1
|
Shahbazi B, Mafakher L, Arab SS, Teimoori-Toolabi L. Kallistatin as an inhibitory protein against colorectal cancer cells through binding to LRP6. J Biomol Struct Dyn 2024; 42:918-934. [PMID: 37114408 DOI: 10.1080/07391102.2023.2196704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/22/2023] [Indexed: 04/29/2023]
Abstract
Kallistatin (KL) is a member of the serine proteinase inhibitor (serpin) family regulating oxidative stress, vascular relaxation, inflammation, angiogenesis, cell proliferation, and invasion. The heparin-binding site of Kallistatin has an important role in the interaction with LRP6 leading to the blockade of the Wnt signaling pathway. In this study, we aimed to explore the structural basis of the Kallistatin-LRP6E1E4 complex using in silico approaches and evaluating the anti-proliferative, apoptotic, and cell cycle arrest activities of Kallistatin in colon cancer lines. The molecular docking showed Kallistatin could bind to the LRP6E3E4 much stronger than LRP6E1E2. The Kallistatin-LRP6E1E2 and Kallistatin-LRP6E3E4 complexes were stable during Molecular Dynamics (MD) simulation. The Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) showed that the Kallistatin-LRP6E3E4 has a higher binding affinity compared to Kallistatin-LRP6E1E2. Kallistatin induced higher cytotoxicity and apoptosis in HCT116 compared to the SW480 cell line. This protein-induced cell-cycle arrest in both cell lines at the G1 phase. The B-catenin, cyclin D1, and c-Myc expression levels were decreased in response to treatment with Kallistatin in both cell lines while the LRP6 expression level was decreased in the HCT116 cell line. Kallistatin has a greater effect on the HCT116 cell line compared to the SW480 cell line. Kallistatin can be used as a cytotoxic and apoptotic-inducing agent in colorectal cancer cell lines.
Collapse
Affiliation(s)
- Behzad Shahbazi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Kumar S, Devi J, Dubey A, Kumar D, Jindal DK, Asija S, Sharma A. Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base ligands: synthesis, characterization, DFT, in vitro antimicrobial activity and molecular docking studies. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
4
|
Deswal Y, Asija S, Dubey A, Deswal L, Kumar D, Kumar Jindal D, Devi J. Cobalt(II), nickel(II), copper(II) and zinc(II) complexes of thiadiazole based Schiff base ligands: Synthesis, structural characterization, DFT, antidiabetic and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Leite PM, Martins MAP, Carvalho MDG, Castilho RO. Mechanisms and interactions in concomitant use of herbs and warfarin therapy: An updated review. Biomed Pharmacother 2021; 143:112103. [PMID: 34474338 DOI: 10.1016/j.biopha.2021.112103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
This review is an updated and expanded version published in this journal in 2016. Warfarin pharmacotherapy is extremely complex, since in addition to being a low therapeutic index drug, it does not follow the dose-response pattern and has characteristics that predispose the occurrence of interactions, such as high binding rate to plasma proteins, metabolization by cytochrome P450 enzymes, further to acting in the complex process of blood coagulation, platelet activation, and inflammation. For these reasons, warfarin has great potential for interaction with drugs, foods, and herbal medicines. Herb-warfarin interactions, however, are still not very well studied; thus, the objective of this update is to present new information on the subject aiming to provide a scientific basis to help health professionals in the clinical management of these interactions. A literature review was performed from May to June 2021 in multiple databases and articles published in 2016 to 2021 were included. A total of 59 articles describing 114 herbal medicines were reported to interact with warfarin. Of the plants mentioned, 84% had the potential to increase warfarin effect and the risk of bleeding. Targets possibly involved in these interactions include the processes of blood coagulation, platelet activation, and inflammation, in addition to the pharmacokinetics and pharmacodynamics of warfarin. Despite these alarming numbers, however, the clinical management of interactions is known to be effective. Thus, it is important that the use of these herbal medicines be done with caution in anticoagulated patients and that studies of herb-drug interactions be encouraged in order to generate information to support the clinical management of patients.
Collapse
Affiliation(s)
- Paula Mendonça Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Auxiliadora Parreiras Martins
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil
| | - Rachel Oliveira Castilho
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, Brazil; Consórcio Acadêmico Brasileiro de Saúde Integrativa, CABSIN, Brazil.
