1
|
Koirala S, Samanta S, Kar P. Identification of inhibitors for neurodegenerative diseases targeting dual leucine zipper kinase through virtual screening and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:457-482. [PMID: 38855951 DOI: 10.1080/1062936x.2024.2363195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative diseases lead to a gradual decline in cognitive and motor functions due to the progressive loss of neurons in the central nervous system. The role of dual leucine zipper kinase (DLK) in regulating stress responses and neuronal death pathways highlights its significance as a target against neurodegenerative diseases. The non-availability of FDA-approved drugs emphasizes a need to identify novel DLK-inhibitors. We screened NPAtlas (Natural products) and MedChemExpress (FDA-approved) libraries to identify potent ATP-competitive DLK inhibitors. ADMET analyses identified four compounds (two natural products and two FDA-approved) with favourable features. Subsequently, we performed molecular dynamics simulations to examine the binding-stability and ligand-induced conformational dynamics. Molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations demonstrated CID139591660, dithranol, and danthron having greater affinity, while CID156581477 showed lower affinity than control sunitinib. PCA and network analysis results indicated structural and network alteration post-ligand binding. Furthermore, we identified an analogue of CID156581477 using the deep learning-based web server DeLA Drug which demonstrated a higher affinity than its parent compound and the control and identified several crucial interacting residues. Overall, our study provides significant theoretical guidance for designing potent novel DLK inhibitors and compounds that could emerge as promising drug candidates against DLK following laboratory validation.
Collapse
Affiliation(s)
- S Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - S Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
2
|
Mahapatra S, Jonniya NA, Koirala S, Kar P. Molecular dynamics simulations reveal phosphorylation-induced conformational dynamics of the fibroblast growth factor receptor 1 kinase. J Biomol Struct Dyn 2024; 42:2929-2941. [PMID: 37160693 DOI: 10.1080/07391102.2023.2209189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
The Fibroblast Growth Factor Receptor1 (FGFR1) kinase wields exquisite control on cell fate, proliferation, differentiation, and homeostasis. An imbalance of FGFR1 signaling leads to several pathogeneses of diseases ranging from multiple cancers to allergic and neurodegenerative disorders. In this study, we investigated the phosphorylation-induced conformational dynamics of FGFR1 in apo and ATP-bound states via all-atom molecular dynamics simulations. All simulations were performed for 2 × 2 µs. We have also investigated the energetics of the binding of ATP to FGFR1 using the molecular mechanics Poisson-Boltzmann scheme. Our study reveals that the FGFR1 kinase can reach a fully active configuration through phosphorylation and ATP binding. A 3-10 helix formation in the activation loop signifies its rearrangement leading to stability upon ATP binding. The interaction of phosphorylated tyrosine (pTyr654) with positively charged residues forms strong salt-bridge interactions, driving the compactness of the structure. The dynamic cross-correlation map reveals phosphorylation enhances correlated motions and reduces anti-correlated motions between different domains. We believe that the mechanistic understanding of large-conformational changes upon the activation of the FGFR1 kinase will aid the development of novel targeted therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
3
|
Poddar S, Roy R, Kar P. Elucidating the conformational dynamics of histo-blood group antigens and their interactions with the rotavirus spike protein through computational lens. J Biomol Struct Dyn 2023; 42:13201-13215. [PMID: 37909470 DOI: 10.1080/07391102.2023.2274979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
In the present study, we investigated the conformational dynamics of histo-blood group antigens (HBGAs) and their interactions with the VP8* domain of four rotavirus genotypes (P[4], P[6], P[19], and P[11]) utilizing all-atom molecular dynamics simulations in explicit water. Our study revealed distinct changes in the dynamic behavior of the same glycan due to linkage variations. We observed that LNFPI HBGA having a terminal β linkage shows two dominant conformations after complexation, whereas only one was obtained for LNFPI with a terminal α linkage. Interestingly, both variants displayed a single dominant structure in the free state. Similarly, LNT and LNnT show a shift in their dihedral linkage profile between their two terminal monosaccharides because of a change in the linkage from β(1-3) to β(1-4). The molecular mechanics generalized Born surface area (MM/GBSA) calculations yielded the highest binding affinity for LNFPI(β)/P[6] (-13.93 kcal/mol) due to the formation of numerous hydrogen bonds between VP8* and HBGAs. LNnT binds more strongly to P[11] (-12.88 kcal/mol) than LNT (-4.41 kcal/mol), suggesting a single change in the glycan linkage might impact its binding profile significantly. We have also identified critical amino acids and monosaccharides (Gal and GlcNAc) that contributed significantly to the protein-ligand binding through the per-residue decomposition of binding free energy. Moreover, we found that the interaction between the same glycan and different protein receptors within the same rotavirus genogroup influenced the micro-level dynamics of the glycan. Overall, our study helps a deeper understanding of the H-type HBGA and rotavirus spike protein interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
4
|
