1
|
Şenel P, Al Faysal A, Yilmaz Z, Erdoğan T, Odabaşoğlu M, Gölcü A. Investigation of the ability of 3-((4-chloro-6-methyl pyrimidin-2-yl)amino) isobenzofuran-1(3H)-one to bind to double-stranded deoxyribonucleic acid. Photochem Photobiol Sci 2024; 23:2107-2121. [PMID: 39522116 DOI: 10.1007/s43630-024-00655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Phthalides represent a notable category of secondary metabolites that are prevalent in various plant species, certain fungi, and liverworts. The significant pharmacological properties of these compounds have led to the synthesis of a novel phthalide derivative. The current study focuses on investigating the binding interactions of a newly synthesized 3-substituted phthalide derivative, specifically 3-((4-chloro-6-methyl pyrimidine-2-yl)amino) isobenzofuran-1(3H)-one (Z11), with double-stranded deoxyribonucleic acid (dsDNA). Research in the pharmaceutical and biological fields aimed at developing more potent DNA-binding agents must take into account the mechanisms by which these newly synthesized compounds interact with DNA. This investigation seeks to explore the binding dynamics between dsDNA and our compound through a variety of analytical techniques, such as electrochemistry, UV spectroscopy, fluorescence spectroscopy, and thermal denaturation. The binding constant (Kb) of Z11 with DNA was determined using both spectroscopic and voltammetric approaches. The research revealed that Z11 employs a groove binding mechanism to associate with dsDNA. To further explore the interactions between Z11 and dsDNA, the study utilized density functional theory (DFT) calculations, molecular docking, and molecular dynamics simulations. These analyses aimed to ascertain the potential for a stable complex formation between Z11 and dsDNA. The results indicate that Z11 is situated within the minor groove of the dsDNA, demonstrating the ability to establish a stable complex. Furthermore, the findings imply that both π-alkyl interactions and hydrogen bonding play significant roles in the stabilization of this complex.
Collapse
Affiliation(s)
- Pelin Şenel
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Abdullah Al Faysal
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Zeynep Yilmaz
- Faculty of Engineering, Chemical Engineering Department, Pamukkale University, Denizli, Turkey
| | - Taner Erdoğan
- Department of Chemistry and Chemical Processing Technologies, Kocaeli University, Kocaeli Vocational High School, Kocaeli, Turkey
| | - Mustafa Odabaşoğlu
- Chemistry Technology Programme, Pamukkale University, Kinikli, Denizli, 20070, Turkey
| | - Ayşegül Gölcü
- Faculty of Sciences and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, 34469, Turkey.
| |
Collapse
|
2
|
Na Z, Liu S, Bi H, He X, Liu T. Inhibitory effects of polyphenols on the Maillard reaction in low lactose milk and the underlying mechanism. J Dairy Sci 2024:S0022-0302(24)01194-9. [PMID: 39369897 DOI: 10.3168/jds.2024-25306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
In this study, low lactose milk (LLM) was heat-treated under different conditions and stored at 4, 25 and 37°C for 15 d, after which the changes in the Maillard reaction (MR) of LLM were investigated. The contents of α-dicarbonyl compounds and 5-hydroxymethylfurfural(5-HMF) in LLM after the addition of polyphenols were determined via HPLC, and the inhibitory effects of 3 different concentrations of epigallocatechin gallate (EGCG), dihydromyricetin (DMY), and procyanidin (PC) on the MR of LLM were studied. The fluorescence intensity of LLM was measured at 290, 300 and 310 K, the fluorescence quenching types and binding constants of PC on casein were investigated, and thermodynamic analysis was carried out. These results suggest that the optimal heat treatment conditions were 80°C for 15 s and that the optimal storage conditions were 4°C. In the α-dicarbonyl compound capture and 5-HMF inhibition tests, PC had the greatest inhibitory effect at a concentration of 0.2 mg/mL, with an inhibition rate of 48.19%. Therefore, PC is more stable than the other 2 polyphenols. The mechanism of inhibition involves the formation of matrix complexes between PC and casein in LLM, resulting in static quenching of the LLM and thus a reduction of the inhibitory effect. The thermodynamic analysis revealed that the binding of PC to casein was an exothermic reaction, and the combination of the 2 was driven mainly by hydrogen bonding and van der Waals forces. This study lays a theoretical foundation for the development of LLM.
Collapse
Affiliation(s)
- Zhiguo Na
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Siqi Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Haixin Bi
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150060, China.
| | - Xin He
- College of Food Engineering, East University of Heilongjiang, Harbin, Heilongjiang 150060, China
| | - Tong Liu
- School of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| |
Collapse
|
3
|
Radwan AS, Salim MM, Elkhoudary MM, Hadad GM, Shaldam MA, Belal F, Magdy G. Study of the binding interaction of salmon sperm DNA with nintedanib, a tyrosine kinase inhibitor using multi-spectroscopic, thermodynamic, and in silico approaches. J Biomol Struct Dyn 2024; 42:1170-1180. [PMID: 37079322 DOI: 10.1080/07391102.2023.2202776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
The study of the intermolecular binding interaction of small molecules with DNA can guide the rational drug design with greater efficacy and improved or more selective activity. In the current study, nintedanib's binding interaction with salmon sperm DNA (ssDNA) was thoroughly investigated using UV-vis spectrophotometry, spectrofluorimetry, ionic strength measurements, viscosity measurements, thermodynamics, molecular docking, and molecular dynamic simulation techniques under physiologically simulated conditions (pH 7.4). The obtained experimental results showed that nintedanib and ssDNA had an apparent binding interaction. Nintedanib's binding constant (Kb) with ssDNA, as determined using the Benesi-Hildebrand plot, was 7.9 × 104 M-1 at 298 K, indicating a moderate binding affinity. The primary binding contact forces were hydrophobic and hydrogen bonding interactions, as verified by the enthalpy and entropy changes (ΔH0 and ΔS0), which were - 16.25 kJ.mol-1 and 39.30 J mol-1 K-1, respectively. According to the results of UV-vis spectrophotometry, viscosity assays, and competitive binding interactions with ethidium bromide or rhodamine B, the binding mode of nintedanib to ssDNA was minor groove. Molecular docking and molecular dynamic simulation studies showed that nintedanib fitted into the B-DNA minor groove's AT-rich region with high stability. This study can contribute to further understanding of nintedanib's molecular mechanisms and pharmacological effects.
