1
|
Huang R, Feng Y, Gao Z, Ahmed A, Zhang W. The Epigenomic Features and Potential Functions of PEG- and PDS-Favorable DNA G-Quadruplexes in Rice. Int J Mol Sci 2024; 25:634. [PMID: 38203805 PMCID: PMC10779103 DOI: 10.3390/ijms25010634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
A G-quadruplex (G4) is a typical non-B DNA structure and involved in various DNA-templated events in eukaryotic genomes. PEG and PDS chemicals have been widely applied for promoting the folding of in vivo or in vitro G4s. However, how PEG and PDS preferentially affect a subset of G4 formation genome-wide is still largely unknown. We here conducted a BG4-based IP-seq in vitro under K++PEG or K++PDS conditions in the rice genome. We found that PEG-favored IP-G4s+ have distinct sequence features, distinct genomic distributions and distinct associations with TEGs, non-TEGs and subtypes of TEs compared to PDS-favored ones. Strikingly, PEG-specific IP-G4s+ are associated with euchromatin with less enrichment levels of DNA methylation but with more enriched active histone marks, while PDS-specific IP-G4s+ are associated with heterochromatin with higher enrichment levels of DNA methylation and repressive marks. Moreover, we found that genes with PEG-specific IP-G4s+ are more expressed than those with PDS-specific IP-G4s+, suggesting that PEG/PDS-specific IP-G4s+ alone or coordinating with epigenetic marks are involved in the regulation of the differential expression of related genes, therefore functioning in distinct biological processes. Thus, our study provides new insights into differential impacts of PEG and PDS on G4 formation, thereby advancing our understanding of G4 biology.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China; (R.H.); (Y.F.); (Z.G.); (A.A.)
| |
Collapse
|
2
|
Gao C, Mohamed HI, Deng J, Umer M, Anwar N, Chen J, Wu Q, Wang Z, He Y. Effects of Molecular Crowding on the Structure, Stability, and Interaction with Ligands of G-quadruplexes. ACS OMEGA 2023; 8:14342-14348. [PMID: 37125118 PMCID: PMC10134454 DOI: 10.1021/acsomega.3c01169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
G-quadruplexes (G4s) are widely found in cells and have significant biological functions, which makes them a target for screening antitumor and antiviral drugs. Most of the previous research on G4s has been conducted mainly in diluted solutions. However, cells are filled with organelles and many biomolecules, resulting in a constant state of a crowded molecular environment. The conformation and stability of some G4s were found to change significantly in the molecularly crowded environment, and interactions with ligands were disturbed to some extent. The structure of the G4s and their biological functions are correlated, and the effect of the molecularly crowded environment on G4 conformational transitions and interactions with ligands should be considered in drug design targeting G4s. This review discusses the changes in the conformation and stability of G4s in a physiological environment. Moreover, the mechanism of action of the molecularly crowded environment affecting the G4 has been further reviewed based on previous studies. Furthermore, current challenges and future research directions are put forward. This review has implications for the design of drugs targeting G4s.