Koirala S, Samanta S, Mahapatra S, Ursal KD, Poddar S, Kar P. Molecular level investigation for identifying potential inhibitors against thymidylate kinase of monkeypox through in silico approaches. J Biomol Struct Dyn 2023; 42:13247-13260. [PMID: 37909473 DOI: 10.1080/07391102.2023.2274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The need for more advanced and effective monkeypox (Mpox) treatments has become evident with numerous Mpox virus (MPXV) outbreaks. Over the years, interest has increased in developing targeted medicines that are efficient, safe, and precise while avoiding adverse effects. Here, we screened 32409 compounds against thymidylate kinase (TMPK), an emerging target for Mpox treatment. We studied their pharmacological characteristics and analyzed those through all-atom molecular dynamics simulations followed by molecular mechanics Poisson Boltzmann surface area (MM-PBSA) based free energy calculations. According to our findings, the leads CID40777874 and CID28960001 had the highest binding affinities towards TMPK with ΔGbind of -8.04 and -5.58 kcal/mol, respectively, which outperformed our control drug cidofovir (ΔGbind = -2.92 kcal/mol) in terms of binding favourability. Additionally, we observed crucial TMPK dynamics brought on by ligand-binding and identified key residues such as Phe68 and Tyr101 as the critical points of the protein-ligand interaction. The DCCM analysis revealed the role of ligand binding in stabilizing TMPK's binding region, as indicated by residual correlation motions. Moreover, the PSN analysis revealed that the interaction with ligand induces changes in residual network properties, enhancing the stability of complexes. We successfully identified novel compounds that may serve as potential building blocks for constructing contemporary antivirals against MPXV and highlighted the molecular mechanisms underlying their binding with TMPK. Overall, our findings will play a significant role in advancing the development of new therapies against Mpox and facilitating a comprehensive understanding of their interaction patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, MP, India
| |
Collapse
|
5
|
Mahapatra S, Jonniya NA, Koirala S, Ursal KD, Kar P. The FGF/FGFR signalling mediated anti-cancer drug resistance and therapeutic intervention. J Biomol Struct Dyn 2023; 41:13509-13533. [PMID: 36995019 DOI: 10.1080/07391102.2023.2191721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 03/31/2023]
Abstract
ABSTRACT Fibroblast Growth Factor (FGF) ligands and their receptors are crucial factors driving chemoresistance in several malignancies, challenging the efficacy of currently available anti-cancer drugs. The Fibroblast growth factor/receptor (FGF/FGFR) signalling malfunctions in tumor cells, resulting in a range of molecular pathways that may impact its drug effectiveness. Deregulation of cell signalling is critical since it can enhance tumor growth and metastasis. Overexpression and mutation of FGF/FGFR induce regulatory changes in the signalling pathways. Chromosomal translocation facilitating FGFR fusion production aggravates drug resistance. Apoptosis is inhibited by FGFR-activated signalling pathways, reducing multiple anti-cancer medications' destructive impacts. Angiogenesis and epithelial-mesenchymal transition (EMT) are facilitated by FGFRs-dependent signalling, which correlates with drug resistance and enhances metastasis. Further, lysosome-mediated drug sequestration is another prominent method of resistance. Inhibition of FGF/FGFR by following a plethora of therapeutic approaches such as covalent and multitarget inhibitors, ligand traps, monoclonal antibodies, recombinant FGFs, combination therapy, and targeting lysosomes and micro RNAs would be helpful. As a result, FGF/FGFR suppression treatment options are evolving nowadays. To increase positive impacts, the processes underpinning the FGF/FGFR axis' role in developing drug resistance need to be clarified, emphasizing the need for more studies to develop novel therapeutic options to address this significant problem. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subhasmita Mahapatra
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Kapil Dattatray Ursal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
6
|
Pyasi S, Jonniya NA, Sk MF, Nayak D, Kar P. Finding potential inhibitors against RNA-dependent RNA polymerase (RdRp) of bovine ephemeral fever virus (BEFV): an in- silico study. J Biomol Struct Dyn 2022; 40:10403-10421. [PMID: 34238122 DOI: 10.1080/07391102.2021.1946714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The bovine ephemeral fever virus (BEFV) is an enzootic agent that affects millions of bovines and causes major economic losses. Though the virus is seasonally reported with a very high morbidity rate (80-100%) from African, Australian, and Asiatic continents, it remains a neglected pathogen in many of its endemic areas, with no proper therapeutic drugs or vaccines presently available for treatment. The RNA-dependent RNA polymerase (RdRp) catalyzes the viral RNA synthesis and is an appropriate candidate for antiviral drug developments. We utilized integrated computational tools to build the 3D model of BEFV-RdRp and then predicted its probable active binding sites. The virtual screening and optimization against these active sites, using several small-molecule inhibitors from a different category of Life Chemical database and FDA-approved drugs from the ZINC database, was performed. We found nine molecules that have docking scores varying between -6.84 to -10.43 kcal/mol. Furthermore, these complexes were analyzed for their conformational dynamics and thermodynamic stability using molecular dynamics simulations in conjunction with the molecular mechanics generalized Born surface area (MM-GBSA) scheme. The binding free energy calculations depict that the electrostatic interactions play a dominant role in the RdRp-inhibitor binding. The hot spot residues, such as Arg565, Asp631, Glu633, Asp740, and Glu707, were found to control the RdRp-inhibitor interaction. The ADMET analysis strongly suggests favorable pharmacokinetics of these compounds that may prove useful for treating the BEFV ailment. Overall, we anticipate that these findings would help explore and develop a wide range of anti-BEFV therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Pyasi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
7
|
