1
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
2
|
Shafiq N, Arshad M, Ali A, Rida F, Mohany M, Arshad U, Umar M, Milošević M. Integrated computational modeling and in-silico validation of flavonoids-Alliuocide G and Alliuocide A as therapeutic agents for their multi-target potential: Combination of molecular docking, MM-GBSA, ADMET and DFT analysis. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 169:276-300. [DOI: 10.1016/j.sajb.2024.04.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2024]
|
3
|
Abirami M, Karan Kumar B, Dey S, Johri S, Reguera RM, Balaña-Fouce R, Gowri Chandra Sekhar KV, Sankaranarayanan M. Molecular-level strategic goals and repressors in Leishmaniasis - Integrated data to accelerate target-based heterocyclic scaffolds. Eur J Med Chem 2023; 257:115471. [PMID: 37257213 DOI: 10.1016/j.ejmech.2023.115471] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Leishmaniasis is a complex of neglected tropical diseases caused by various species of leishmanial parasites that primarily affect the world's poorest people. A limited number of standard medications are available for this disease that has been used for several decades, these drugs have many drawbacks such as resistance, higher cost, and patient compliance, making it difficult to reach the poor. The search for novel chemical entities to treat leishmaniasis has led to target-based scaffold research. Among several identified potential molecular targets, enzymes involved in the purine salvage pathway include polyamine biosynthetic process, such as arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase, trypanothione reductase as well as enzymes in the DNA cell cycle, such as DNA topoisomerases I and II plays vital role in the life cycle survival of leishmanial parasite. This review mainly focuses on various heterocyclic scaffolds, and their specific inhibitory targets against leishmaniasis, particularly those from the polyamine biosynthesis pathway and DNA topoisomerases with estimated activity studies of various heterocyclic analogs in terms of their IC50 or EC50 value, reported molecular docking analysis from available published literatures.
Collapse
Affiliation(s)
- M Abirami
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India; Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Sanchita Dey
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Samridhi Johri
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India
| | - Rosa M Reguera
- Department of Biomedical Sciences, University of León, 24071, León, Spain
| | | | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, 500078, Telangana, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, 333031, India.
| |
Collapse
|
4
|
Ye BW, Zhao LX, Wang ZW, Shi J, Leng XY, Gao S, Fu Y, Ye F. Design, Synthesis, and Bioactivity of Novel Ester-Substituted Cyclohexenone Derivatives as Safeners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37017396 DOI: 10.1021/acs.jafc.2c07979] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Tembotrione, a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor, has been widely used in many types of plants. Tembotrione has been reported for its likelihood of causing injury and plant death to certain corn hybrids. Safeners are co-applied with herbicides to protect certain crops without compromising weed control efficacy. Alternatively, herbicide safeners may effectively improve herbicide selectivity. To address tembotrione-induced Zea mays injury, a series of novel ester-substituted cyclohexenone derivatives were designed using the fragment splicing method. In total, 35 title compounds were synthesized via acylation reactions. All the compounds were characterized using infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry. The configuration of compound II-15 was confirmed using single-crystal X-ray diffraction. The bioactivity assay proved that tembotrione phytotoxicity to maize could be reduced by most title compounds. In particular, compound II-14 exhibited the highest activity against tembotrione. The molecular structure comparisons as well as absorption, distribution, metabolism, excretion, and toxicity predictions demonstrated that compound II-14 exhibited pharmacokinetic properties similar to those of the commercial safener isoxadifen-ethyl. The molecular docking model indicated that compound II-14 could prevent tembotrione from reaching or acting with Z. mays HPPD (PDB: 1SP8). Molecular dynamics simulations showed that compound II-14 maintained satisfactory stability with Z. mays HPPD. This research revealed that ester-substituted cyclohexenone derivatives can be developed as potential candidates for discovering novel herbicide safeners in the future.