Collapse
Affiliation(s)
- Chao Gao
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hany I. Mohamed
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Jieya Deng
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Umer
- Institute
for Forest Resources and Environment of Guizhou and Forestry College,
Research Center of Forest Ecology, Guizhou
University, Guiyang 550025, China
| | - Naureen Anwar
- Department
of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Jixin Chen
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan
Botanical Garden, Chinese Academy of Science, Wuhan 430074, China
| | - Zhangqian Wang
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National
R&D Center for Se-rich Agricultural Products Processing, Hubei
Engineering Research Center for Deep Processing of Green Se-rich Agricultural
Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Gao C, Deng J, Anwar N, Umer M, Chen J, Wu Q, Dong X, Xu H, He Y, Wang Z. Molecular crowding promotes the aggregation of parallel structured G-quadruplexes. Int J Biol Macromol 2023; 240:124442. [PMID: 37062387 DOI: 10.1016/j.ijbiomac.2023.124442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
G-quadruplexes are widely distributed in cells and are usually essential in mediating biological processes. The intracellular environment is often in a state of molecular crowding, and the current research considerably focuses on the effect of molecular crowding on the conformation of telomeric G-quadruplexes. However, G-quadruplex-forming oligonucleotides are primarily located in the promoter region of the proto-oncogene and on mRNA inside the cell and are reported to fold into parallel structures. Thus, studying the interaction mechanism between ligands and parallel structured G-quadruplexes under crowding conditions is crucial for the design of drugs targeting G-quadruplexes. In our study, molecular crowding was simulated through polyethylene glycol with an average molecular weight of 200 (PEG200) to investigate the parallel structure of the canonical G-quadruplexes c-KIT1, c-MYC, and 32KRAS and their interactions with ligands. Circular dichroism (CD) spectral scanning, fluorescence resonance energy transfer (FRET), and native polyacrylamide gel electrophoresis (PAGE) analysis revealed that molecular crowding failed to induce oligonucleotides to form parallel G-quadruplex structures in the explored model sequences while induced telomeric G-rich sequences to form antiparallel G-quadruplexes in solution without K+. Molecular crowding did not induce changes in their parallel structures but promoted the formation of G-quadruplex aggregates. Moreover, to some extent, molecular crowding also induced a looser structure of the monomer G-quadruplexes. Further studies showed that molecular crowding did not alter the binding stoichiometry of the ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino [4,3,2-kl] acridinium methosulfate (RHPS4) to c-KIT1, while it inhibited its interaction with parallel structured G-quadruplexes. This work provides new insights into developing anticancer drugs targeting parallel structured G-quadruplexes.
Collapse
Affiliation(s)
- Chao Gao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jieya Deng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Naureen Anwar
- Department of Zoology, University of Narowal, Narowal, Punjab 51600, Pakistan
| | - Muhammad Umer
- Institute for Forest Resources and Environment of Guizhou and Forestry College, Research Center of Forest Ecology, Guizhou University, Guiyang 550025, China
| | - Jixin Chen
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiao Wu
- Wuhan Botanical Garden, Chinese Academy of Science, Wuhan 40074, China
| | - Xingxing Dong
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Xu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Zhangqian Wang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
4
|
Banerjee S, Hemmat MA, Shubham S, Gosai A, Devarakonda S, Jiang N, Geekiyanage C, Dillard JA, Maury W, Shrotriya P, Lamm MH, Nilsen-Hamilton M. Structurally Different Yet Functionally Similar: Aptamers Specific for the Ebola Virus Soluble Glycoprotein and GP1,2 and Their Application in Electrochemical Sensing. Int J Mol Sci 2023; 24:4627. [PMID: 36902059 PMCID: PMC10003157 DOI: 10.3390/ijms24054627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
The Ebola virus glycoprotein (GP) gene templates several mRNAs that produce either the virion-associated transmembrane protein or one of two secreted glycoproteins. Soluble glycoprotein (sGP) is the predominant product. GP1 and sGP share an amino terminal sequence of 295 amino acids but differ in quaternary structure, with GP1 being a heterohexamer with GP2 and sGP a homodimer. Two structurally different DNA aptamers were selected against sGP that also bound GP1,2. These DNA aptamers were compared with a 2'FY-RNA aptamer for their interactions with the Ebola GP gene products. The three aptamers have almost identical binding isotherms for sGP and GP1,2 in solution and on the virion. They demonstrated high affinity and selectivity for sGP and GP1,2. Furthermore, one aptamer, used as a sensing element in an electrochemical format, detected GP1,2 on pseudotyped virions and sGP with high sensitivity in the presence of serum, including from an Ebola-virus-infected monkey. Our results suggest that the aptamers interact with sGP across the interface between the monomers, which is different from the sites on the protein bound by most antibodies. The remarkable similarity in functional features of three structurally distinct aptamers suggests that aptamers, like antibodies, have preferred binding sites on proteins.