Jakhmola S, Sk MF, Chatterjee A, Jain K, Kar P, Jha HC. A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput Biol Med 2022; 148:105856. [PMID: 35863244 DOI: 10.1016/j.compbiomed.2022.105856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) can be induced upon successful presentation of myelin antigens by MHC I/II. Antigenic similarity between the myelin and viral proteins may worsen the immunological responses. METHODOLOGY Antigenic regions within myelin proteins; PLP1, MBP, MOG, and MAG were analyzed using SVMTrip and EMBOSS. Homology search identified sequence similarity between the predicted host epitopes and viral proteins. NetMHCpan predicted MHC I/II binding followed by peptide-protein docking through the HPEPDOCK server. Thereafter we analyzed conformational flexibility and stability of 15 protein-peptide complexes based on high docking scores. The binding free energy was calculated using conventional (MD) and Gaussian accelerated molecular dynamics simulation. RESULTS PLP1, MBP, MAG and MOG contained numerous antigenic epitopes. MBP and MOG epitopes had sequence similarity to HHV-6 BALF5; EBNA1 and CMV glycoprotein M (gM), and EBV LMP2B, gp350/220; HHV-8 ORFs respectively. Many herpes virus proteins like tegument, envelope glycoproteins, and ORFs of EBV, CMV, HHV-6, and HHV-8 demonstrated sequence similarity with MAG and PLP1. Some antigenic peptides were also linear B-cell epitopes and influenced cytokine production by T-cell. MHC I allele HLA-B*57:01 bound to PLP1 peptide and HLA-A*68:02 bound to a MAG peptide strongly. MHC II alleles HLA-DRB1*04:05 and HLA-DR1*01:01 associated with MAG- and MOG-derived peptides, respectively, demonstrating high HPEPDOCK scores. MD simulations established stable binding of certain peptides with the MHC namely HLA-B*51:01-MBP(DYKSAHKGFKGVDAQGTLSKIFKL), HLA-B*57:01-PLP1(PDKFVGITYALTVVWLLVFACSAVPVYIYF), HLA-DR1*01:01-MOG(VEDPFYWVSPGVLVLLAVLPVLLLQITVGLVFLCLQYR) and HLA-DRB1*04:05-MAG(TWVQVSLLHFVPTREA). CONCLUSIONS Cross-reactivity between self-antigens and pathogen derived immunodominant epitopes may induce MS. Our study supported the role of specific MHC alleles as a contributing MS risk factor.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Akash Chatterjee
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Khushboo Jain
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
8
|
Sk MF, Jonniya NA, Roy R, Kar P. Unraveling the Molecular Mechanism of Recognition of Selected Next-Generation Antirheumatoid Arthritis Inhibitors by Janus Kinase 1. ACS OMEGA 2022; 7:6195-6209. [PMID: 35224383 PMCID: PMC8867477 DOI: 10.1021/acsomega.1c06715] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-related condition, primarily of joints, and is highly disabling and painful. The inhibition of Janus kinase (JAK)-related cytokine signaling pathways using small molecules is prevalent nowadays. The JAK family belongs to nonreceptor cytoplasmic protein tyrosine kinases (PTKs), including JAK1, JAK2, JAK3, and TYK2 (tyrosine kinase 2). JAK1 has received significant attention after being identified as a promising target for developing anti-RA therapeutics. Currently, no crystal structure is available for JAK1 in complex with the next-generation anti-RA drugs. In the current study, we investigated the mechanism of binding of baricitinib, filgotinib, itacitinib, and upadacitinib to JAK1 using a combined method of molecular docking, molecular dynamics simulation, and binding free energy calculation via the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) scheme. We found that the calculated binding affinity decreases in the order upadacitinib > itacitinib > filgotinib > baricitinib. Due to the increased favorable intermolecular electrostatic contribution, upadacitinib is more selective to JAK1 compared to the other three inhibitors. The cross-correlation and principal component analyses showed that different inhibitor bindings significantly affect the binding site dynamics of JAK1. Furthermore, our studies indicated that the hydrophobic residues and hydrogen bonds from the hinge region (Glu957 and Leu959) of JAK1 played an essential role in stabilizing the inhibitors. Protein structural network analysis reveals that the total number of links and hubs in JAK1/baricitinib (354, 48) is more significant than those in apo (328, 40) and the other three complexes. The JAK1/baricitinib complex shows the highest probability of the highest-ranked community, indicating a compact network of the JAK1/baricitinib complex, consistent with its higher stability than the rest of the four systems. Overall, our study may be crucial for the rational design of JAK1-selective inhibitors with better affinity.
Collapse
|
9
|
Jonniya NA, Sk MF, Roy R, Kar P. Discovery of potential competitive inhibitors against With-No-Lysine kinase 1 for treating hypertension by virtual screening, inverse pharmacophore-based lead optimization, and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:63-87. [PMID: 35078380 DOI: 10.1080/1062936x.2021.2023218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The With-No-Lysine (WNK) has received attention because of its involvement in hypertension. Genetic mutation in the genes of WNK, leading to its overexpression, has been reported in Familial Hyperkalaemic Hypertension, and thus WNK is considered a potential drug target. Herein, we have performed a high-throughput virtual screening of ~11,000 compounds, mainly the natural phytochemical compounds and kinase inhibitory libraries, to find potential competitive inhibitors against WNK1. Initially, candidates with a docking score of ~ -10.0 kcal/mol or less were selected to further screen their good pharmacological properties by applying absorption, distribution, metabolism, excretion, and toxicity (ADMET). Finally, six docked compounds bearing appreciable binding affinities and WNK1 selectivity were complimented with 500 ns long all-atom molecular dynamic simulations. Subsequently, the MMPBSA scheme (Molecular Mechanics Poisson Boltzmann Surface Area) suggested three phytochemical compounds, C00000947, C00020451, and C00005031, with favourable binding affinity against WNK1. Among them, C00000947 acts as the most potent competitive inhibitor of WNK1. Further, inverse pharmacophore-based lead optimization of the C00000947 leads to one potential compound, meciadanol, which shows better binding affinity and specificity than C00000947 towards WNK1, which may be further exploited to develop effective therapeutics against WNK1-associated hypertension after in vitro and in vivo validation.