Collapse
Affiliation(s)
- Aya Saad Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Mohamed M Salim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Elkhoudary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Ghada M Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Moataz A Shaldam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
4
|
Shaldam M, Tawfik H, Elmansi H, Belal F, Yamaguchi K, Sugiura M, Magdy G. Synthesis, crystallographic, DNA binding, and molecular docking/dynamic studies of a privileged chalcone-sulfonamide hybrid scaffold as a promising anticancer agent. J Biomol Struct Dyn 2023; 41:8876-8890. [PMID: 36310097 DOI: 10.1080/07391102.2022.2138551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/15/2022] [Indexed: 10/31/2022]
Abstract
In the present study, a drug-like molecular hybrid structure between chalcone and sulfonamide moieties was synthesized and characterized. The structural peculiarities of the synthesized hybrid were further verified by means of single crystal X-ray crystallography. Furthermore, its biological activity as an anticancer agent was evaluated. The synthesized model of chalcone-sulfonamide hybrid 3 was found to have potent anticancer properties against the studied cancer cell lines. Hence, the in vitro binding interaction of hybrid 3 with Calf thymus DNA (CT-DNA) was studied at a simulated physiological pH to confirm its anticancer activity for the first time. This was investigated by applying different spectroscopic techniques, ionic strength measurements, viscosity measurements, thermodynamics, molecular dynamic simulation and molecular docking studies. The obtained results showed a clear binding interaction between hybrid 3 and CT-DNA with a moderate affinity via a minor groove binding mechanism. The binding constant (Kb) at 298 K calculated from the Benesi-Hildebrand equation was found to be 3.49 × 104 M-1. The entropy and enthalpy changes (ΔS0 and ΔH0) were 204.65 J mol-1 K-1 and 35.08 KJ mol-1, respectively, indicating that hydrophobic interactions constituted the major binding forces. The results obtained from molecular docking and dynamic simulation studies confirmed the minor groove binding interaction and the stability of the formed complex. This study can contribute to further understanding of the molecular mechanism of hybrid 3 as a potential antitumor agent and can also guide future clinical and pharmacological studies for rational drug design with enhanced or more selective activity and greater efficacy.[Figure: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moataz Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Haytham Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
5
|
Hanif M, Noor A, Muhammad M, Ullah F, Tahir MN, Khan GS, Khan E. Complexes of 2-Amino-3-methylpyridine and 2-Amino-4-methylbenzothiazole with Ag(I) and Cu(II): Structure and Biological Applications. INORGANICS 2023. [DOI: 10.3390/inorganics11040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Coordination complexes (1–4) of 2-amino-4-methylbenzothiazole and 2-amino-3-methylpyridine with Cu(CH3COO)2 and AgNO3 were prepared and characterized by UV/Vis and FT-IR spectroscopy. The molecular structure for single crystals of silver complexes (2 and 4) were determined by X-ray diffraction. The coordination complex (2) is monoclinic with space group P21/c, wherein two ligands are coordinated to a metal ion, affording distorted trigonal geometry around the central Ag metal ion. The efficient nucleophilic center, i.e., the endocyclic nitrogen of the organic ligand, binds to the silver metal. Ligands are coordinated to adopt cis arrangement, predominantly due to steric reasons. The O(2) and O(3) atoms of the NO3− group further play an important role in such type of ligand arrangement by hydrogen bonding with the NH2 group of ligands. Complex (4) is orthorhombic, P212121, comprising two molecules of 2-amino-3-methylpyridine as ligand coordinated with the metal ion, affording a polymeric structure. The coordination behavior of the ligand is identical to that in complex 2, wherein ring nitrogen is coordinated to the metal center and bridged to another metal ion through an NH2 group. The resulting product is polymeric in nature with the Ag metal in the backbone and ligand as the bridge. Compounds (2–4) were found to be luminescent, while 1 did not show such activity. All compounds were screened for their preliminary biological activities such as antibacterial, antioxidant and enzyme inhibition. Compounds exhibited moderate activity in these tests.
Collapse
Affiliation(s)
- Muhammad Hanif
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Awal Noor
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al-Hassa 31982, Saudi Arabia
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | | | - Gul Shahzada Khan
- Department of Chemistry, College of Science, University of Bahrain, Main Campus, Sakhir 32038, Bahrain
| | - Ezzat Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Main Campus, Sakhir 32038, Bahrain
| |
Collapse
|
6
|
Alniss HY, Chu C, Ramadan WS, Msallam YA, Srinivasulu V, El-Awady R, Macgregor RB, Al-Tel TH. Interaction of an anticancer benzopyrane derivative with DNA: Biophysical, biochemical, and molecular modeling studies. Biochim Biophys Acta Gen Subj 2023; 1867:130347. [PMID: 36958685 DOI: 10.1016/j.bbagen.2023.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND SIMR1281 is a potent anticancer lead candidate with multi- target activity against several proteins; however, its mechanism of action at the molecular level is not fully understood. Revealing the mechanism and the origin of multitarget activity is important for the rational identification and optimization of multitarget drugs. METHODS We have used a variety of biophysical (circular dichroism, isothermal titration calorimetry, viscosity, and UV DNA melting), biochemical (topoisomerase I & II assays) and computational (molecular docking and MD simulations) methods to study the interaction of SIMR1281 with duplex DNA structures. RESULTS The biophysical results revealed that SIMR1281 binds to dsDNA via an intercalation-binding mode with an average binding constant of 3.1 × 106 M-1. This binding mode was confirmed by the topoisomerases' inhibition assays and molecular modeling simulations, which showed the intercalation of the benzopyrane moiety between DNA base pairs, while the remaining moieties (thiazole and phenyl rings) sit in the minor groove and interact with the flanking base pairs adjacent to the intercalation site. CONCLUSIONS The DNA binding characteristics of SIMR1281, which can disrupt/inhibit DNA function as confirmed by the topoisomerases' inhibition assays, indicate that the observed multi-target activity might originate from ligand intervention at nucleic acids level rather than due to direct interactions with multiple biological targets at the protein level. GENERAL SIGNIFICANCE The findings of this study could be helpful to guide future optimization of benzopyrane-based ligands for therapeutic purposes.
Collapse
Affiliation(s)
- Hasan Y Alniss
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Chen Chu
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Wafaa S Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yousef A Msallam
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Raafat El-Awady
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Robert B Macgregor
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
7
|
Jino Blessy J, Siva Shanmugam NR, Veluraja K, Michael Gromiha M. Investigations on the binding specificity of β-galactoside analogues with human galectin-1 using molecular dynamics simulations. J Biomol Struct Dyn 2022; 40:10094-10105. [PMID: 34219624 DOI: 10.1080/07391102.2021.1939788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galectin-1 (Gal-1) is the first member of galectin family, which has a carbohydrate recognition domain, specifically binds towards β-galactoside containing oligosaccharides. Owing its association with carbohydrates, Gal-1 is involved in many biological processes such as cell signaling, adhesion and pathological pathways such as metastasis, apoptosis and increased tumour cell survival. The development of β-galactoside based inhibitors would help to control the Gal-1 expression. In the current study, we carried out molecular dynamics (MD) simulations to examine the structural and dynamic behaviour Gal-1-thiodigalactoside (TDG), Gal-1-lactobionic acid (LBA) and Gal-1-beta-(1→6)-galactobiose (G16G) complexes. The analysis of glycosidic torsional angles revealed that β-galactoside analogues TDG and LBA have a single binding mode (BM1) whereas G16G has two binding modes (BM1 and BM2) for interacting with Gal-1 protein. We have computed the binding free energies for the complexes Gal-1-TDG, Gal-1-LBA and Gal-1-G16G using MM/PBSA and are -6.45, -6.22 and -3.08 kcal/mol, respectively. This trend agrees well with experiments that the binding of Gal-1 with TDG is stronger than LBA. Further analysis revealed that the interactions due to direct and water-mediated hydrogen bonds play a significant role to the structural stability of the complexes. The result obtained from this study is useful to formulate a set of rules and derive pharmacophore-based features for designing inhibitors against galectin-1.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- J Jino Blessy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - N R Siva Shanmugam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - K Veluraja
- PSN college of Engineering and Technology, Tirunelveli, Tamilnadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
8
|
