella enterica serovar Typhi (stMurB). Biophysical characterization of purified StMurB was performed to gauge the molecular interactions and estimate thermodynamic stability for determination of attributes for possible therapeutic intervention. The thermal melting profile of MurB was monitored by circular dichroism and validated through differential scanning calorimetry experiment. Frequently used chemical denaturants, GdmCl and urea, were employed to study the chemical-induced denaturation of stMurB. In the search for natural compound-based inhibitors, against this important drug target, an in silico virtual screening based investigation was conducted with modeled stMurB structure. The three top hits (quercetin, berberine, and scopoletin) returned were validated for complex stability through molecular dynamics simulation. Further, fluorescence binding studies were undertaken for the selected natural compounds with stMurB alone and with NADPH bound form. The compounds scopoletin and berberine, displayed lesser binding to stMurB whereas quercetin exhibited stronger binding affinity than NADPH. This study suggests that quercetin can be evolved as an inhibitor of stMurB enzyme.
Collapse
Affiliation(s)
- Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Guncheva M. Role of ionic liquids on stabilization of therapeutic proteins and model proteins. Protein J 2022; 41:369-380. [PMID: 35661292 DOI: 10.1007/s10930-022-10058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/26/2022]
Abstract
Ionic liquids (ILs) exhibit potential as excipients to stabilize proteins in solutions. This mini-review is not a detailed reference book on ILs, rather a brief overview of the main achievements published in the literature on their effect on protein aggregation, unfolding, structural and thermal stability, and activity. The main focus of the manuscript is three widely studied groups of ionic liquids: imidazolium-, cholinium- and alkylammonium-based and their effect on the model and therapeutic proteins.
Collapse
Affiliation(s)
- Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 9, 1113, Sofia, Bulgaria.
| |
Collapse
|
3
|
Naiyer A, Khan B, Hussain A, Islam A, Alajmi MF, Hassan MI, Sundd M, Ahmad F. Stability of uniformly labeled ( 13C and 15N) cytochrome c and its L94G mutant. Sci Rep 2021; 11:6804. [PMID: 33762670 PMCID: PMC7990917 DOI: 10.1038/s41598-021-86332-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochrome c (cyt c) is widely used as a model protein to study (i) folding and stability aspects of the protein folding problem and (ii) structure-function relationship from the evolutionary point of view. Databases of cyts c now contain 285 cyt c sequences from different organisms. A sequence alignment of all these proteins with respect to horse cyt c led to several important conclusions. One of them is that Leu94 is always conserved in all 30 mammalian cyts c. It is known that mutation L94G of the wild type (WT) horse cyt c is destabilizing and mutant exists as molten globule under the native condition (buffer pH 6 and 25 °C). We have expressed and purified uniformly labeled (13C and 15N) and unlabeled WT horse cyt c and its L94G mutant. We report that labeling does not affect the thermodynamic stability of proteins. To support this conclusion, the secondary and tertiary structure of each protein in labeled and unlabeled forms was determined by conventional techniques (UV-Vis absorption and circular dichroism spectroscopy).
Collapse
Affiliation(s)
- Abdullah Naiyer
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Bushra Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Monica Sundd
- NMR-II Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
4
|
Alamry KA, Srivastava S, Shahbaaz M, Khan P, Gupta P, Syed SB, Azum N, Asiri AM, Islam A, Ahmad F, Hassan MI. Unravelling the unfolding pathway of human Fas-activated serine/threonine kinase induced by urea. J Biomol Struct Dyn 2020; 39:5516-5525. [PMID: 32662329 DOI: 10.1080/07391102.2020.1790423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Fas-activated serine/threonine kinase (FASTK) is a mitochondria-associated nuclear protein that inhibits Fas- and UV-induced apoptosis. This protein is generally activated during Fas-mediated apoptosis by phosphorylating a nuclear RNA-binding protein T-cell intracellular antigen-1 and thus considered as a modulator of apoptosis. In the present study, we have examined the equilibrium unfolding and conformational stability of the kinase domain of FASTK (FASTK353-444). The kinase domain of FASTK353-444 was cloned, expressed, and purified. The folding ↔ unfolding transitions of urea-induced denaturation was monitored with the help of circular dichroism, intrinsic fluorescence, and UV absorption spectroscopies. Analysis of transition curves obtained from different probes revealed a coincidence of denaturation curves, suggesting that folding/unfolding of FASTK follows a two-state process with the midpoint (Cm) value at 3.50 ± 0.1 M. Urea-induced denaturation curves were further analyzed to estimate change in the Gibbs free energy in the absence of urea (ΔGD0) associated with the equilibrium of denaturation. To get atomistic insights into the urea-induced denaturation of FASTK, we performed an all-atom molecular dynamics simulation for 100 ns. A close agreement was noticed between experimental and computational studies. This study will help to understand the unfolding mechanism and structural stability of the kinase domain of FASTK.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saurabha Srivastava
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Sunayana Begum Syed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naved Azum