Collapse
Affiliation(s)
- N A Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - R Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
10
|
Indari O, Sk MF, Jakhmola S, Jonniya NA, Jha HC, Kar P. Decoding the Host-Parasite Protein Interactions Involved in Cerebral Malaria Through Glares of Molecular Dynamics Simulations. J Phys Chem B 2022; 126:387-402. [PMID: 34989590 DOI: 10.1021/acs.jpcb.1c07850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malaria causes millions of deaths every year. The malaria parasite spends a substantial part of its life cycle inside human erythrocytes. Inside erythrocytes, it synthesizes and displays various proteins onto the erythrocyte surface, such as Plasmodium falciparum erythrocytic membrane protein-1 (PfEMP1). This protein contains cysteine-rich interdomain region (CIDR) domains which have many subtypes based on sequence diversity and can cross-talk with host molecules. The CIDRα1.4 subtype can attach host endothelial protein C receptor (EPCR). This interaction facilitates infected erythrocyte adherence to brain endothelium and subsequent development of cerebral malaria. Through molecular dynamics simulations in conjunction with the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, we explored the mechanism of interaction in the CIDRα1-EPCR complex. We examined the structural behavior of two CIDRα1 molecules (encoded by HB3-isolate var03-gene and IT4-isolate var07-gene) with EPCR unbound and bound (complex) forms. HB3var03CIDRα1 in apo and complexed with EPCR was comparatively more stable than IT4var07CIDRα1. Both of the complexes adopted two distinct conformational energy states. The hydrophobic residues played a crucial role in the binding of both complexes. For HB3var03CIDRα1-EPCR, the dominant energetic components were total polar interactions, while in IT4var07CIDRα1-EPCR, the primary interaction was van der Waals and nonpolar solvation energy. The study also revealed details such as correlated conformational motions and secondary structure evolution. Further, it elucidated various hotspot residues involved in protein-protein recognition. Overall, our study provides additional information on the structural behavior of CIDR molecules in unbound and receptor-bound states, which will help to design potent inhibitors.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
11
|
Roy R, Jonniya NA, Poddar S, Sk MF, Kar P. Unraveling the Molecular Mechanism of Recognition of Human Interferon-Stimulated Gene Product 15 by Coronavirus Papain-Like Proteases: A Multiscale Simulation Study. J Chem Inf Model 2021; 61:6038-6052. [PMID: 34784198 PMCID: PMC8610008 DOI: 10.1021/acs.jcim.1c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/21/2022]
Abstract
The papain-like protease (PLpro) of the coronavirus (CoV) family plays an essential role in processing the viral polyprotein and immune evasion. Additional proteolytic activities of PLpro include deubiquitination and deISGylation, which can reverse the post-translational modification of cellular proteins conjugated with ubiquitin or (Ub) or Ub-like interferon-stimulated gene product 15 (ISG15). These activities regulate innate immune responses against viral infection. Thus, PLpro is a potential antiviral target. Here, we have described the structural and energetic basis of recognition of PLpro by the human ISG15 protein (hISG15) using atomistic molecular dynamics simulation across the CoV family, i.e., MERS-CoV (MCoV), SARS-CoV (SCoV), and SARS-CoV-2 (SCoV2). The cumulative simulation length for all trajectories was 32.0 μs. In the absence of the complete crystal structure of complexes, protein-protein docking was used. A mutation (R167E) was introduced across all three PLpro to study the effect of mutation on the protein-protein binding. Our study reveals that the apo-ISG15 protein remains closed while it adopts an open conformation when bound to PLpro, although the degree of openness varies across the CoV family. The binding free energy analysis suggests that hISG15 binds more strongly with SCoV2-PLpro compared to SCoV or MCoV. The intermolecular electrostatic interaction drives the hISG15-PLpro complexation. Our study showed that SCoV or MCoV-PLpro binds more strongly with the C-domain of hISG15, while SCoV2-PLpro binds more favorably the N-domain of hISG15. Overall, our study explains the molecular basis of differential deISGylating activities of PLpro among the CoV family and the specificity of SCoV2-PLpro toward hISG15.