Bharathi, Roy KK. Structural basis for the binding of a selective inverse agonist AF64394 with the human G-protein coupled receptor 3 (GPR3). J Biomol Struct Dyn 2022; 40:10181-10190. [PMID: 34157950 DOI: 10.1080/07391102.2021.1940282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The orphan class A G-protein coupled receptor 3 (GPR3) is highly expressed in brain and linked with various neuronal functions, and therefore, expected to play a vital role in the progression of Alzheimer's disease. In view of the lack of its experimental structure, we describe herein the three-dimensional structure and conformational dynamics of GPR3 complexed with the inverse agonist AF64394. The GPR3 model was predicted using the Iterative Threading ASSEmbly Refinement (I-TASSER) method. The Induced Fit Docking predicted two unique poses, Pose 1 and Pose 2, for AF64394, and then, molecular dynamics (MD) simulations followed by binding free-energy calculation revealed the Pose 1 as a very stable pose with the least fluctuation during the MD simulation while the Pose 2 underwent a significant fluctuation. The [1,2,4]triazolo[1,5-a]pyrimidine core was engaged in multiple hydrogen bonds (H-bonds), such as a water-mediated H-bond between the triazole nitrogen and T31, two direct H-bonds between the protonated triazole-ring nitrogen and V186 and T279, a direct H-bond between the secondary amine and V187. The phenyl substituent of AF64394 exhibited aromatic π-π stacking interactions with F97, F101, W43 and Y280. AF64394 showed a direct interaction with E28 and polar interactions with H96, T31 and T279. Throughout the MD simulation, the toggle switch residues, F120 and W260, remained in close contact, indicating that the GPR3 conformation represented an inactive state. The 4-(3-chloro-5-isopropoxyphenethyl) group resided near to the toggle switch residues. The insights gained here are expected to be useful in the structure-based design of new ligands targeting GPR3 modulation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Kuldeep K Roy
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, India
| |
Collapse
|
9
|
Hanif M, Kosar N, Mahmood T, Muhammad M, Ullah F, Tahir MN, Ribeiro AI, Khan E. Schiff Bases Derived from 2‐Amino‐6‐methylbenzothiazole, 2‐Amino‐5‐chloropyridine and 4‐Chlorobenzaldehyde: Structure, Computational Studies and Evaluation of Biological Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202203386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Muhammad Hanif
- Department of Chemistry University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
| | - Naveen Kosar
- Department of Chemistry University of Management and Technology (UMT) C11, Johar Town Lahore Pakistan
| | - Tariq Mahmood
- Department of Chemistry College of Science University of Bahrain Main campus 32038 Sakhir, Kingdom of Bahrain
- Department of Chemistry COMSATS University Islamabad Abbottabad Campus, Abbottabad 22060 Pakistan
| | - Mian Muhammad
- Department of Chemistry University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
| | - Farhat Ullah
- Department of Pharmacy University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
| | | | - Alany Ingrid Ribeiro
- Laboratorio de Produtos Naturais Departmento de Quimica universidade Federal de sao Carlos, UFSCar Brazil
| | - Ezzat Khan
- Department of Chemistry University of Malakand 18800 Chakdara Lower Dir Khyber Pakhtunkhwa Pakistan
- Department of Chemistry College of Science University of Bahrain Main campus 32038 Sakhir, Kingdom of Bahrain
| |
Collapse
|
10
|
Güngör SA, Tümer M, Köse M, Erkan S. N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies. J Biomol Struct Dyn 2022; 40:7424-7438. [PMID: 33704019 DOI: 10.1080/07391102.2021.1897683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Benzenesulfonamide-based imine compounds 5-8 were prepared and screened for their binding properties to the FSdsDNA. The structures of synthesized compounds were elucidated by the spectroscopic and analytical methods. Compounds 5-8 were screened for their interactions with the FSdsDNA. Compound 8 showed the highest binding affinity to the FSdsDNA with intrinsic binding constant of 3.10 × 104 M-1. The compounds caused the quenching of the DNA-EB emission indicating displacement of EB (ethidium bromide) from the FSdsDNA. Finally, the binding interactions between the DNA and binder molecules 5-8 were examined by the molecular docking studies. The compounds locate approximately same region of the minor groove of DNA via hydrogen bonding contacts between the sulfonamide oxygen atoms and the DG10/DG16 nucleotides of DNA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Seyit Ali Güngör
- Chemistry Department, K.Maras Sütcü Imam University, K.Maras, Turkey
| | - Mehmet Tümer
- Chemistry Department, K.Maras Sütcü Imam University, K.Maras, Turkey
| | - Muhammet Köse
- Chemistry Department, K.Maras Sütcü Imam University, K.Maras, Turkey
| | - Sultan Erkan
- Department of Chemistry and Chemical Processing Technologies, Sivas Cumhuriyet University Yıldızeli Vocational School, Sivas, Turkey
| |
Collapse
|
11
|
Multi-spectroscopic, thermodynamic, and molecular docking/dynamic approaches for characterization of the binding interaction between calf thymus DNA and palbociclib. Sci Rep 2022; 12:14723. [PMID: 36042232 PMCID: PMC9427788 DOI: 10.1038/s41598-022-19015-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Studying the binding interaction between biological macromolecules and small molecules has formed the core of different research aspects. The interaction of palbociclib with calf thymus DNA at simulated physiological conditions (pH 7.4) was studied using different approaches, including spectrophotometry, spectrofluorimetry, FT-IR spectroscopy, viscosity measurements, ionic strength measurements, thermodynamic, molecular dynamic simulation, and docking studies. The obtained findings showed an apparent binding interaction between palbociclib and calf thymus DNA. Groove binding mode was confirmed from the findings of competitive binding studies with ethidium bromide or rhodamine B, UV–Vis spectrophotometry, and viscosity assessment. The binding constant (Kb) at 298 K calculated from the Benesi–Hildebrand equation was found to be 6.42 × 103 M−1. The enthalpy and entropy changes (∆H0 and ∆S0) were − 33.09 kJ mol−1 and 61.78 J mol−1 K−1, respectively, showing that hydrophobic and hydrogen bonds constitute the primary binding forces. As indicated by the molecular docking results, palbociclib fits into the AT-rich region of the B-DNA minor groove with four base pairs long binding site. The dynamic performance and stability of the formed complex were also evaluated using molecular dynamic simulation studies. The in vitro study of the intermolecular binding interaction of palbociclib with calf thymus DNA could guide future clinical and pharmacological studies for the rational drug scheming with enhanced or more selective activity and greater efficacy.
Collapse
|
12
|
Bagheri F, Fatemi MH. Investigation of the Interaction between Nilotinib and Alpha-Lactalbumin by Spectroscopic Methods and Docking Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Dixit S, Ahsan H, Khan FH. Interaction of Synthetic Pyrethroid Insecticide Deltamethrin with Human
Alpha-2-Macroglobulin: Spectroscopic and Molecular Docking Studies. Protein Pept Lett 2022; 29:284-292. [DOI: 10.2174/0929866529666220203095706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
Background:
Deltamethrin (DLM) is a commercial insecticide of the synthetic
pyrethroid family that is used to control disease-causing insects and vectors. When humans are exposed
to the fumes or aerosols of DLM, it enters the body via cuticular absorption and reacts with
proteins and other biomolecules.
Objective:
Alpha-2-macroglobulin (α2M) is a serum proteinase inhibitor that also carries out receptor-
mediated endocytosis of extracellular substances. This study was done to decipher the structural
and functional alterations of α2M by DLM.
Method:
Various spectroscopic techniques, including UV absorption and fluorescence spectroscopy,
binding studies, and molecular docking, were used to characterize the interaction of DLM
with α2M. The affinity constant was calculated from the Stern-Volmer equation using fluorescence
data.
Results:
The UV-Vis and fluorescence spectral studies indicated the formation of a complex between
α2M and DLM. Thermodynamically, the interaction was found to be spontaneous with ΔG =
-4.23 kcal/mol. CD spectra suggested a change in the secondary structure of the protein from β to α
helical content with increasing concentration of DLM. The molecular docking study by Autodock
Vina established the interaction of DLM with Glu-926, Ala-1103, Ala-1108, Val-1116, Asn-1159,
Glu-1220, Leu-1261, Thr-1272, Ile-1390, Pro-1391, Lys-1393, Val-1396, Lys-1397, Thr-1408,
Glu-1409, Val-1410, Ser-1411, Ser-1412, and Asn-1413 with an improved docking score of -6.191
kcal/mol. The binding was carried out in the vicinity of the receptor-binding domain at the C-terminal
of α2M.
Conclusion:
The decrease in the functional activity and structural changes of protein after binding
with DLM has a significant effect on human α2M. The information may be useful for exploring the
role of DLM in a clinical chemistry laboratory.
Collapse
Affiliation(s)
- Swati Dixit
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Haseeb Ahsan
- Faculty of Dentistry, Department of Biochemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
14
|
Hekmat A, Hatamie S, Saboury AA. The effects of synthesized silver nanowires on the structure and esterase-like activity of human serum albumin and their impacts on human endometrial stem cells. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shadie Hatamie
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
Arı H, Özpozan T, Büyükmumcu Z, Akın N, İlhan İÖ. Synthesis, spectral and theoretical (DFT) investigations of 4,6-diphenyl-6-hydroxy-1-{[(1Z)-1-phenyl ethylidene] amino}tetrahydropyrimidine-2(1H)-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Perumal M, Paulpandi M, Chen X. Ovalbumin coated Fe3O4 nanoparticles as a nanocarrier for chlorogenic acid to promote the anticancer efficacy on MDA-MB-231 cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chlorogenic acid (5-CQA), a phenolic acid abundant in plants and herbs, has various beneficial effects on human health. However, 5-CQA undergoes biotransformation during gastrointestinal digestion, which affects its biological accessibility....