| |
Collapse
|
6
|
Chinnasamy S, Selvaraj G, Kaushik AC, Kaliamurthi S, Chandrabose S, Singh SK, Thirugnanasambandam R, Gu K, Wei DQ. Molecular docking and molecular dynamics simulation studies to identify potent AURKA inhibitors: assessing the performance of density functional theory, MM-GBSA and mass action kinetics calculations. J Biomol Struct Dyn 2020; 38:4325-4335. [PMID: 31583965 DOI: 10.1080/07391102.2019.1674695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sathishkumar Chinnasamy
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, Henan, China
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, Henan, China
| | - Selvaraj Chandrabose
- Department of Bioinformatics, School of Biological Sciences, Alagappa University, Karaikkudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, School of Biological Sciences, Alagappa University, Karaikkudi, Tamil Nadu, India
| | - Ramanathan Thirugnanasambandam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Science, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Keren Gu
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou, Henan, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Chinnasamy S, Selvaraj G, Selvaraj C, Kaushik AC, Kaliamurthi S, Khan A, Singh SK, Wei DQ. Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). Int J Biol Macromol 2020; 144:53-66. [PMID: 31838071 DOI: 10.1016/j.ijbiomac.2019.12.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Phospholipase A2 (PLA2) is the main constituent of snake venom. PLA2 enzymes catalyze the Ca2+ dependent hydrolysis of 2-acyl ester bonds of 3-sn-phospholipids, releasing fatty acids and lysophospholipids. Inside the body of the victim, PLA2 from snake venom induces either direct or indirect pathophysiological effects, including anticoagulant, inflammatory, neurotoxic, cardiotoxic, edematogenic, and myotoxic activities. Therefore, there is a need to find the potential inhibitors against PLA2 responsible for snakebite. In this study, we employed in silico and in vitro methods to identify the potential inhibitor against PLA2. Virtual screening and molecular docking studies were performed to find potent inhibitor against PLA2 using Traditional Chinese Medicine Database (TCM). Based on these studies, Scutellarin (TCM3290) was selected and calculated by density functional theory calculation at B3LYP/6-31G**++ level to explore the stereo-electronic features of the molecule. Further, molecular docking and DFT of Minocycline was carried out. Quantum polarized ligand docking was performed to optimize the geometry of the protein-ligand complexes. The protein-ligand complexes were subjected to molecular dynamics simulation and binding free energy calculations. The residence time of a protein-ligand complex is a critical parameter affecting natural influences in vitro. It is nonetheless a challenging errand to expect, regardless of the accessibility of incredible PC assets and a large variety of computing procedures. In this metadynamics situation, we used the conformational flooding technique to deal with rank inhibitors constructions. The systematic free energy perturbation (FEP) protocol and calculate the energy of both complexes. Finally, the selected compound of TCM3290 was studied in vitro analysis such as inhibition of PLA2 activity, hyaluronidase activity and fibrinogenolytic activity. The TCM3290 had a more binding affinity compare to Minocycline, and interacted with the key residues of TYR63 and GLY31. DFT represented the highest HOMO and LUMO energy of 0.15146 eV. MD simulation with 100 ns proved that an inhibitor binding mode is more stable inside the binding site of PLA2. In vitro analysis shows that TCM3290 significantly neutralized by PLA2. The above observations confirmed that Scutellarin (TCM3290) had a potent snake venom neutralizing capacity and could hypothetically be used for therapeutic drives of snakebite envenomation.
Collapse
Affiliation(s)
- Sathishkumar Chinnasamy
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gurudeeban Selvaraj
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China; College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Chandrabose Selvaraj
- Department of Bioinformatics, Alagappa University, Karaikkudi, 630004, Tamil Nadu, India
| | - Aman Chandra Kaushik
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Wuxi School of Medicine, Jiangnan University, PR China
| | - Satyavani Kaliamurthi
- Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China; College of Chemistry, Chemical Engineering and Environment, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Alagappa University, Karaikkudi, 630004, Tamil Nadu, India
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Interdisciplinary Science-Computational Life Sciences, College of Food Science and Engineering, Henan University of Technology, Zhengzhou High-tech Industrial Development Zone, 100 Lianhua Street, Zhengzhou, Henan 450001, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China; Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, PR China.
| |
Collapse
|
8
|
Gómez-Betancur I, Gogineni V, Salazar-Ospina A, León F. Perspective on the Therapeutics of Anti-Snake Venom. Molecules 2019; 24:E3276. [PMID: 31505752 PMCID: PMC6767026 DOI: 10.3390/molecules24183276] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 01/22/2023] Open
Abstract
Snakebite envenomation is a life-threatening disease that was recently re-included as a neglected tropical disease (NTD), affecting millions of people in tropical and subtropical areas of the world. Improvement in the therapeutic approaches to envenomation is required to palliate the morbidity and mortality effects of this NTD. The specific therapeutic treatment for this NTD uses snake antivenom immunoglobulins. Unfortunately, access to these vital drugs is limited, principally due to their cost. Different ethnic groups in the affected regions have achieved notable success in treatment for centuries using natural sources, especially plants, to mitigate the effects of snake envenomation. The ethnopharmacological approach is essential to identify the potential metabolites or derivatives needed to treat this important NTD. Here, the authors describe specific therapeutic snakebite envenomation treatments and conduct a review on different strategies to identify the potential agents that can mitigate the effects of the venoms. The study also covers an increased number of literature reports on the ability of natural sources, particularly plants, to treat snakebites, along with their mechanisms, drawbacks and future perspectives.
Collapse
Affiliation(s)
- Isabel Gómez-Betancur
- Ophidism-Scorpionism Program, Faculty of Pharmaceutical and Food Sciences, University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Vedanjali Gogineni
- Analytical Department, Cambrex Pharmaceuticals, Charles City, IA 50616, USA.
| | - Andrea Salazar-Ospina
- Research group in Pharmacy Regency Technology, Faculty of Pharmaceutical and Food Sciences University of Antioquia UdeA, Medellín 1226, Colombia.
| | - Francisco León
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|