Collapse
Affiliation(s)
- Soma Banerjee
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
| | - Mahsa Askary Hemmat
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Shambhavi Shubham
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Agnivo Gosai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Nianyu Jiang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | | | - Jacob A. Dillard
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 50011, USA
| | - Pranav Shrotriya
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Monica H. Lamm
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Marit Nilsen-Hamilton
- Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
5
|
Properties and Potential Antiproliferative Activity of Thrombin-Binding Aptamer (TBA) Derivatives with One or Two Additional G-Tetrads. Int J Mol Sci 2022; 23:ijms232314921. [PMID: 36499249 PMCID: PMC9736779 DOI: 10.3390/ijms232314921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
In this paper, we study the biological properties of two TBA analogs containing one and two extra G-tetrads, namely TBAG3 and TBAG4, respectively, and two further derivatives in which one of the small loops at the bottom (TBAG41S) or the large loop at the top (TBAG4GS) of the TBAG4 structure has been completely modified by replacing all loop residues with abasic site mimics. The therapeutical development of the TBA was hindered by its low thermodynamic and nuclease stability, while its potential as an anticancer/antiproliferative molecule is also affected by the anticoagulant activity, being a side effect in this case. In order to obtain suitable TBA analogs and to explore the involvement of specific aptamer regions in biological activity, the antiproliferative capability against DU 145 and MDAMB 231 cancer cell lines (MTT), the anticoagulant properties (PT), the biological degradability (nuclease stability assay) and nucleolin (NCL) binding ability (SPR) of the above described TBA derivatives have been tested. Interestingly, none of the TBA analogs exhibits an anticoagulant activity, while all of them show antiproliferative properties to the same extent. Furthermore, TBAG4 displays extraordinary nuclease stability and promising antiproliferative properties against breast cancer cells binding NCL efficiently. These results expand the range of G4-structures targeting NCL and the possibility of developing novel anticancer and antiviral drugs.
Collapse
|
6
|
Zhou Y, Jia E, Sheng Y, Qiao Y, Wang Y, Shi H, Liu Z, Pan M, Tu J, Bai Y, Zhao X, Ge Q, Lu Z. Sensitive and Low-Bias Transcriptome Sequencing Using Agarose PCR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19154-19167. [PMID: 35446027 DOI: 10.1021/acsami.2c02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transcriptome sequencing has emerged as an important research tool for exploring the mysteries of life at the single-cell level. However, its wide application is limited by the bias associated with the amplification reactions which is essential for library building of trace RNA. In this study, low-melting-point agarose was added to the amplification reactions to take advantage of its molecular crowding effect and polymer cross-linked structure to improve the sensitivity of the reactions and reduce bias. To further evaluate the performance of the method, it was applied to transcriptome sequencing of microregion samples from brain tissue sections of mice with Parkinson's disease at the single cell level. The results showed that agarose PCR had better performance than in-tube PCR. Further application of agarose PCR to transcriptome library sequencing could obtain data closer to that of unamplified. With the addition of low melting point agarose, the sensitivity of the amplification reaction was significantly increased, while homogeneity was increased by approximately 2-fold. Not only that, but this work also provides 11% sensitivity improvement for spatial transcriptomic study on Parkinson's disease-associated gene detection. The agarose PCR provides a new tool for efficient and homogeneous amplification of trace samples and can be widely used for spatial transcriptome library sequencing and studies.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuqi Sheng
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Wang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhiyu Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
7
|
Ozcan KA, Ghaffari LT, Haeusler AR. The effects of molecular crowding and CpG hypermethylation on DNA G-quadruplexes formed by the C9orf72 nucleotide repeat expansion. Sci Rep 2021; 11:23213. [PMID: 34853325 PMCID: PMC8636472 DOI: 10.1038/s41598-021-02041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
A nucleotide repeat expansion (NRE), (G4C2)n, located in a classically noncoding region of C9orf72 (C9), is the most common genetic mutation associated with ALS/FTD. There is increasing evidence that nucleic acid structures formed by the C9-NRE may both contribute to ALS/FTD, and serve as therapeutic targets, but there is limited characterization of these nucleic acid structures under physiologically and disease relevant conditions. Here we show in vitro that the C9-NRE DNA can form both parallel and antiparallel DNA G-quadruplex (GQ) topological structures and that the structural preference of these DNA GQs can be dependent on the molecular crowding conditions. Additionally, 5-methylcytosine DNA hypermethylation, which is observed in the C9-NRE locus in some patients, has minimal effects on GQ topological preferences. Finally, molecular dynamic simulations of methylated and nonmethylated GQ structures support in vitro data showing that DNA GQ structures formed by the C9-NRE DNA are stable, with structural fluctuations limited to the cytosine-containing loop regions. These findings provide new insight into the structural polymorphic preferences and stability of DNA GQs formed by the C9-NRE in both the methylated and nonmethylated states, as well as reveal important features to guide the development of upstream therapeutic approaches to potentially attenuate C9-NRE-linked diseases.