Collapse
|
17
|
Fenner K, Redgate A, Brancaleon L. A 200 nanoseconds all-atom simulation of the pH-dependent EF loop transition in bovine β-lactoglobulin. The role of the orientation of the E89 side chain. J Biomol Struct Dyn 2022; 40:549-564. [PMID: 32909899 PMCID: PMC8853732 DOI: 10.1080/07391102.2020.1817785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In silico molecular dynamics (MD) using crystallographic and NMR data was used to simulate the effects of the protonation state of E89 on the pH-dependent conformational rearrangement of the EF loop, also known as the Tanford transition, in a series of apo-β-lactoglobulin (BLG) structures. Compared to existing studies these simulations were carried out over a much longer time scale (200 ns where the stability of the transition can be evaluated) and used an explicit water model. We considered eight different entries from the Brookhaven Protein Data Bank (PDB) separated into two groups. We observed that fixing the protonation state of E89 prompts the transition of the EF loop only when its side chain is oriented under the loop and into the entrance of the interior cavity. The motion of the EF loop occurs mostly as a step-function and its timing varies greatly from ∼ 20 ns to ∼170 ns from the beginning of the simulation. Once the transition is completed, the protein appears to reach a stable conformation as in a true two-state transition. We also observed novel findings. When the transition occurs, the hydrogen bond between E89 and S116 is replaced with a salt bridge with Lys residues in the βC-CD loop-βD motif. This electrostatic interaction causes the distortion of this motif as well as the protrusion of the GH loop into the aperture of the cavity with the result of limiting the increase of its contour area despite the rotation of the EF loop.Communicated by Ramaswamy H. Sarma.
Collapse
|
18
|
Marjani N, Dareini M, Asadzade-Lotfabad M, Pejhan M, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: spectroscopic, calorimetric, and molecular dynamics approaches. LUMINESCENCE 2021; 37:310-322. [PMID: 34862709 DOI: 10.1002/bio.4173] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023]
Abstract
With advances in new drug therapies, it is essential to understand the interactions between drugs and target molecules. In this study, we applied multiple spectroscopic techniques including absorbance, fluorescence, circular dichroism spectroscopy, viscosity, thermal melting, calorimetric, and molecular dynamics (MD) simulation to study the interaction between 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione (PPF) and calf thymus DNA (ct DNA) in the absence or presence of histone H1. PPF exhibits a high binding affinity towards ct DNA in binary and ternary systems. In addition, the result for the binding constant was observed within the range 104 M-1 achieved through fluorescence quenching data, while the values for enthalpy and entropy changes for ct DNA-PPF and (ct DNA-H1) PPF complexes were measured to be -72.54 kJ.mol-1 , -161.14 J.mol-1 K-1 , -85.34 kJ.mol-1 , and -19.023 J.mol-1 K-1 , respectively. Furthermore, in accordance with circular dichroism spectra, the inducement of ct DNA structural changes was observed during binding of PPF and H1 in binary and ternary system forms. The essential roles of hydrogen bonding and van der Waals forces throughout the interaction were suggested using thermodynamic parameters. According to the obtained data, the interaction mode of ct DNA-PPF and (ct DNA-H1) PPF complexes was intercalation binding. Suggested by the MD simulation study, the ct DNA-H1 complex caused a reduction in the stability of the DNA structure in the presence or absence of ligand, which demonstrated that PPF as an intercalating agent can further distort the structure. The information achieved from this study will be very helpful in understanding the effects of PPF on the conformational state of ct DNA in the absence or presence of the H1 molecule, which seems to be quite significant for clarifying the mechanisms of action and its pharmacokinetics.
Collapse
Affiliation(s)
- Narges Marjani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam Dareini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maryam Asadzade-Lotfabad
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mahtab Pejhan
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
19
|
|
20
|
Divakara MB, Ashwini R, Santosh MS, Priyanka M, Ravikumar CR, Viswanatha R, Murthy HCA. Early-stage culprit in protein misfolding diseases investigated using electrochemical parameters: New insights over peptide-membrane interactions. Biomed Pharmacother 2021; 142:111964. [PMID: 34329823 DOI: 10.1016/j.biopha.2021.111964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
The dysfunctioning of β-cells caused by the unspecific misfolding of the human islet amyloid polypeptide (hIAPP) at the membrane results in type 2 diabetes mellitus. Here, we report for the first time, the early-stage interaction of hIAPP oligomers on the DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) lipid membrane using electrochemical parameters. Electrochemical techniques are better than other techniques to detect hIAPP at significantly lower concentrations. The surface level interactions between the peptide (hIAPP) and lipid membrane (DMPC) were investigated using atomic force microscopy (AFM), confocal microscopy (CM) and electrochemical techniques such as Tafel polarization, cyclic voltammetry (CV), differential pulse voltammetry (DPV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Inserting IAPP into the fluid domains results in breaking the lipid-to-lipid interaction, leading to restriction of membrane mobility. The SLateral values of the liposome and IAPP co-solubilized liposome indicates the cooperative insertion of IAPP. Further, a new method of immobilizing a membrane to the gold surface has been employed, resulting in an electrical contact with the buffer, preventing the direct utilization of a steady-state voltage across the bilayer. The electrochemical studies revealed that the charge transfer resistance decreased for 3-mercaptopropanoic acid modified gold (MPA-Au) electrode coated with the liposome and after the addition of IAPP, followed by an increase in the capacitance. The present study has opened up new dimensions to the understanding of peptide-membrane interactions and shows different experimental approaches for the future researchers in this domain.
Collapse
Affiliation(s)
- M B Divakara
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India
| | - R Ashwini
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India
| | - M S Santosh
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India.
| | - M Priyanka
- East Point college of Medical Sciences and Research Centre (affiliated to RGUHS), Jnana Prabha, Virgonagar Post, Bidrahalli, Bengaluru 560049, Karnataka, India
| | - C R Ravikumar
- Research Centre, Department of Science, East West Institute of Technology, Bengaluru 560091, India
| | - R Viswanatha
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology (Affiliated to Visvesvaraya Technological University (VTU), Belgaum), Thataguni, Off Kanakapura Road, Bengaluru 560082, Karnataka, India
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia.
| |
Collapse
|
21
|
Insights on the interaction mechanism of exemestane to three digestive enzymes by multi-spectroscopy and molecular docking. Int J Biol Macromol 2021; 187:54-65. [PMID: 34274402 DOI: 10.1016/j.ijbiomac.2021.07.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/27/2023]
Abstract
Exemestane is an irreversible steroidal aromatase inhibitor, typically used to treat breast cancer. As an anti-tumor drug, exemestane has more obvious side effects on the gastrointestinal tract. The purpose of this work is to investigate the combination of exemestane with three important digestive enzymes including pepsin (Pep), trypsin (Try) and α-Chymotrypsin (α-ChT) so as to analyze the mechanism of the gastrointestinal adverse effects causing by exemestane binding. Enzyme activity experiment showed that the enzyme activity of Pep was decreased in the presence of exemestane. Fluorescence spectra revealed that exemestane formed stable complexes with digestive enzymes, and the quenching mechanism of drug-digestive enzymes interaction were all static quenching. The binding constants of Pep, Try and α-ChT at 298 K were 2.34 × 105, 1.45 × 105, and 2.05 × 105 M-1, respectively. Synchronous fluorescence and 3D fluorescence spectroscopy showed that the conformation of exemestane was slightly changed after combining with digestive enzymes, and non-radiative energy transfer occurred. Circular dichroism results indicated that exemestane could change the secondary structure of digestive enzymes via increase the α-helix content and decrease in the β-sheet content. Thermodynamic parameters (ΔH0, ΔS0, and ΔG0) revealed that exemestane interacted with α-ChT through electrostatic force, and the binding force with Pep and Try was van der Waals interactions and hydrogen, which was basically consistent with the molecular docking results.