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Gupta P, Khan FI, Ambreen D, Lai D, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI. Investigation of guanidinium chloride-induced unfolding pathway of sphingosine kinase 1. Int J Biol Macromol 2020; 147:177-186. [PMID: 31917989 DOI: 10.1016/j.ijbiomac.2020.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 01/11/2023]
Abstract
Sphingosine kinase 1 (SphK1) is a lipid kinase which plays vital role in the regulation of varieties of biological processes including, cell growth, apoptosis and mitogenesis. In the present study, we investigated the guanidinium chloride (GdmCl)-induced denaturation of SphK1 at pH 8.0 and 25 °C using two different spectroscopic probes, i.e., mean residue ellipticity at 222 nm ([θ]222) and fluorescence emission maxima (λmax). A significant overlap between the transition curves obtained from both the spectral properties indicate that GdmCl-induced unfolding of SphK1 follows two-state process i.e., Native (N) ⇌ Denatured (D) state. Interestingly, a visible protein aggregation was observed at low concentrations of GdmCl ([GdmCl] ≤ 1.5 M). The analysis of transition curves was done to estimate the thermodynamic parameters associated with the stability of SphK1. To complement our experimental findings, 100 ns molecular dynamics (MD) simulations were performed. Spectroscopic studies together with MD simulations provided mechanistic insights of unfolding pathway of SphK1 along with its stability parameters.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dilkash Ambreen
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mohamed F Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
6
|
Narayan A, Bhattacharjee K, Naganathan AN. Thermally versus Chemically Denatured Protein States. Biochemistry 2019; 58:2519-2523. [PMID: 31083972 DOI: 10.1021/acs.biochem.9b00089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein unfolding thermodynamic parameters are conventionally extracted from equilibrium thermal and chemical denaturation experiments. Despite decades of work, the degree of structure and the compactness of denatured states populated in these experiments are still open questions. Here, building on previous works, we show that thermally and chemically denatured protein states are distinct from the viewpoint of far-ultraviolet circular dichroism experiments that report on the local conformational status of peptide bonds. The differences identified are independent of protein length, structural class, or experimental conditions, highlighting the presence of two sub-ensembles within the denatured states. The sub-ensembles, UT and UD for thermally induced and denaturant-induced unfolded states, respectively, can exclusively exchange populations as a function of temperature at high chemical denaturant concentrations. Empirical analysis suggests that chemically denatured states are ∼50% more expanded than the thermally denatured chains of the same protein. Our observations hint that the strength of protein backbone-backbone interactions and identity versus backbone-solvent/co-solvent interactions determine the conformational distributions. We discuss the implications for protein folding mechanisms, the heterogeneity in relaxation rates, and folding diffusion coefficients.
Collapse
Affiliation(s)
- Abhishek Narayan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Kabita Bhattacharjee
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
7
|
Khan SH, Prakash A, Pandey P, Lynn AM, Islam A, Hassan MI, Ahmad F. Protein folding: Molecular dynamics simulations and in vitro studies for probing mechanism of urea- and guanidinium chloride-induced unfolding of horse cytochrome-c. Int J Biol Macromol 2019; 122:695-704. [DOI: 10.1016/j.ijbiomac.2018.10.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/27/2018] [Accepted: 10/27/2018] [Indexed: 11/26/2022]
|
8
|
Syed SB, Khan FI, Khan SH, Srivastava S, Hasan GM, Lobb KA, Islam A, Hassan MI, Ahmad F. Unravelling the unfolding mechanism of human integrin linked kinase by GdmCl-induced denaturation. Int J Biol Macromol 2018; 117:1252-1263. [PMID: 29885398 DOI: 10.1016/j.ijbiomac.2018.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/26/2018] [Accepted: 06/06/2018] [Indexed: 12/14/2022]
Abstract
Integrin-linked kinase (ILK) is a ubiquitously expressed Ser/Thr kinase which plays significant role in the cell-matrix interactions and growth factor signalling. In this study, guanidinium chloride (GdmCl)-induced unfolding of kinase domain of ILK (ILK193-446) was carried out at pH 7.5 and 25 °C. Eventually, denaturation curves of mean residue ellipticity at 222 nm ([θ]222) and fluorescence emission spectrum were analysed to estimate stability parameters. The optical properties maximum emission (λmax) and difference absorption coefficient at 292 nm (Δε292) were analysed. The denaturation curve was measured only in the GdmCl molar concentration ranging 3.0-4.2 M because protein was aggregating below 3.0 M of GdmCl concentrations. The denaturation process of ILK193-446 was found as reversible at [GdmCl] ≥ 3.0 M. Moreover, a coincidence of normalized denaturation curves of optical properties ([θ]222, Δε292 and λmax) suggesting that GdmCl-induced denaturation of ILK193-446 is a two-state process. In addition, 100 ns molecular dynamics simulations were performed to see the effects of GdmCl on the structure and stability of ILK193-446. Both the spectroscopic and molecular dynamics approaches provided clear insights into the stability and conformational properties of ILK193-446.