Collapse
Affiliation(s)
- Bo-Wen Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zi-Wei Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Juan Shi
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xin-Yu Leng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Xu Q, Zhao Z, Liang P, Wang S, Li F, Jin S, Zhang J. Identification of novel nematode succinate dehydrogenase inhibitors: Virtual screening based on ligand-pocket interactions. Chem Biol Drug Des 2023; 101:9-23. [PMID: 34981652 DOI: 10.1111/cbdd.14019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
To discover new nematicidal succinate dehydrogenase (SDH) inhibitors with novel structures, we conducted a virtual screening of the ChemBridge library with 1.7 million compounds based on ligand-pocket interactions. The homology model of Caenorhabditis elegans SDH was established, along with a pharmacophore model based on ligand-pocket interactions. After the pharmacophore-based and docking-based screening, 19 compounds were selected for the subsequent enzymatic assays. The results showed that compound 1 (ID: 7607321) exhibited inhibitory activity against SDH with a determined IC50 value of 19.6 μM. Structural modifications and nematicidal activity studies were then carried out, which provided further evidence that compound 1 exhibited excellent nematicidal activity. Molecular dynamics simulations were then conducted to investigate the underlying molecular basis for the potency of these inhibitors against SDH. This work provides a reliable strategy and useful information for the future design of nematode SDH inhibitors.
Collapse
Affiliation(s)
- Qingbo Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhixiang Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Simin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Fang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shuhui Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
James JP, Devaraji V, Sasidharan P, T. S. P. Pharmacophore Modeling, 3D QSAR, Molecular Dynamics Studies and Virtual Screening on Pyrazolopyrimidines as anti-Breast Cancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2135545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jainey P. James
- Department of Pharmaceutical Chemistry, Nitte (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, India
| | - Vinod Devaraji
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Pradija Sasidharan
- Department of Pharmaceutical Chemistry, Nitte (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, India
| | - Pavan T. S.
- Department of Pharmaceutical Chemistry, Nitte (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, India
| |
Collapse
|
7
|
Discovery of novel HPPD inhibitors based on a combination strategy of pharmacophore, consensus docking and molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zong L, Cheng G, Zhao J, Zhuang X, Zheng Z, Liu Z, Song F. Inhibitory Effect of Ursolic Acid on the Migration and Invasion of Doxorubicin-Resistant Breast Cancer. Molecules 2022; 27:1282. [PMID: 35209071 PMCID: PMC8879026 DOI: 10.3390/molecules27041282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cause of death in most breast cancer patients is disease metastasis and the occurrence of multidrug resistance (MDR). Ornithine decarboxylase (ODC), which is involved into multiple pathways, is closely related to carcinogenesis and development. Ursolic acid (UA), a natural triterpenoid compound, has been shown to reverse the MDR characteristics of tumor cells. However, the effect of UA on the invasion and metastasis of tumor cells with MDR is not known. Therefore, we investigated the effects of UA on invasion and metastasis, ODC-related polyamine metabolism, and MAPK-Erk-VEGF/MMP-9 signaling pathways in a doxorubicin-resistant breast cancer cell (MCF-7/ADR) model. The obtained results showed that UA significantly inhibited the adhesion and migration of MCF-7/ADR cells, and had higher affinities with key active cavity residues of ODC compared to the known inhibitor di-fluoro-methyl-ornithine (DFMO). UA could downregulate ODC, phosphorylated Erk (P-Erk), VEGF, and matrix metalloproteinase-9 (MMP-9) activity. Meanwhile, UA significantly reduced the content of metabolites of the polyamine metabolism. Furthermore, UA increased the intracellular accumulation of Dox in MCF-7/ADR cells. Taken together, UA can inhibit against tumor progression during the treatment of breast cancer with Dox, and possibly modulate the Erk-VEGF/MMP-9 signaling pathways and polyamine metabolism by targeting ODC to exert these effects.
Collapse
Affiliation(s)
- Li Zong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Guorong Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingwu Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (L.Z.); (G.C.); (J.Z.); (Z.Z.); (Z.L.)
- Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
9
|
Umashankar V, Deshpande SH, Hegde HV, Singh I, Chattopadhyay D. Phytochemical Moieties From Indian Traditional Medicine for Targeting Dual Hotspots on SARS-CoV-2 Spike Protein: An Integrative in-silico Approach. Front Med (Lausanne) 2021; 8:672629. [PMID: 34026798 PMCID: PMC8137902 DOI: 10.3389/fmed.2021.672629] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 infection across the world has led to immense turbulence in the treatment modality, thus demanding a swift drug discovery process. Spike protein of SARS-CoV-2 binds to ACE2 receptor of human to initiate host invasion. Plethora of studies demonstrate the inhibition of Spike-ACE2 interactions to impair infection. The ancient Indian traditional medicine has been of great interest of Virologists worldwide to decipher potential antivirals. Hence, in this study, phytochemicals (1,952 compounds) from eight potential medicinal plants used in Indian traditional medicine were meticulously collated, based on their usage in respiratory disorders, along with immunomodulatory and anti-viral potential from contemporary literature. Further, these compounds were virtually screened against Receptor Binding Domain (RBD) of Spike protein. The potential compounds from each plant were prioritized based on the binding affinity, key hotspot interactions at ACE2 binding region and glycosylation sites. Finally, the potential hits in complex with spike protein were subjected to Molecular Dynamics simulation (450 ns), to infer the stability of complex formation. Among the compounds screened, Tellimagrandin-II (binding energy of −8.2 kcal/mol and binding free energy of −32.08 kcal/mol) from Syzygium aromaticum L. and O-Demethyl-demethoxy-curcumin (binding energy of −8.0 kcal/mol and binding free energy of −12.48 kcal/mol) from Curcuma longa L. were found to be highly potential due to their higher binding affinity and significant binding free energy (MM-PBSA), along with favorable ADMET properties and stable intermolecular interactions with hotspots (including the ASN343 glycosylation site). The proposed hits are highly promising, as these are resultant of stringent in silico checkpoints, traditionally used, and are documented through contemporary literature. Hence, could serve as promising leads for subsequent experimental validations.
Collapse
Affiliation(s)
- V Umashankar
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Sanjay H Deshpande
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Ishwar Singh
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Government of India), Belagavi, India
| |
Collapse
|
10
|
Zhao G, Tian X, Wang J, Cheng M, Zhang T, Wang Z. The structure-based virtual screening of non-benzofuran inhibitors against M. tuberculosis Pks13-TE for anti-tuberculosis phenotypic discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj03828h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Structure-based virtual screening against M. tuberculosis Pks13-TE was performed for anti-tuberculosis phenotypic discovery.
Collapse
Affiliation(s)
- Guode Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery
- Ministry of Education
- Shenyang Pharmaceutical University
- Shenyang 110016
- P. R. China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease
- Guangzhou Institutes of Biomedicine and Health
- Chinese Academy of Sciences
- Guangzhou 510530
- China
| | - Zihou Wang
- Center for Drug Evaluation
- National Medical Products Administration
- Beijing 100022
- China
| |
Collapse
|
11
|
Kleynhans J, Kruger HG, Cloete T, Zeevaart JR, Ebenhan T. In Silico Modelling in the Development of Novel Radiolabelled Peptide Probes. Curr Med Chem 2020; 27:7048-7063. [DOI: 10.2174/0929867327666200504082256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
This review describes the usefulness of in silico design approaches in the design of
new radiopharmaceuticals, especially peptide-based radiotracers (including peptidomimetics).
Although not part of the standard arsenal utilized during radiopharmaceutical design, the use
of in silico strategies is steadily increasing in the field of radiochemistry as it contributes to a
more rational and scientific approach. The development of new peptide-based radiopharmaceuticals
as well as a short introduction to suitable computational approaches are provided in
this review. The first section comprises a concise overview of the three most useful computeraided
drug design strategies used, namely i) a Ligand-based Approach (LBDD) using pharmacophore
modelling, ii) a Structure-based Design Approach (SBDD) using molecular docking
strategies and iii) Absorption-Distribution-Metabolism-Excretion-Toxicity (ADMET)
predictions. The second section summarizes the challenges connected to these computer-aided
techniques and discusses successful applications of in silico radiopharmaceutical design in
peptide-based radiopharmaceutical development, thereby improving the clinical procedure in
Nuclear Medicine. Finally, the advances and future potential of in silico modelling as a design
strategy is highlighted.