Collapse
|
22
|
A Novel Molecule: 1‐(2,6 Dichlorobenzyl)‐4‐(2‐(2‐4‐hydroxybenzylidene)hydrazinyl)pyridinium Chloride and its Interaction with DNA. ELECTROANAL 2021. [DOI: 10.1002/elan.202060597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Bagheri F, Fatemi MH. Investigation of the Interaction of Sorafenib with Alpha-Lactalbumin: Spectroscopic and Molecular Modeling. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Perka S, Vuradi RK, Gopu S, Nambigari N, K VR, Sirasani S. Influence of Co(III) Polypyridyl Complexes on Luminescence Behavior, DNA Binding, Photocleavage, Antimicrobial Activity and Molecular Docking Studies. J Fluoresc 2021; 31:1009-1021. [PMID: 33880704 DOI: 10.1007/s10895-021-02727-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
A new ligand FIPB = 5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid, having three cobalt(III) polypyridyl complexes [Co(phen)2(FIPB)]3+(1) {FIPB = 5-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)furan-2-yl-2-boronic acid}, (phen = 1,10-Phenanthroline), [Co(bpy)2(FIPB)]3+(2) (bpy = 2,2'bipyridyl), [Co(dmb)2(FIPB)]3+(3) (dmb = 4, 4'-dimethyl 2, 2'-bipyridine) have been synthesized and characterized by elemental analysis, ES-MS,1H-NMR, 13C-NMR, UV-Vis and FTIR. Their DNA binding behavior has been explored by various spectroscopic titrations and viscosity measurements, which indicated that all the complexes bind to calf thymus DNA by means of intercalation with different binding strengths. The binding properties of these all three complexes towards calf-thymus DNA (CT-DNA) have been investigated by UV-visible, emission spectroscopy and viscosity measurements.The experimental results suggested that three Co(III) complexes can intercalate into DNA base pairs,but with different binding affinities. Photo induced DNA cleavage studies have been performed and results indicate that three complexes efficiently cleave the pBR322-DNA in different forms. The three synthesized compounds were tested for antimicrobial activity by using Staphylococcus aureus and Bacillus subtilis organisms, these results indicated that complex 1 was more activity compared to other two complexes against both tested microbial strains. The in vitro cytotoxicity of these complexes was evaluatedby MTT assay, and complex 1 shows higher cytotoxicity than complex 2 and 3 on HeLa cells.
Collapse
Affiliation(s)
- Shyam Perka
- Department of Chemistry, UCS, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, UCS, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Srinivas Gopu
- Department of Chemistry, Government Degree College for Women, Karimnagar, Telangana State, 505001, India
| | - Navaneetha Nambigari
- Department of Chemistry, UCS, Saifabad, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Venugopal Reddy K
- Department of Chemistry, UCS, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Satyanarayana Sirasani
- Department of Chemistry, UCS, Osmania University, Hyderabad, Telangana State, 500007, India.
| |
Collapse
|
25
|
Tomioka H, Tatano Y, Shimizu T, Sano C. Immunoadjunctive Therapy against Bacterial Infections Using Herbal Medicines Based on Th17 Cell-mediated Protective Immunity. Curr Pharm Des 2021; 27:3949-3962. [PMID: 34102961 DOI: 10.2174/1381612827666210608143449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
One of the major health concerns in the world is the global increase in intractable bacterial infectious diseases due to the emergence of multi- and extensively drug-resistant bacterial pathogens as well as an increase in compromised hosts around the world. Particularly, in the case of mycobacteriosis, the high incidence of tuberculosis in developing countries, resurgence of tuberculosis in industrialized countries, and increase in the prevalence of Mycobacterium avium complex infections are important worldwide health concerns. However, the development of novel antimycobacterial drugs is currently making slow progress. Therefore, it is considered that devising improved administration protocols for clinical treatment against refractory mycobacteriosis using existing chemotherapeutics is more practical than awaiting the development of new antimycobacterial drugs. The regulation of host immune responses using immunoadjunctive agents may increase the efficacy of antimicrobial treatment against mycobacteriosis. The same situations also exist in cases of intractable infectious diseases due to common bacteria other than mycobacteria. The mild and long-term up-regulation of host immune reactions in hosts with intractable chronic bacterial infections, using herbal medicines and medicinal plants, may be beneficial for such immunoadjunctive therapy. This review describes the current status regarding basic and clinical studies on therapeutic regimens using herbal medicines, useful for the clinical treatment of patients with intractable bacterial infections. In particular, we focus on immunoadjunctive effects of herbal medicines on the establishment and manifestation of host antibacterial immunity related to the immunological roles of Th17 cell lineages.
Collapse
Affiliation(s)
- Haruaki Tomioka
- Department of Basic Medical Science for Nursing, Department of Contemporary Psychology, Yasuda Women's University, Hiroshima, Japan
| | - Yutaka Tatano
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Fukuoka, Japan
| | - Toshiaki Shimizu
- Department of Nutrition Administration, Yasuda Women's University, Hiroshima,, Japan
| | - Chiaki Sano
- Department of Community Medicine Management, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
26
|
Air-assisted dispersive liquid phase microextraction coupled chromatography quantification for purification of therapeutic lectin from aloe vera – A potential COVID-19 immune booster. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Magdy G, Belal F, Abdel Hakiem AF, Abdel-Megied AM. Salmon sperm DNA binding study to cabozantinib, a tyrosine kinase inhibitor: Multi-spectroscopic and molecular docking approaches. Int J Biol Macromol 2021; 182:1852-1862. [PMID: 34062156 DOI: 10.1016/j.ijbiomac.2021.05.164] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
In the current work, the binding interaction of cabozantinib with salmon sperm DNA (SS-DNA) was studied under simulated physiological conditions (pH 7.4) using fluorescence emission spectroscopy, UV-Vis absorption spectroscopy, viscosity measurement, ionic strength measurement, FT-IR spectroscopy, and molecular modeling methods. The obtained experimental data demonstrated an apparent binding interaction of cabozantinib with SS-DNA. The binding constant (Kb) of cabozantinib with SS-DNA evaluated from the Benesi-Hildebrand plot was equal to 5.79 × 105 at 298 K. The entropy and enthalpy changes (∆S0 and ∆H0) in the binding interaction of SS-DNA with cabozantinib were 44.13 J mol-1 K-1 and -19.72 KJ mol-1, respectively, demonstrating that the basic binding interaction forces are hydrophobic and hydrogen bonding interactions. Results from UV-Vis absorption spectroscopy, competitive binding interaction with rhodamine B or ethidium bromide, and viscosity measurements revealed that cabozantinib binds to SS-DNA via minor groove binding. The molecular docking results revealed that cabozantinib fits into the AT-rich region of the B-DNA minor groove and the binding site of cabozantinib was 4 base pairs long. Moreover, cabozantinib has eight active torsions, implying a high degree of flexibility in its structure, which played a significant role in the formation of a stable cabozantinib-DNA complex.
Collapse
Affiliation(s)
- Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33511, Egypt.
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, P.O. Box 35516, Egypt
| | - Ahmed Faried Abdel Hakiem
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33511, Egypt
| | - Ahmed M Abdel-Megied
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33511, Egypt; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Ahmad F, Mahmood A, Muhmood T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater Sci 2021; 9:1598-1608. [PMID: 33443512 DOI: 10.1039/d0bm01672a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the advancement in nanotechnology, we are experiencing transformation in world order with deep insemination of nanoproducts from basic necessities to advanced electronics, health care products and medicines. Therefore, nanoproducts, however, can have negative side effects and must be strictly monitored to avoid negative outcomes. Future toxicity and safety challenges regarding nanomaterial incorporation into consumer products, including rapid addition of nanomaterials with diverse functionalities and attributes, highlight the limitations of traditional safety evaluation tools. Currently, artificial intelligence and machine learning algorithms are envisioned for enhancing and improving the nano-bio-interaction simulation and modeling, and they extend to the post-marketing surveillance of nanomaterials in the real world. Thus, hyphenation of machine learning with biology and nanomaterials could provide exclusive insights into the perturbations of delicate biological functions after integration with nanomaterials. In this review, we discuss the potential of combining integrative omics with machine learning in profiling nanomaterial safety and risk assessment and provide guidance for regulatory authorities as well.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Asif Mahmood
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Tahir Muhmood
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
29
|
Zhu Z, Zhang Q, Lay Yap P, Ni Y, Losic D. Magnetic reduced graphene oxide as a nano-vehicle for loading and delivery of curcumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119471. [PMID: 33524822 DOI: 10.1016/j.saa.2021.119471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Magnetic nanoparticles have been widely used in the field of nanomedicine as drug delivery vehicles for targeted imaging-guided and controlled drug uptake and release actions. In this work, the loading of curcumin on Fe3O4/rGO nanocomposites and their interaction mechanism were investigated by multispectral methods including resonance light scattering (RLS), atomic force microscopy (AFM), circular dichroism (CD) and Fourier transform infrared (FT-IR). Results revealed that the drug loading was a complex process which is not governed by a simple adsorption. The interactions of vitro human serum albumin (HSA) with free curcumin and/or curcumin-Fe3O4/rGO complex have been studied. Outcomes from the fluorescence quenching showed that the binding constant of curcumin to HSA increased significantly in the presence of Fe3O4/rGO, confirming the enhanced effect of Fe3O4/rGO besides its low toxicity towards HSA. Findings from this work verified that Fe3O4/rGO nanocomposite has a promising potential as a good drug loading carrier that can be used and broad range of therapies.