Collapse
Affiliation(s)
- Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian
Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh
453552, India
| | - Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian
Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh
453552, India
| | - Sayan Poddar
- Department of Biosciences and Biomedical Engineering, Indian
Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh
453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian
Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh
453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian
Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh
453552, India
| |
Collapse
|
12
|
Jonniya NA, Zhang J, Kar P. Molecular Mechanism of Inhibiting WNK Binding to OSR1 by Targeting the Allosteric Pocket of the OSR1-CCT Domain with Potential Antihypertensive Inhibitors: An In Silico Study. J Phys Chem B 2021; 125:9115-9129. [PMID: 34369793 DOI: 10.1021/acs.jpcb.1c04672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline-alanine-rich kinase (SPAK) are physiological substrates of the with-no-lysine (WNK) kinase. They are the master regulators of cation Cl- cotransporters that could be targeted for discovering novel antihypertensive agents. Both kinases have a conserved carboxy-terminal (CCT) domain that recognizes a unique peptide motif (Arg-Phe-Xaa-Val) present in their upstream kinases and downstream substrates. Here, we have combined molecular docking with molecular dynamics simulations and free-energy calculations to identify potential inhibitors that can bind to the allosteric pocket of the OSR1-CCT domain and impede its interaction with the WNK peptide. Our study revealed that STOCK1S-14279 and Closantel bound strongly to the allosteric pocket of OSR1 and displaced the WNK peptide from the primary pocket of OSR1. We showed that primarily Arg1004 and Gln1006 of the WNK4-peptide motif were involved in strong H-bond interactions with Glu453 and Arg451 of OSR1. Besides, our study revealed that atoms of Arg1004 were solvent-exposed in cases of STOCK1S-14279 and Closantel, implying that the WNK4 peptide was moved out of the pocket. Overall, the predicted potential inhibitors altogether abolish the OSR1-WNK4-peptide interaction, suggesting their potency as a prospective allosteric inhibitor against OSR1.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, College of Medicine and Health, University of Exeter Medical School, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, U.K
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
13
|
Jakhmola S, Jonniya NA, Sk MF, Rani A, Kar P, Jha HC. Identification of Potential Inhibitors against Epstein-Barr Virus Nuclear Antigen 1 (EBNA1): An Insight from Docking and Molecular Dynamic Simulations. ACS Chem Neurosci 2021; 12:3060-3072. [PMID: 34340305 DOI: 10.1021/acschemneuro.1c00350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a known tumorigenic virus, is associated with various neuropathies, including multiple sclerosis (MS). However, there is no anti-EBV FDA-approved drug available in the market. Our study targeted EBV protein EBV nuclear antigen 1 (EBNA1), crucial in virus replication and expressed in all the stages of viral latencies. This dimeric protein binds to an 18 bp palindromic DNA sequence and initiates the process of viral replication. We chose phytochemicals and FDA-approved MS drugs based on literature survey followed by their evaluation efficacies as anti-EBNA1 molecules. Molecular docking revealed FDA drugs ozanimod, siponimod, teriflunomide, and phytochemicals; emodin; protoapigenone; and EGCG bound to EBNA1 with high affinities. ADMET and Lipinski's rule analysis of the phytochemicals predicted favorable druggability. We supported our assessments of pocket druggability with molecular dynamics simulations and binding affinity predictions by the molecular mechanics generalized Born surface area (MM/GBSA) method. Our results establish a stable binding for siponimod and ozanimod with EBNA1 mainly via van der Waals interactions. We identified hot spot residues like I481', K477', L582', and K586' in the binding of ligands. In particular, K477' at the amino terminal of EBNA1 is known to establish interaction with two bases at the major groove of the DNA. Siponimod bound to EBNA1 engaging K477', thus plausibly making it unavailable for DNA interaction. Computational alanine scanning further supported the significant roles of K477', I481', and K586' in the binding of ligands with EBNA1. Conclusively, the compounds showed promising results to be used against EBNA1.
Collapse
Affiliation(s)
- Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Nisha Amarnath Jonniya
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Md Fulbabu Sk
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Annu Rani
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Parimal Kar
- Computational Biophysics Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
14
|
Sk MF, Roy R, Jonniya NA, Poddar S, Kar P. Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 2021; 39:3649-3661. [PMID: 32396767 PMCID: PMC7284146 DOI: 10.1080/07391102.2020.1768149] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022]
Abstract
The recent outbreak of novel "coronavirus disease 2019" (COVID-19) has spread rapidly worldwide, causing a global pandemic. In the present work, we have elucidated the mechanism of binding of two inhibitors, namely α-ketoamide and Z31792168, to SARS-CoV-2 main protease (Mpro or 3CLpro) by using all-atom molecular dynamics simulations and free energy calculations. We calculated the total binding free energy (ΔGbind) of both inhibitors and further decomposed ΔGbind into various forces governing the complex formation using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method. Our calculations reveal that α-ketoamide is more potent (ΔGbind= - 9.05 kcal/mol) compared to Z31792168 (ΔGbind= - 3.25 kcal/mol) against COVID-19 3CLpro. The increase in ΔGbind for α-ketoamide relative to Z31792168 arises due to an increase in the favorable electrostatic and van der Waals interactions between the inhibitor and 3CLpro. Further, we have identified important residues controlling the 3CLpro-ligand binding from per-residue based decomposition of the binding free energy. Finally, we have compared ΔGbind of these two inhibitors with the anti-HIV retroviral drugs, such as lopinavir and darunavir. It is observed that α-ketoamide is more potent compared to lopinavir and darunavir. In the case of lopinavir, a decrease in van der Waals interactions is responsible for the lower binding affinity compared to α-ketoamide. On the other hand, in the case of darunavir, a decrease in the favorable intermolecular electrostatic and van der Waals interactions contributes to lower affinity compared to α-ketoamide. Our study might help in designing rational anti-coronaviral drugs targeting the SARS-CoV-2 main protease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| | - Rajarshi Roy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| | - Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| | - Sayan Poddar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| |
Collapse
|
15
|
Amarnath Jonniya N, Sk MF, Kar P. Elucidating specificity of an allosteric inhibitor WNK476 among With‐No‐Lysine kinase isoforms using molecular dynamic simulations. Chem Biol Drug Des 2021; 98:405-420. [DOI: 10.1111/cbdd.13863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering Indian Institute of Technology Indore Indore India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering Indian Institute of Technology Indore Indore India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering Indian Institute of Technology Indore Indore India
| |
Collapse
|
16
|
Meor Azlan NF, Koeners MP, Zhang J. Regulatory control of the Na-Cl co-transporter NCC and its therapeutic potential for hypertension. Acta Pharm Sin B 2021; 11:1117-1128. [PMID: 34094823 PMCID: PMC8144889 DOI: 10.1016/j.apsb.2020.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. This review summarizes the currently reported regulatory mechanisms of the NCC and discusses their potential as therapeutic targets for treating hypertension.