Collapse
Affiliation(s)
- Kadir A Ozcan
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Layla T Ghaffari
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aaron R Haeusler
- Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA. .,Department of Neuroscience, Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 900 Walnut Street, JHN suite 410, Philadelphia, PA, 19107, USA.
| |
Collapse
|
8
|
Svetlova J, Sardushkin M, Kolganova N, Timofeev E. Recognition Interface of the Thrombin Binding Aptamer Requires Antiparallel Topology of the Quadruplex Core. Biomolecules 2021; 11:biom11091332. [PMID: 34572544 PMCID: PMC8471065 DOI: 10.3390/biom11091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022] Open
Abstract
Recent advances in G-quadruplex (GQ) studies have provided evidence for their important role in key biological processes (replication, transcription, genome stability, and epigenetics). These findings imply highly specific interactions between GQ structures and cellular proteins. The details of the interaction between GQs and cellular proteins remain unknown. It is now accepted that GQ loop elements play a major role in protein recognition. It remains unclear whether and to what extent the GQ core contributes to maintaining the recognition interface. In the current paper, we used the thrombin binding aptamer as a model to study the effect of modification in the quadruplex core on the ability of aptamer to interact with thrombin. We used alpha-2′-deoxyguanosine and 8-bromo-2′-deoxyguanosine to reconfigure the core or to affect syn–anti preferences of selected dG-residues. Our data suggest that core guanines not only support a particular type of GQ architecture, but also set structural parameters that make GQ protein recognition sensitive to quadruplex topology.
Collapse
Affiliation(s)
- Julia Svetlova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia;
- Universal Scientific Education and Research Network (USERN), G-Quadruplexes as INnovative ThERApeutiC Targets (G4-INTERACT), University of Pavia, 27100 Pavia, Italy
| | - Makar Sardushkin
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Natalia Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Edward Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence:
| |
Collapse
|
9
|
Gudanis D, Zielińska K, Baranowski D, Kierzek R, Kozłowski P, Gdaniec Z. Impact of a Single Nucleotide Change or Non-Nucleoside Modifications in G-Rich Region on the Quadruplex-Duplex Hybrid Formation. Biomolecules 2021; 11:biom11081236. [PMID: 34439902 PMCID: PMC8392043 DOI: 10.3390/biom11081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/02/2022] Open
Abstract
In this paper, a method to discriminate between two target RNA sequences that differ by one nucleotide only is presented. The method relies on the formation of alternative structures, i.e., quadruplex–duplex hybrid (QDH) and duplex with dangling ends (Dss), after hybridization of DNA or RNA G-rich oligonucleotides with target sequences containing 5′–GGGCUGG–3′ or 5′–GGGCGGG–3′ fragments. Using biophysical methods, we studied the effect of oligonucleotide types (DNA, RNA), non-nucleotide modifications (aliphatic linkers or abasic), and covalently attached G4 ligand on the ability of G-rich oligonucleotides to assemble a G-quadruplex motif. We demonstrated that all examined non-nucleotide modifications could mimic the external loops in the G-quadruplex domain of QDH structures without affecting their stability. Additionally, some modifications, in particular the presence of two abasic residues in the G-rich oligonucleotide, can induce the formation of non-canonical QDH instead of the Dss structure upon hybridization to a target sequence containing the GGGCUGG motif. Our results offer new insight into the sequential requirements for the formation of G-quadruplexes and provide important data on the effects of non-nucleotide modifications on G-quadruplex formation.
Collapse
Affiliation(s)
- Dorota Gudanis
- Correspondence: (D.G.); (Z.G.); Tel.: +48-61-852-85-03 (ext. 1286) (D.G.)
| | | | | | | | | | - Zofia Gdaniec
- Correspondence: (D.G.); (Z.G.); Tel.: +48-61-852-85-03 (ext. 1286) (D.G.)
| |
Collapse
|