Collapse
Affiliation(s)
- Zhi Zhu
- School of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiulan Zhang
- School of Chemistry, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yongnian Ni
- School of Chemistry, Nanchang University, Nanchang 330031, China
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
30
|
Śliwińska-Hill U. Spectroscopic studies of simultaneous binding of cyclophosphamide and imatinib mesylate to human holo-transferrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119538. [PMID: 33582440 DOI: 10.1016/j.saa.2021.119538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The interactions of proteins with drugs are very important from a pharmacological point of view. Holo-transferrin is a blood-plasma glycoprotein whose main function is iron-binding and the transport of other ligands. Additionally, the protein is only transferrin-form recognized by TfR1 and TfR2 receptors at the surface of rapidly proliferating malignant cells. Imatinib mesylate is a tyrosine-kinase inhibitor mainly used in the treatment of blood cancers, frequently in multidrug therapy with cyclophosphamide. In this study the effect of cyclophosphamide on the interaction of imatinib mesylate with human holo-transferrin has been investigated. Using spectroscopic techniques such as fluorescence, circular dichroism, ultraviolet-visible and electrophoretic light scattering additive parameters, system stability and the effect of the ligands on the protein conformation at varying pH values have been defined. Calculated quenching constants are in the order of 2 × 104 M-1 and the type of interaction depends on the reaction medium. Under physiological conditions binding constant is 1.329 × 106 M-1 whereas in an environment similar to that of cancer cells the constant is significantly lower, Ka = 6.060 × 104 M-1. N values are approximate to 1 in all cases. Moreover, some changes are observed in the α-helical structure of the protein after interaction with the drugs and the presence of cyclophosphamide slightly stabilizes the protein secondary structure. All collected data proves the effect of cyclophosphamide on the interaction between imatinib mesylate and human holo-transferrin. It is of great clinical interest due to anticancer, multidrug therapies including both imatinib mesylate and cyclophosphamide.
Collapse
Affiliation(s)
- Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-566 Wrocław, Poland.
| |
Collapse
|
31
|
Lin J, Tang M, Meti MD, Liu Y, Han Q, Xu X, Zheng Y, He Z, Hu Z, Xu H. Exploring the binding mechanism of Ginsenoside Rd to Bovine Serum Albumin: Experimental studies and computational simulations. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1915154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jialiang Lin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Tang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Manjunath D. Meti
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yong Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qingguo Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuan Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
32
|
Adımcılar V, Çeşme M, Şenel P, Danış İ, Ünal D, Gölcü A. Comparative study of cytotoxic activities, DNA binding and molecular docking interactions of anticancer agent epirubicin and its novel copper complex. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Albalawi IA, Mir R, Abu-Duhier FM. Molecular Evaluation of PROGINS Mutation in Progesterone Receptor Gene and Determination of its Frequency, Distribution Pattern and Association with Breast Cancer Susceptibility in Saudi Arabia. Endocr Metab Immune Disord Drug Targets 2021; 20:760-770. [PMID: 31763970 DOI: 10.2174/1871530319666191125153050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022]
Abstract
AIMS Experimental and clinical evidence demonstrate that progesterone hormone and its nuclear receptor, the Progesterone Receptor (PR), play critical role in controlling mammary gland tumorigenesis and breast cancer development. Hormonal therapy (Tomaxifen) is the frontline treatment for hormone-dependent breast cancers. Progesterone hormone induces its action on the target cells by binding with its Progesterone receptor (PgR) therefore any genetic variations, which might induce alienation in the progesterone receptor, can result in an increased susceptibility of gynecological cancers. Alu insertion (PROGINS) mutation in PgR gene is reported to be associated with an increased risk of ovarian cancer and a decreased risk of breast cancer. However, its association with breast cancer risk remains inconclusive. Therefore, we investigated the association of PROGINS allele and its link with breast cancer risk. METHODS This case control study was performed on 200 subjects in which 100 were breast cancer cases and 100 gender matched healthy controls.The mutation was detected by using mutation specific PCR and results were confirmed by direct Sanger sequencing. RESULTS A clinically significant difference was reported in genotype distribution of PROGINs allele among the cases and gender-matched healthy controls (P<0. 032). Genotype frequencies of A1/A1, A1/A2, A2/A2 reported in cases was 81%, 19% (18% & 1%) and in matched healthy controls were 93%, 7% (6% & 1%). The higher frequency of PROGINs allele (19%) was observed in cases than the healthy controls (7%). The findings indicated that PgR variants (CC vs CT) increased the risk of Breast cancer in codominant inheritance model with OR= 3.44, 95% CI =1. 30-9.09, P<0.021) whereas nonsignificant association was found for CC vs TT genotypes with OR=1.14, 95% CI=0.07-18.658, P=0. 92. However, subgroup analysis revealed that CT + TT vs CC genotype increased the risk of breast cancer in dominant inheritance model tested OR = 3. 11, 95% CI = (1.24-7.79), P = 0.015). A nonsignificant association for PgR (CC+CT) vs TT) genotypes were reported in breast cancer OR = 1. 0, 95% CI= (0. 061-16.21), P=1) in recessive inheritance model tested. However, analysis with clinicalpathological variables revealed that the PROGINs allele is significantly associated with the distant metastasis and advanced stage of the disease. CONCLUSION The mutation specific PCR was successfully developed as an alternative to Sanger sequencing for the cost-effective detection for PROGINS allele of progesterone receptor gene. A clinically significant correlation of PROGINs allele was reported with the distant metastasis and advanced stage of the disease. Taken together, these results demonstrated that PROGINS variant is associated with an increased susceptibility to Breast cancer, providing novel insights into the genetic etiology and underlying biology of Breast carcinogenesis. Further studies with large sample sizes are required to validate our findings.
Collapse
Affiliation(s)
- Ibrahim A Albalawi
- Department of Surgical Oncology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Fasel M Abu-Duhier
- Department of Medical Laboratory Technology, Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
34
|
Zhong S, Yan M, Zou H, Zhao P, Ye H, Zhang T, Zhao C. Spectroscopic and in silico investigation of the interaction between GH1 β-glucosidase and ginsenoside Rb 1. Food Sci Nutr 2021; 9:1917-1928. [PMID: 33841810 PMCID: PMC8020931 DOI: 10.1002/fsn3.2153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
The function and application of β-glucosidase attract attention nowadays. β-glucosidase was confirmed of transforming ginsenoside Rb1 to rare ginsenoside, but the interaction mechanism remains not clear. In this work, β-glucosidase from GH1 family of Paenibacillus polymyxa was selected, and its gene sequence bglB was synthesized by codon. Then, recombinant plasmid was transferred into Escherichia coli BL21 (DE3) and expressed. The UV-visible spectrum showed that ginsenoside Rb1 decreased the polarity of the corresponding structure of hydrophobic aromatic amino acids (Trp) in β-glucosidase and increased new π-π* transition. The fluorescence quenching spectrum showed that ginsenoside Rb1 inhibited intrinsic fluorescence, formed static quenching, reduced the surface hydrophobicity of β-glucosidase, and KSV was 8.37 × 103 L/M (298K). Circular dichroism (CD) showed that secondary structure of β-glucosidase was changed by the binding action. Localized surface plasmon resonance (LSPR) showed that β-glucosidase and Rb1 had strong binding power which KD value was 5.24 × 10-4 (±2.35 × 10-5) M. Molecular docking simulation evaluated the binding site, hydrophobic force, hydrogen bond, and key amino acids of β-glucosidase with ginsenoside Rb1 in the process. Thus, this work could provide basic mechanisms of the binding and interaction between β-glucosidase and ginsenoside Rb1.