Collapse
Key Words
- ATP, adenosine triphosphate
- Blood pressure regulation
- CCC, cation-coupled chloride cotransporters
- CCT, conserved carboxy-terminal
- CNI, calcineurin inhibitors
- CUL3, cullin 3
- CUL3/KLHL3-WNK-SPAK/OSR1
- Ca2+, calcium ion
- Cardiovascular disease
- DAG, diacylglycerol
- DCT, distal convoluted tubule
- DUSP, dual specificity phosphatases
- ECF, extracellular fluid
- ELISA, enzyme-bound immunosorbent analysis
- ERK, extracellular signal-regulated kinases
- EnaC, epithelial sodium channels
- GABA, gamma-aminobutyric acid
- HEK293, human embryonic kidney 293
- Hypertension
- I1, inhibitor 1
- K+, potassium ion
- KCC, potassium-chloride-cotransporters
- KLHL3, kelch-like 3
- KS-WNK1, kidney specific-WNK1
- Kinase inhibitors
- MAPK, mitogen-activated protein kinase
- MO25, mouse protein-25
- Membrane trafficking
- NCC, sodium–chloride cotransporters
- NKCC, sodium–potassium–chloride-cotransporter
- Na+, sodium ion
- NaCl, sodium chloride
- NaCl-cotransporter NCC
- OSR1, oxidative stress-responsive gene 1
- PCT, proximal convoluted tubule
- PHAII, pseudohypoaldosteronism type II
- PP, protein phosphatase
- PV, parvalbumin
- ROMK, renal outer medullary potassium
- RasGRP1, RAS guanyl-releasing protein 1
- SLC12, solute carrier 12
- SPAK, Ste20-related proline-alanine-rich-kinase
- TAL, thick ascending limb
- Therapeutic targets
- WNK, with-no-lysine kinases
- mDCT, mammalian DCT
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Maarten P. Koeners
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| |
Collapse
|
17
|
Roy R, Sk MF, Jonniya NA, Poddar S, Kar P. Finding potent inhibitors against SARS-CoV-2 main protease through virtual screening, ADMET, and molecular dynamics simulation studies. J Biomol Struct Dyn 2021; 40:6556-6568. [DOI: 10.1080/07391102.2021.1897680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Rajarshi Roy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Sayan Poddar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, MP, India
| |
Collapse
|
18
|
Jonniya NA, Sk MF, Kar P. Characterizing an allosteric inhibitor-induced inactive state in with-no-lysine kinase 1 using Gaussian accelerated molecular dynamics simulations. Phys Chem Chem Phys 2021; 23:7343-7358. [DOI: 10.1039/d0cp05733a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The binding of an allosteric inhibitor in WNK1 leads to the inactive state.
Collapse
Affiliation(s)
- Nisha Amarnath Jonniya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, MP
- India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, MP
- India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, MP
- India
| |
Collapse
|
19
|
Sk MF, Jonniya NA, Roy R, Poddar S, Kar P. Computational Investigation of Structural Dynamics of SARS-CoV-2 Methyltransferase-Stimulatory Factor Heterodimer nsp16/nsp10 Bound to the Cofactor SAM. Front Mol Biosci 2020; 7:590165. [PMID: 33330626 PMCID: PMC7732651 DOI: 10.3389/fmolb.2020.590165] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
Recently, a highly contagious novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has emerged, posing a global threat to public health. Identifying a potential target and developing vaccines or antiviral drugs is an urgent demand in the absence of approved therapeutic agents. The 5'-capping mechanism of eukaryotic mRNA and some viruses such as coronaviruses (CoVs) are essential for maintaining the RNA stability and protein translation in the virus. SARS-CoV-2 encodes S-adenosyl-L-methionine (SAM) dependent methyltransferase (MTase) enzyme characterized by nsp16 (2'-O-MTase) for generating the capped structure. The present study highlights the binding mechanism of nsp16 and nsp10 to identify the role of nsp10 in MTase activity. Furthermore, we investigated the conformational dynamics and energetics behind the binding of SAM to nsp16 and nsp16/nsp10 heterodimer by employing molecular dynamics simulations in conjunction with the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method. We observed from our simulations that the presence of nsp10 increases the favorable van der Waals and electrostatic interactions between SAM and nsp16. Thus, nsp10 acts as a stimulator for the strong binding of SAM to nsp16. The hydrophobic interactions were predominately identified for the nsp16-nsp10 interactions. Also, the stable hydrogen bonds between Ala83 (nsp16) and Tyr96 (nsp10), and between Gln87 (nsp16) and Leu45 (nsp10) play a vital role in the dimerization of nsp16 and nsp10. Besides, Computational Alanine Scanning (CAS) mutagenesis was performed, which revealed hotspot mutants, namely I40A, V104A, and R86A for the dimer association. Hence, the dimer interface of nsp16/nsp10 could also be a potential target in retarding the 2'-O-MTase activity in SARS-CoV-2. Overall, our study provides a comprehensive understanding of the dynamic and thermodynamic process of binding nsp16 and nsp10 that will contribute to the novel design of peptide inhibitors based on nsp16.