Collapse
Affiliation(s)
- Janke Kleynhans
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| | | | - Theunis Cloete
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure (NuMeRI) NPC, Pelindaba 0420, South Africa
| |
Collapse
|
12
|
Aguilera-Durán G, Romo-Mancillas A. Computational Study of C-X-C Chemokine Receptor (CXCR)3 Binding with Its Natural Agonists Chemokine (C-X-C Motif) Ligand (CXCL)9, 10 and 11 and with Synthetic Antagonists: Insights of Receptor Activation towards Drug Design for Vitiligo. Molecules 2020; 25:E4413. [PMID: 32992956 PMCID: PMC7582348 DOI: 10.3390/molecules25194413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Vitiligo is a hypopigmentary skin pathology resulting from the death of melanocytes due to the activity of CD8+ cytotoxic lymphocytes and overexpression of chemokines. These include CXCL9, CXCL10, and CXCL11 and its receptor CXCR3, both in peripheral cells of the immune system and in the skin of patients diagnosed with vitiligo. The three-dimensional structure of CXCR3 and CXCL9 has not been reported experimentally; thus, homology modeling and molecular dynamics could be useful for the study of this chemotaxis-promoter axis. In this work, a homology model of CXCR3 and CXCL9 and the structure of the CXCR3/Gαi/0βγ complex with post-translational modifications of CXCR3 are reported for the study of the interaction of chemokines with CXCR3 through all-atom (AA-MD) and coarse-grained molecular dynamics (CG-MD) simulations. AA-MD and CG-MD simulations showed the first activation step of the CXCR3 receptor with all chemokines and the second activation step in the CXCR3-CXCL10 complex through a decrease in the distance between the chemokine and the transmembrane region of CXCR3 and the separation of the βγ complex from the α subunit in the G-protein. Additionally, a general protein-ligand interaction model was calculated, based on known antagonists binding to CXCR3. These results contribute to understanding the activation mechanism of CXCR3 and the design of new molecules that inhibit chemokine binding or antagonize the receptor, provoking a decrease of chemotaxis caused by the CXCR3/chemokines axis.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico;
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| |
Collapse
|
13
|
Based on the Virtual Screening of Multiple Pharmacophores, Docking and Molecular Dynamics Simulation Approaches toward the Discovery of Novel HPPD Inhibitors. Int J Mol Sci 2020; 21:ijms21155546. [PMID: 32756361 PMCID: PMC7432800 DOI: 10.3390/ijms21155546] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of 4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target. Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were developed. The ZINC and natural product database were virtually screened, and 29 compounds were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD inhibitory herbicides.
Collapse
|
14
|
Muthukumaran S, Sulochana KN, Umashankar V. Structure based design of inhibitory peptides targeting ornithine decarboxylase dimeric interface and in vitro validation in human retinoblastoma Y79 cells. J Biomol Struct Dyn 2020; 39:5261-5275. [PMID: 32597331 DOI: 10.1080/07391102.2020.1785331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Polyamine synthesis in human cells is initiated by catalytic action of Ornithine decarboxylase (ODC) on Ornithine. Elevated levels of polyamines are manifested proliferating cancer cells and are found to promote tumour cell adhesion. Di-flouro methyl orninthine is a known inhibitor of ODC, however its usage is limited due its low affinity quick clearance and incompetent cellular uptake, thus posing a need for potential inhibitors. Currently, peptides are substituting drugs, as these are highly selective, specific and potent. Hence, in this study, the interacting interfaces of native homodimeric form of ODC and its heterodimer with Antizyme were probed to design inhibitory peptides targeting ODC. The designed peptides were validated for structural fitness by extensive molecular dynamics simulations and Circular dichroism studies. Finally, these peptides were validated in Y79 retinoblastoma cells for impact on ODC activity, cytotoxicity cell cycle and cell adhesion. On collective analysis, Peptide3 (Pep 3) and Peptide4 (Pep 4) were found to be potentially targeting ODC, as these peptides showed significant decrease in intracellular polyamine levels, cell adhesion and cell cycle perturbation in Y79 cells. Thus, Pep 3 and Pep 4 shall be favourably considered as therapeutic agents for targeting ODC mediated proliferation in retinoblastoma.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sivashanmugam Muthukumaran
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - K N Sulochana
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India
| | - Vetrivel Umashankar
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, India.,National Institute of Traditional Medicine, Indian Council of Medical Research, Department of Health Research (Govt. of India), Belagavi, India
| |
Collapse
|
15
|
Hu B, Joseph J, Geng X, Wu Y, Suleiman MR, Liu X, Shi J, Wang X, He Z, Wang J, Cheng M. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists. Comput Biol Chem 2020; 86:107249. [PMID: 32199335 DOI: 10.1016/j.compbiolchem.2020.107249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 11/24/2022]
Abstract
For a long time, the structural basis of TXA2 receptor is limited due to the lack of crystal structure information, till the release of the crystal structure of TXA2 receptor, which deepens our understanding about ligand recognition and selectivity mechanisms of this physiologically important receptor. In this research, we report the successful implementation in the discovery of an optimal pharmacophore model of human TXA2 receptor antagonists through virtual screening. Structure-based pharmacophore models were generated based on two crystal structures of human TXA2 receptor (PDB entry 6IIU and 6IIV). Docking simulation revealed interaction modes of the virtual screening hits against TXA2 receptor, which was validated through molecular dynamics simulation and binding free energy calculation. ADMET properties were also analyzed to evaluate the toxicity and physio-chemical characteristics of the hits. The research would provide valuable insight into the binding mechanisms of TXA2 receptor antagonists and thus be helpful for designing novel antagonists.