Collapse
Affiliation(s)
- Shuning Zhong
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Mi Yan
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Haoyang Zou
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Ping Zhao
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Haiqing Ye
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Tiehua Zhang
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Changhui Zhao
- College of Food Science and EngineeringJilin UniversityChangchunChina
| |
Collapse
|
35
|
Wang G, Zheng T, Zhang S, Ye J, Ning G. Fluorescence chemosensor for acetate ion and fluorine ion based on 1,2,4-triazolyl substituted pentaphenylpyridinium. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Liang Y, Zhang T, Sun Y, Diao M, Zhang J, Ren L. Multi-spectroscopic and molecular modeling studies on the interactions of serum albumin with 20(S, R)-protopanaxadiol and 20(S, R)-protopanaxatriol that inhibit HCT-116 cells proliferation. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Xie F, Zhang W, Gong S, Wang Z. Inhibitory effect of lignin from Canna edulis Ker residues on trypsin: kinetics and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2090-2099. [PMID: 32978811 DOI: 10.1002/jsfa.10831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Lignin extracted from Canna edulis Ker residues shows a strong inhibitory effect on α-glucosidase and a promoting effect on α-amylase. Protease activity inhibition may play a key role in disease processes, such as metastasis, tumor invasion and bacterial colonization. Hence, in the present study, the inhibitory mechanism of lignin on trypsin was examined, including the interaction type, thermodynamic parameters, structure, reaction site and molecular docking. RESULTS The isolated lignin presented an inhibitory effect on trypsin activity with an IC50 value of 1.35 μmol L-1 . This inhibition was a mixed linear type with a constant Ki of 3.92 μmol L-1 . The lignin could bind with the key amino acid residue Ser195 on the active site of the trypsin molecule to inhibit its activity, and the phenolic hydroxyl group and -OH on the β-O-4 structure of the lignin molecule were the major groups bound with trypsin. CONCLUSION These results illustrate the inhibitory effects of Canna edulis residue lignin on protease, which helps with respect to understanding the possible application of lignin in the food industry in functional foods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengxiang Gong
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Farsad SA, Haghaei H, Shaban M, Zakariazadeh M, Soltani S. Investigations of the molecular mechanism of diltiazem binding to human serum albumin in the presence of metal ions, glucose and urea. J Biomol Struct Dyn 2021; 40:6868-6879. [PMID: 33666142 DOI: 10.1080/07391102.2021.1891137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The molecular mechanism and thermodynamic properties of the interaction between diltiazem (DTZ) and human serum albumin (HSA), has been studied in vitro using spectroscopic techniques (UV-Vis, fluorescence, FTIR), and molecular docking methods. The effect of acidic and basic pH, glucose, urea, and metal ions on the DTZ-HSA binding has been investigated as well. According to the results, there is a 1:1 interaction between DTZ and HSA, while the quenching mechanism is static up to 313 K. The apparent binding constant was 2.09 × 106 M-1 that indicates a strong binding between DTZ and HSA. DTZ binding was increased in acidic pH while its binding was slowly decreased in the presence of glucose, urea, and metal ions. Thermodynamic studies showed that DTZ binds to HSA via an exothermic and spontaneous reaction via hydrogen bonding and electrostatic interactions. The conformational alteration of HSA is obvious according to the FTIR study. The site marker competitive study confirmed the binding of DTZ to the warfarin binding site. Molecular docking studies showed that DTZ binds to subdomain IB (-9.22 kcal mol-1) and subdomain IIIA (-9.03 kcal mol-1) with a higher tendency. Also, the results showed that the oxygen and nitrogen atoms of hydroxyl and amino functional groups of DTZ facilitate hydrogen bond formation. HighlightsStrong binding of diltiazem to HSA was studied and confirmed by fluorescence quenching titrations.Diltiazem binding to HSA reduces in the presence of metal ions, glucose, urea and alkaline pH.Diltiazem binding to HSA is exothermic and spontaneous.
Collapse
Affiliation(s)
- Sara Asadi Farsad
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Haghaei
- Nutrition and Food Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Shaban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Zakariazadeh
- Department of Biochemistry, Faculty of Sciences, Payame Noor University, Tehran, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Dixit S, Zia MK, Siddiqui T, Ahsan H, Khan FH. Interaction of organophosphate pesticide chlorpyrifos with alpha-2-macroglobulin: Biophysical and molecular docking approach. J Immunoassay Immunochem 2021; 42:138-153. [PMID: 33086912 DOI: 10.1080/15321819.2020.1837161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Organophosphate class of pesticides causes neurotoxicity and carcinogenicity in humans. Once inside the human body, these pesticides often interact with plasma proteins, such as alpha-2-macroglobulin (α2M) which is the key anti-proteinase. Our work focuses on the structural and functional alteration of α2M by chlorpyrifos (CPF), a member of organophosphates. We explored the binding interaction between alpha-2-macroglobulin and CPF by using UV absorption and fluorescence spectroscopy (steady state and synchronous), circular dichroism and molecular docking approach. The functional activity of α2M was analyzed by anti-proteinase trypsin inhibitory assay which showed dose-dependent decrease in alpha-2-macroglobulin antiproteolytic potential. UV absorption studies and fluorescence quenching experiments suggested the formation of a complex between α2M and CPF. The CD spectra suggested a reduction in the beta helical (β helix) content of α2M. Analysis of thermodynamic parameters suggested the process is spontaneous and endothermic with the ΔG and ΔH values being -5.501 kJ/mol, 11.49 kJ/mol, respectively. CPF binds with Ile-1390, Pro-1391, Leu-1392, Lys-1393, Val-1396, Lys-1397, Arg-1407, Thr-1408, Glu-1409, Val-1410, Asp-282, Glu-281 of α2M as suggested by molecular docking.
Collapse
Affiliation(s)
- Swati Dixit
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Haseeb Ahsan
- Faculty of Dentistry, Department of Biochemistry, Jamia Millia Islamia, New Delhi, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
40
|
Athira S, Mann B, Sharma R, Pothuraju R, Bajaj RK. Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Res Int 2021; 141:110133. [PMID: 33642000 DOI: 10.1016/j.foodres.2021.110133] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Iron fortification of staple food is a strategy utilized worldwide to address the concern of dietary iron deficiency. However, traditional salt-based fortification methods have limitations with gastrointestinal stability and bioavailability. Iron chelating peptides from easily available and scalable proteins such as whey protein have been proposed as promising candidates to circumvent the above mentioned limitations by enhancing iron absorption and bioavailability. In this study, we report methods to produce whey protein derived iron-chelating peptides and describe their physicochemical characteristics. Peptides derived from whey proteins prepared by ultrafiltration of whey followed by hydrolysation were iron chelated to produce peptide-iron complexes. These complexes had a size of 422.9 ± 3.41 nm, chelated iron content of 36.42 µg/ mg protein, and a low zeta potential (-10.80 mV) compared to whey peptides. Spectra analysis using ultraviolet-visible absorption and Fourier transform infrared spectroscopy showed structural transformation indicating iron chelation. Mass spectrometric analysis using LC-MS/MS confirmed the presence of both hydrophilic and hydrophobic peptides in the complexes with sizes ranging from 275 Da to 1916 Da. Furthermore, reduction in the antioxidant property of peptides following iron complexing indicates iron chelation. Our results suggest that whey protein derived peptide-iron complexes can be used as a potential alternative for chemical iron fortificants for food products and also as iron supplements.