Collapse
Affiliation(s)
| | | | | | | | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa, India
| |
Collapse
|
20
|
Roy R, Mishra A, Poddar S, Nayak D, Kar P. Investigating the mechanism of recognition and structural dynamics of nucleoprotein-RNA complex from Peste des petits ruminants virus via Gaussian accelerated molecular dynamics simulations. J Biomol Struct Dyn 2020; 40:2302-2315. [DOI: 10.1080/07391102.2020.1838327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rajarshi Roy
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Anurag Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sayan Poddar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
21
|
Jonniya NA, Sk MF, Kar P. A comparative study of structural and conformational properties of WNK kinase isoforms bound to an inhibitor: insights from molecular dynamic simulations. J Biomol Struct Dyn 2020; 40:1400-1415. [DOI: 10.1080/07391102.2020.1827035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, Madhya Pradesh, India
| |
Collapse
|
22
|
Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn 2020; 39:6249-6264. [PMID: 32720577 PMCID: PMC7441777 DOI: 10.1080/07391102.2020.1796810] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The sudden outburst of Coronavirus disease (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a massive threat to global public health. Currently, no therapeutic drug or vaccine exists to treat COVID-19. Due to the time taking process of new drug development, drug repurposing might be the only viable solution to tackle COVID-19. RNA-dependent RNA polymerase (RdRp) catalyzes SARS-CoV-2 RNA replication and hence, is an obvious target for antiviral drug design. Interestingly, several plant-derived polyphenols effectively inhibit the RdRp of other RNA viruses. More importantly, polyphenols have been used as dietary supplementations for a long time and played beneficial roles in immune homeostasis. We were curious to study the binding of polyphenols with SARS-CoV-2 RdRp and assess their potential to treat COVID-19. Herein, we made a library of polyphenols that have shown substantial therapeutic effects against various diseases. They were successfully docked in the catalytic pocket of RdRp. The investigation reveals that EGCG, theaflavin (TF1), theaflavin-3'-O-gallate (TF2a), theaflavin-3'-gallate (TF2b), theaflavin 3,3'-digallate (TF3), hesperidin, quercetagetin, and myricetin strongly bind to the active site of RdRp. Further, a 150-ns molecular dynamic simulation revealed that EGCG, TF2a, TF2b, TF3 result in highly stable bound conformations with RdRp. The binding free energy components calculated by the MM-PBSA also confirm the stability of the complexes. We also performed a detailed analysis of ADME prediction, toxicity prediction, and target analysis for their druggability. Overall, our results suggest that EGCG, TF2a, TF2b, TF3 can inhibit RdRp and represent an effective therapy for COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyam Singh
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sushabhan Sadhukhan
- Discipline of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India
| |
Collapse
|
23
|
Sk MF, Jonniya NA, Kar P. Exploring the energetic basis of binding of currently used drugs against HIV-1 subtype CRF01_AE protease via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:5892-5909. [DOI: 10.1080/07391102.2020.1794965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Fulbabu Sk
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Nisha Amarnath Jonniya
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
24
|
Roy R, Ghosh B, Kar P. Investigating Conformational Dynamics of Lewis Y Oligosaccharides and Elucidating Blood Group Dependency of Cholera Using Molecular Dynamics. ACS OMEGA 2020; 5:3932-3942. [PMID: 32149220 PMCID: PMC7057322 DOI: 10.1021/acsomega.9b03398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
Cholera is caused by Vibrio cholerae and is an example of a blood-group-dependent disease. Recent studies suggest that the receptor-binding B subunit of the cholera toxin (CT) binds histo-blood group antigens at a secondary binding site. Herein, we studied the conformational dynamics of Lewis Y (LeY) oligosaccharides, H-tetrasaccharides and A-pentasaccharides, in aqueous solution by conducting accelerated molecular dynamics (aMD) simulations. The flexible nature of both oligosaccharides was displayed in aMD simulations. Furthermore, aMD simulations revealed that for both oligosaccharides in the free form, 4C1 and 1C4 puckers were sampled for all but GalNAc monosaccharides, while either the 4C1 (GlcNAc, Gal, GalNAc) or 1C4 (Fuc2, Fuc3) pucker was sampled in the CT-bound forms. In aMD, the complete transition from the 4C1 to 1C4 pucker was sampled for GlcNAc and Gal in both oligosaccharides. Further, we have observed a transition from the open to closed conformer in the case of A-pentasaccharide, while H-tetrasaccharide remains in the open conformation throughout the simulation. Both oligosaccharides adopted an open conformation in the CT binding site. Moreover, we have investigated the molecular basis of recognition of LeY oligosaccharides by the B subunit of the cholera toxin of classical and El Tor biotypes using the molecular mechanics generalized Born surface area (MM/GBSA) scheme. The O blood group determinant, H-tetrasaccharide, exhibits a stronger affinity to both biotypes compared to the A blood group determinant, A-pentasaccharide, which agrees with the experimental data. The difference in binding free energy between O and A blood group determinants mainly arises due to the increased entropic cost and desolvation energy in the case of A-pentasaccharide compared to that of H-tetrasaccharide. Our study also reveals that the terminal Fuc3 contributes most to the binding free energy compared to other carbohydrate residues as it forms multiple hydrogen bonds with CT. Overall, our study might help in designing glycomimetic drugs targeting the cholera toxin.