Collapse
Affiliation(s)
- Baichun Hu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Johnson Joseph
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaohui Geng
- School of Pharmacy, Shenyang Pharmaceutical University,Shenyang 110016, People's Republic of China
| | - Yiheng Wu
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Muhammad R Suleiman
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyue Liu
- School of Pharmacy, Shenyang Pharmaceutical University,Shenyang 110016, People's Republic of China
| | - Jiyue Shi
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiujun Wang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222000, People's Republic of China
| | - Zhicheng He
- School of Pharmacy, Shenyang Pharmaceutical University,Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design &Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
16
|
Navyashree V, Kant K, Kumar A. Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: a molecular docking and dynamics approach. J Biomol Struct Dyn 2020; 39:1404-1416. [PMID: 32072856 DOI: 10.1080/07391102.2020.1731603] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- V. Navyashree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| | - Kamal Kant
- Department of Pharmaceutical Chemistry, Birla Institute of Technology (B.I.T) Mesra, Ranchi, Jharkhand, India
| | - Anoop Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, India
| |
Collapse
|
17
|
Rajan RK, Ramanathan M. Identification and neuroprotective evaluation of a potential c-Jun N-terminal kinase 3 inhibitor through structure-based virtual screening and in-vitro assay. J Comput Aided Mol Des 2020; 34:671-682. [PMID: 32040807 DOI: 10.1007/s10822-020-00297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
The c-Jun N-terminal kinase 3 (JNK3) signaling cascade is activated during cerebral ischemia leading to neuronal damage. The present study was carried out to identify and evaluate novel JNK3 inhibitors using in-silico and in-vitro approach. A total of 380 JNK3 inhibitors belonging to different organic groups was collected from the previously reported literature. These molecules were used to generate a pharmacophore model. This model was used to screen a chemical database (SPECS) to identify newer molecules with similar chemical features. The top 1000 hits molecules were then docked against the JNK3 enzyme coordinate following GLIDE rigid receptor docking (RRD) protocol. Best posed molecules of RRD were used during induced-fit docking (IFD), allowing receptor flexibility. Other computational predictions such as binding free energy, electronic configuration and ADME/tox were also calculated. Inferences from the best pharmacophore model suggested that, in order to have specific JNK3 inhibitory activity, the molecules must possess one H-bond donor, two hydrophobic and two ring features. Docking studies suggested that the main interaction between lead molecules and JNK3 enzyme consisted of hydrogen bond interaction with methionine 149 of the hinge region. It was also observed that the molecule with better MM-GBSA dG binding free energy, had greater correlation with JNK3 inhibition. Lead molecule (AJ-292-42151532) with the highest binding free energy (dG = 106.8 Kcal/mol) showed better efficacy than the SP600125 (reference JNK3 inhibitor) during cell-free JNK3 kinase assay (IC50 = 58.17 nM) and cell-based neuroprotective assay (EC50 = 7.5 µM).