Collapse
Affiliation(s)
- S Athira
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Bimlesh Mann
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Rajan Sharma
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ramesh Pothuraju
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Rajesh Kumar Bajaj
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
41
|
Perumal M, Marimuthu P, Chen X. Investigation into the site-specific binding interactions between chlorogenic acid and ovalbumin using multi-spectroscopic and in silico simulation studies. J Biomol Struct Dyn 2021; 40:6619-6633. [PMID: 33627053 DOI: 10.1080/07391102.2021.1886992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The binding interactions of bioactive compounds with proteins are of great importance in the food, biochemistry and pharmaceutical fields. Herein, the binding mechanisms between 5-O-caffeoylquinic acid (5-CQA) and ovalbumin (OVA) were investigated by multi-spectroscopic studies combined with docking and molecular dynamics (MD) simulations. The emission intensity of OVA was quenched by 5-CQA and Stern-Volmer analysis indicated the existence of a static suppression by OVA-5-CQA complex formation. Thermodynamic parameters revealed that the formation of complex was spontaneously driven by electrostatic and hydrogen-bonding interactions. Circle dichroism analyses showed that 5-CQA decreased the α-helix content of OVA structure from 58.05% to 54.32% upon increased OVA:5-CQA ratio to 1:3. Molecular docking results suggested 5-CQA forms hydrogen bond interactions with N88, T91, K92, N94, S98, F99, S100 and L101 residues of OVA. The experimental values were in good agreement with the calculated binding free energy values obtained by MD simulation (R2 = 0.89).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manivel Perumal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory (SBL - Biochemistry) and Pharmaceutical Science Laboratory (PSL - Pharmacy), Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P.R. China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
42
|
Hansda S, Mitra A, Ghosh R. Studies to explore the UVA photosensitizing action of 9-phenylacridine in cells by interaction with DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:393-422. [PMID: 33586599 DOI: 10.1080/15257770.2021.1880011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Acridine and its derivatives are well known for their DNA binding properties. In this report, we present our findings on evaluating different binding parameters of the interaction of 9-phenylacridine (ACPH) with DNA. Absorption spectroscopic studies including standard and reverse titration, the effects of ionic strength and temperature on titration, and Job plot analysis were done to calculate the binding constant and determine the different thermodynamic parameters and stoichiometry of the binding. Spectrofluorimetry and circular dichroism (CD) spectral titration were also utilized to confirm these findings. The results indicated that ACPH binds to DNA reversibly through non-electrostatic interactions by hydrogen bonding and van der Waals interactions. The binding constant and the number of binding sites were of the order 103 M-1 and ≈2, respectively with a binding stoichiometry of 1:4. The binding of ACPH with DNA was spontaneous, exothermic and enthalpy-driven. The extent of uptake of ACPH in B16 melanoma cells was estimated. As this compound absorbs in the UVA region, the effect of treatment with ACPH prior to UVA exposure was assessed to evaluate its phototoxicity in these cells. Our results indicated that the binding to DNA enhanced damage to sensitize cells to killing through apoptosis. Our findings indicated its potential to act as a photosensitizer.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Anindita Mitra
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
43
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Host assisted molecular recognition by human serum albumin: Study of molecular recognition controlled protein/drug mimic binding in a microfluidic channel. Int J Biol Macromol 2021; 176:137-144. [PMID: 33548310 DOI: 10.1016/j.ijbiomac.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Abstract
Human serum albumin (HSA) plays a pivotal role in drug release from its delivery vehicles such as cyclodextrins (CDs) by binding to the drugs. Here molecular recognition and binding of a drug mimic (CD1) to HSA have been explored in a microfluidic channel when CD1 is encapsulated in β-cyclodextrin (βCD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TRIMEB), respectively, to investigate whether change of the host vehicle modulate the rate of drug binding to the serum protein. Molecular recognition of βCD encapsulated CD1 by HSA occurs by the conformational selection fit mechanism leading to rapid binding of CD1 to HSA (k1 ~ 700 s-11) when the βCD/CD1 complex interacts with HSA. In contrary, HSA recognizes CD1 encapsulated in TRIMEB by an induced fit mechanism leading to a significantly slower binding rate (k1 ~ 20.8 s-1) of the drug mimic to the protein. Thus molecular recognition controls the rate of HSA binding by CD1 which in turn modulates the rate of delivery of the drug mimic from its macrocyclic hosts. The remarkable change in the molecular recognition pathway of CD1 by HSA, upon change of the host from βCD to TRIMEB, originates from significantly different conformational flexibility of the host/drug mimic complexes.
Collapse
|
45
|
Gupta N, Bhagyawant SS. Bioactive peptide of Cicer arietinum L. induces apoptosis in human endometrial cancer via DNA fragmentation and cell cycle arrest. 3 Biotech 2021; 11:63. [PMID: 33489681 PMCID: PMC7803852 DOI: 10.1007/s13205-020-02614-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/24/2020] [Indexed: 01/25/2023] Open
Abstract
Chickpea seed proteins are alleged source of nutraceuticals. These seed proteins were subjected to different proteases to produce peptides. The efficacy of these peptides was confirmed using six diverse human cancer cell lines (PA-1, Ishikawa cells, A549, MCF-7, HepG2, MDA-MB-231). Alcalase generated peptides exhibited the highest antagonistic inhibition of Ishikawa cells. Flow cytometric analysis revealed that chickpea peptide induced S and G2 phase arrest of cell cycle in a dose dependent manner. DNA fragmentation and apoptosis occurred by down regulation of Bcl-2 expression, upregulation of Bax expression and promotion of caspase-3 initiation. Chickpea peptides ascertain potential antiproliferative molecule that can be deployed in cancer treatment regimes.
Collapse
Affiliation(s)
- Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474011 Madhya Pradesh India
| | | |
Collapse
|
46
|
Wieczfinska J, Sitarek P, Kowalczyk T, Skała E, Pawliczak R. The Anti-inflammatory Potential of Selected Plant-derived Compounds in Respiratory Diseases. Curr Pharm Des 2021; 26:2876-2884. [PMID: 32250214 DOI: 10.2174/1381612826666200406093257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. Plant products have demonstrated anti-inflammatory properties on various lung disease models and numerous natural plant agents have successfully been used to treat inflammation. Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-kB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.
Collapse
Affiliation(s)
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, S. Banacha 12/16, 90-237, Lodz, Poland
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
47
|
Huang J, He Z, Cheng R, Cheng Z, Wang S, Wu X, Niu B, Shen GX, Liao X. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118731. [PMID: 32827907 DOI: 10.1016/j.saa.2020.118731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The binding interactions of bovine lactoferrin (BLF) with two flavonoids dihydromyricetin (DMY) and myricetin (MY) were investigated by the multi-spectroscopic, microscale thermophoresis (MST) techniques, molecular docking, and then their antioxidant activities were studied by detection of free radical scavenging activity against DPPH. Results of UV-vis and fluorescence spectroscopies showed that DMY/MY and BLF formed the ground state complex through the static quenching mechanism. Moreover, MY with more planar stereochemical structure had higher affinity for BLF than DMY with twisted stereochemical structure, according to the binding constant (Kb), free energy change (ΔG°), dissociation constant (Kd) and donor-acceptor distance (r). Thermodynamic parameters revealed that hydrogen bond and van der Waals force were major forces in the formation of BLF-DMY complex, while hydrophobic interactions played major roles in the formation of BLF-DMY complex. The circular dichroism (CD) study indicated that MY induced more conformational change in BLF than DMY. Furthermore, molecular modeling provided insights into the difference of binding interactions between BLF and two flavonoids. Finally, the radical scavenging activity assays indicated the presence of BLF delayed the decrease in antioxidant capacities of two flavonoids. These results were helpful to understand the binding mechanism and biological effects of non-covalent BLF-flavonoid interaction.
Collapse
Affiliation(s)
- Junyi Huang
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ziyu He
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Runqing Cheng
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhuo Cheng
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Shanshan Wang
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xianyong Wu
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Bing Niu
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Garry X Shen
- Departments of Internal Medicine and Food and Human Nutritional Sciences, University of Manitoba, Canada.
| | - Xianyan Liao
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
48
|
Alsaif NA, Wani TA, Bakheit AH, Zargar S. Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. Int J Biol Macromol 2020; 165:2451-2461. [DOI: 10.1016/j.ijbiomac.2020.10.098] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
|
49
|
Zhao YY, Fan Y, Wang M, Wang J, Cheng JX, Zou JB, Zhang XF, Shi YJ, Guo DY. Studies on pharmacokinetic properties and absorption mechanism of phloretin: In vivo and in vitro. Biomed Pharmacother 2020; 132:110809. [DOI: 10.1016/j.biopha.2020.110809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
|
50
|
Thermodynamic analysis of albumin interaction with monosodium glutamate food additive: Insights from multi-spectroscopic and molecular docking approaches. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|