Collapse
Affiliation(s)
- Rajarshi Roy
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
| | - Biplab Ghosh
- High
Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Parimal Kar
- Discipline
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore 453552, India
- E-mail: . Phone: +91 731 2438700 (ext. 550)
| |
Collapse
|
25
|
De Oliveira TV, Guimarães AP, Bressan GC, Maia ER, Coimbra JSDR, Polêto MD, De Oliveira EB. Structural and molecular bases of angiotensin-converting enzyme inhibition by bovine casein-derived peptides: an in silico molecular dynamics approach. J Biomol Struct Dyn 2020; 39:1386-1403. [PMID: 32066337 DOI: 10.1080/07391102.2020.1730243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The angiotensin-converting enzyme (ACE) plays a key role in blood pressure regulation process, and its inhibition is one of the main drug targets for the treatment of hypertension. Though various peptides from milk proteins are well-known for their ACE-inhibitory capacity, research devoted to understand the molecular bases of such property remain scarce, specifically for such peptides. Therefore, in this work, computational molecular docking and molecular dynamics calculations were performed to enlighten the intermolecular interactions involved in ACE inhibition by six different casein-derived peptides (FFVAPFPEVFGK, FALPQYLK, ALNEINQFYQK, YLGYLEQLLR, HQGLPQEVLNENLLR and NAVPITPTLNR). Two top ranked docking poses for each peptide (one with N- and the other C-terminal peptide extremity oriented towards the ACE active site) were selected for dynamic simulations (50 ns; GROMOS53A6 force field), and the results were correlated to in vitro ACE inhibition capacity. Two molecular features appeared to be essential for peptides to present high ACE inhibition capacity in vitro: i) to interact with the S1 active site residues (Ala354, Glu384, and Tyr523) by hydrogen bonds; ii) to interact with Zn2+ coordinated residues (His383, His387, and Glu411) by short-lenght hydrogen bonds, as observed in the cases of ALNEINQFYQK (IACE = 80.7%), NAVPITPTLNR (IACE = 80.7%), and FALPQYLK (IACE = 79.0%). Regardless of the temporal stability of these strong interactions, they promoted some disruption of Zn2+ tetrahedral coordination during the molecular dynamics trajectories, and were pointed as the main reason for the greatest ACE inhibition by these peptides. On the other hand, peptides with intermediate inhibition capacity (50% < IACE < 45%) interacted mainly by weaker interactions (e.g.: electrostatic and hydrophobic) with the Zn2+ coordinated residues, and were not able to change significantly its tetrahedral coordination structure. These findings may: i) assist the discrimination in silico of "good" and "bad" ACE-inhibitory peptides from other food sources, and/or ii) aid in designing de novo new molecules with ACE-inhibitory capacity. Communicated by Ramaswamy Sarma.
Collapse
Affiliation(s)
| | - Ana Paula Guimarães
- Departamento de Química (DEQ), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Gustavo Costa Bressan
- Departamento de Bioquímica e Biologia Molecular (DBB), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Elaine Rose Maia
- Laboratório de Estudos Estruturais Moleculares (LEEM), Instituto de Química, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Marcelo Depólo Polêto
- Departamento de Biologia Geral (DBG), Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | |
Collapse
|
26
|
Jonniya N, Sk MF, Kar P. Investigating Phosphorylation-Induced Conformational Changes in WNK1 Kinase by Molecular Dynamics Simulations. ACS OMEGA 2019; 4:17404-17416. [PMID: 31656913 PMCID: PMC6812135 DOI: 10.1021/acsomega.9b02187] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/25/2019] [Indexed: 05/10/2023]
Abstract
The With-No-Lysine (WNK) kinase is considered to be a master regulator for various cation-chloride cotransporters involved in maintaining cell-volume and ion homeostasis. Here, we have investigated the phosphorylation-induced structural dynamics of the WNK1 kinase bound to an inhibitor via atomistic molecular dynamics simulations. Results from our simulations show that the phosphorylation at Ser382 could stabilize the otherwise flexible activation loop (A-loop). The intrahelix salt-bridge formed between Arg264 and Glu268 in the unphosphorylated system is disengaged after the phosphorylation, and Glu268 reorients itself and forms a stable salt-bridge with Arg348. The dynamic cross-correlation analysis shows that phosphorylation diminishes anticorrelated motions and increases correlated motions between different domains. Structural network analysis reveals that the phosphorylation causes structural rearrangements and shortens the communication path between the αC-helix and catalytic loop, making the binding pocket more suitable for accommodating the ligand. Overall, we have characterized the structural changes in the WNK kinase because of phosphorylation in the A-loop, which might help in designing rational drugs.
Collapse
|