Collapse
Affiliation(s)
- Sunayana Begum Syed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faez Iqbal Khan
- Computational Mechanistic Chemistry and Drug Discovery, Rhodes University, South Africa
| | - Sabab Hasan Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saurabha Srivastava
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Kevin A Lobb
- Computational Mechanistic Chemistry and Drug Discovery, Rhodes University, South Africa
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
9
|
Bansal R, Haque MA, Yadav P, Gupta D, Ethayathulla AS, Hassan MI, Kaur P. Estimation of structure and stability of MurE ligase from Salmonella enterica serovar Typhi. Int J Biol Macromol 2018; 109:375-382. [DOI: 10.1016/j.ijbiomac.2017.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
|
10
|
Prakash A, Dixit G, Meena NK, Singh R, Vishwakarma P, Mishra S, Lynn AM. Elucidation of stable intermediates in urea-induced unfolding pathway of human carbonic anhydrase IX. J Biomol Struct Dyn 2017; 36:2391-2406. [DOI: 10.1080/07391102.2017.1355847] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amresh Prakash
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Gunjan Dixit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Naveen Kumar Meena
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ruhar Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Dar MA, Islam A, Hassan MI, Ahmad F. Effect of mammalian kidney osmolytes on the folding pathway of sheep serum albumin. Int J Biol Macromol 2017; 97:625-634. [PMID: 28119187 DOI: 10.1016/j.ijbiomac.2017.01.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/20/2022]
Abstract
Recently, we had published that urea-induced denaturation curves of optical properties of sheep serum albumin (SSA) are biphasic with a stable intermediate that has characteristics of molten globule (MG) state. In this study, we have extended the work by carrying out urea- and guanidinium chloride (GdmCl)-induced denaturations of SSA in the presence of naturally occurring mammalian kidney osmolytes, namely, sorbitol, myo-inositol and glycine betaine. We have observed that all these osmolytes (i) transform this biphasic transition into a co-operative, two-state transition and (ii) increase the stability of the protein in terms of midpoint of denaturation (Cm) and Gibbs free energy change in the absence of both denaturants (ΔGD0). The relative effectiveness of different osmolytes on the stability of SSA follows the order: glycine betaine>myo-inositol>sorbitol. In this paper, we also report that kidney osmolytes destabilize MG state by shifting the equilibrium, native state↔MG state toward the left. This study will be helpful in understanding the existence of osmolytes in kidney and their role in folding of kidney proteins soaked with urea.
Collapse
Affiliation(s)
- Mohammad Aasif Dar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
12
|
Sami N, Kumar V, Islam A, Ali S, Ahmad F, Hassan I. Exploring Missense Mutations in Tyrosine Kinases Implicated with Neurodegeneration. Mol Neurobiol 2016; 54:5085-5106. [PMID: 27544236 DOI: 10.1007/s12035-016-0046-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Protein kinases are one of the largest families of evolutionarily related proteins and the third most common protein class of human genome. All the protein kinases share the same structural organization. They are made up of an extracellular domain, transmembrane domain and an intra cellular kinase domain. Missense mutations in these kinases have been studied extensively and correlated with various neurological disorders. Individual mutations in the kinase domain affect the functions of protein. The enhanced or reduced expression of protein leads to hyperactivation or inactivation of the signalling pathways, resulting in neurodegeneration. Here, we present extensive analyses of missense mutations in the tyrosine kinase focussing on the neurodegenerative diseases encompassing structure function relationship. This is envisaged to enhance our understanding about the neurodegeneration and possible therapeutic measures.
Collapse
Affiliation(s)
- Neha Sami
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|