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamilnadu, India
| | - M Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamilnadu, India.
| |
Collapse
|
18
|
Shruti SR, Rajasekaran R. Identification of protegrin-1 as a stable and nontoxic scaffold among protegrin family - a computational approach. J Biomol Struct Dyn 2018; 37:2430-2439. [PMID: 30047844 DOI: 10.1080/07391102.2018.1491418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Achieving both, nontoxicity and stability in antimicrobial peptides (AMP) is a challenge. This study predicts a structurally stable, nontoxic scaffold among the protegrin family, for future therapeutic peptide analogs. Protegrins (PG) are a class of pharmaceutically approved, in demand AMPs, which require further improvement in terms of nontoxicity and stability. Out of five protegrins viz., PG1, PG2, PG3, PG4 and PG5, PG1 has been predicted as best scaffold. Prediction was based upon sequential elimination of other protegrins, using computational methods to assess the extracellular bacterial membrane penetrability, nontoxicity and structural stability by geometric observables. Initially, PG2 and PG4 showing the lowest membrane penetrability and highest toxicity respectively, were screened out. Among the remaining three protegrins, PG1 displayed both lowest root mean square deviation and radius of gyration, with a considerable occupancy of seven H-bonds and established uniform secondary structure profile throughout its ensembles. Therefore, the authors claim the superiority of PG1 as a nontoxic stable scaffold among its family. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S R Shruti
- a Department of Biotechnology, Bioinformatics lab, School of Biosciences and Technology , VIT (Deemed to be University) , Vellore , Tamil Nadu , India
| | - R Rajasekaran
- a Department of Biotechnology, Bioinformatics lab, School of Biosciences and Technology , VIT (Deemed to be University) , Vellore , Tamil Nadu , India
| |
Collapse
|
19
|
Liu X, Li W, Hu B, Wang M, Wang J, Guan L. Identification of isobavachalcone as a potential drug for rice blast disease caused by the fungus Magnaporthe grisea. J Biomol Struct Dyn 2018; 37:3399-3409. [PMID: 30132740 DOI: 10.1080/07391102.2018.1515117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rice blast disease caused by the fungus Magnaporthe grisea is one of the most devastating rice diseases, but there is no effective fungicide toward chitinase which is a key enzyme of M. grisea. In this study, we observed that distortion and cell-wall damage of M. grisea hyphae were significantly under the scanning electron micrograph after a 24-h treatment with 10 mg/L isobavachalcone (IBC) extracted from Psoralea corylifolia L. To further explore the effect of IBC on the cell wall of M. grisea, we examined changes in enzymes associated with cell wall degradation by enzyme activity experiments, treated liquid culture mycelia with 10 mg/L IBC for 1 h. Results displayed that chitinase was obviously more active than control group. To illustrate the interactions between IBC and chitinase, the studies of homology modeling and molecular docking were carried out successively. The results revealed that IBC had hydrogen bonds with residues ASP267 and ARG276 of chitinase. Besides, these nonpolar residues TYR270, PRO271, VAL272, LEU310, PRO311, TYR316, and LEU317 were able to form strong hydrophobic interactions. Binding energies of the chitinase-IBC complexes were calculated by MM-GBSA showed that the ΔGbind score of molecular dynamics had lower binding energy and more stable than docking complexes. All above, IBC owns significant agonistic activity in chitinase and would be a potent fungicide to inhibit the growth of M. grisea. We hope the above information provides an important insight for understanding the interactions between IBC and chitinase, which may be useful in the discovery of a novel potent agonist. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xue Liu
- a Department of Pharmaceutical and Biological Engineering , Shenyang University of Chemical Technology , Shenyang , China
| | - Wei Li
- a Department of Pharmaceutical and Biological Engineering , Shenyang University of Chemical Technology , Shenyang , China
| | - Baichun Hu
- b Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , China
| | - Mingxing Wang
- b Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , China
| | - Jian Wang
- b Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education , Shenyang Pharmaceutical University , Shenyang , China
| | - Lijie Guan
- a Department of Pharmaceutical and Biological Engineering , Shenyang University of Chemical Technology , Shenyang , China
| |
Collapse
|
20
|
Vetrivel U, Nagarajan H. Deciphering ophthalmic adaptive inhibitors targeting RON4 of Toxoplasma gondii: An integrative in silico approach. Life Sci 2018; 213:82-93. [DOI: 10.1016/j.lfs.2018.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
|