1
|
Wang W, Jiang Q, Tao J, Zhang Z, Liu G, Qiu B, Hu Q, Zhang Y, Xie C, Song J, Jiang G, Zhong H, Zou Y, Li J, Lv S. A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies. Comput Biol Chem 2025; 114:108290. [PMID: 39586226 DOI: 10.1016/j.compbiolchem.2024.108290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/03/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Peptidyl-prolyl cis/trans isomerase Pin1 occupies a prominent role in preventing the development of certain malignant tumors. Pin1 is considered a target for the treatment of related malignant tumors, so the identification of novel Pin1 inhibitors is particularly urgent. In this study, we preliminarily predicted eight candidates from FDA-approved drug database as the potential Pin1 inhibitors through virtual screening combined with empirical screening. Therefore, we selected these eight candidates and tested their binding affinity and inhibitory activity against Pin1 using fluorescence titration and PPIase activity assays, respectively. Subsequently, we found that four FDA-approved drugs showed good binding affinities and inhibition effects. In addition, we also observed that bexarotene can reduce cell viability in a dose-dependent and time-dependent manner and induce apoptosis. Finally, we inferred that residues K63, R68 and R69 are important in the binding process between bexarotene and Pin1. All in all, repurposing of FDA-approved drugs to inhibit Pin1 may provide a promising insight into the identification and development of new treatments for certain malignant tumors.
Collapse
Affiliation(s)
- Wang Wang
- School of Basic Medicine, Nanchang Medical College, Nanchang 330006, PR China; Key Laboratory of Pharmacodynamics and Quality Evaluation on ant-inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang 330006, PR China; Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang 330006, PR China
| | - Qizhou Jiang
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Jiaxin Tao
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Zhenxian Zhang
- School of Laboratory Medicine, Nanchang Medical College, Nanchang 330006, PR China
| | - GuoPing Liu
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Binxuan Qiu
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Qingyang Hu
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Yuxi Zhang
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Chao Xie
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Jiawen Song
- School of Laboratory Medicine, Nanchang Medical College, Nanchang 330006, PR China
| | - GuoZhen Jiang
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Hui Zhong
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Yanling Zou
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Jiaqi Li
- School of Pharmacy, Nanchang Medical College, Nanchang 330006, PR China
| | - Shaoli Lv
- School of Basic Medicine, Nanchang Medical College, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Farhadian S, Heidari-Soureshjani E, Hashemi-Shahraki F, Hasanpour-Dehkordi A, Uversky VN, Shirani M, Shareghi B, Sadeghi M, Pirali E, Hadi-Alijanvand S. Identification of SARS-CoV-2 surface therapeutic targets and drugs using molecular modeling methods for inhibition of the virus entry. J Mol Struct 2022; 1256:132488. [PMID: 35125515 PMCID: PMC8797986 DOI: 10.1016/j.molstruc.2022.132488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/24/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023]
Abstract
Although COVID-19 emerged as a major concern to public health around the world, no licensed medication has been found as of yet to efficiently stop the virus spread and treat the infection. The SARS-CoV-2 entry into the host cell is driven by the direct interaction of the S1 domain with the ACE-2 receptor followed by conformational changes in the S2 domain, as a result of which fusion peptide is inserted into the target cell membrane, and the fusion process is mediated by the specific interactions between the heptad repeats 1 and 2 (HR1 and HR2) that form the six-helical bundle. Since blocking this interaction between HRs stops virus fusion and prevents its subsequent replication, the HRs inhibitors can be used as anti-COVID drugs. The initial drug selection is based on existing molecular databases to screen for molecules that may have a therapeutic effect on coronavirus. Based on these premises, we chose two approved drugs to investigate their interactions with the HRs (based on docking methods). To this end, molecular dynamics simulations and molecular docking were carried out to investigate the changes in the structure of the SARS-CoV-2 spike protein. Our results revealed, cefpiramide has the highest affinity to S protein, thereby revealing its potential to become an anti-COVID-19 clinical medicine. Therefore, this study offers new ways to re-use existing drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, P. O. Box.115, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ehsan Heidari-Soureshjani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Hashemi-Shahraki
- Department of Biology, Faculty of Science, Shahrekord University, P. O. Box.115, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Ali Hasanpour-Dehkordi
- Social Determinants of Health Research Center, School of allied medical sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Majid Shirani
- Department of Urology, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, P. O. Box.115, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Mehraban Sadeghi
- Department of Environmental Health Engineering Shahrekord University of Medical Science, Shahrekord, Iran
| | - Esmaeil Pirali
- Aquatic Animal Diseases, Department of Fisheries, Faculty of natural Science, Shahrekord University, Iran
| | - Saeid Hadi-Alijanvand
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
3
|
The Numerical Analysis of Replenishment of Hydrogel Void Space Concrete Using Hydrogels Containing Nano-Silica Particles through ELM-ANFIS. Gels 2022; 8:gels8050299. [PMID: 35621597 PMCID: PMC9141440 DOI: 10.3390/gels8050299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/22/2022] Open
Abstract
Currently, Nano-materials are gaining popularity in the building industry due to their high performance in terms of sustainability and smart functionality. In order to reduce cement production and CO2 emissions, nano-silica (NS) has been frequently utilized as a cement alternative and concrete addition. The influence of Nano-silica-containing hydrogels on the mechanical strength, electrical resistivity, and autogenous shrinkage of cement pastes was investigated. The goal of this study was to identify the main structure–property relationships of water-swollen polymer hydrogel particles used as internal curing agents in cementitious admixtures, as well as to report a unique synthesis process to combine pozzolanic materials with hydrogel particles and determine the replenishment of hydrogel void space. Experiments were designed to measure the absorption capacity and kinetics of hydrogel particles immersed in pure water and cementitious pore solution, as well as to precisely analyze the data derived from the tests using hybridized soft computing models such as Extreme learning machine (ELM) and Adaptive neuro-fuzzy inference system (ANFIS). The models were developed, and the findings were measured using regression indices (RMSE and R2). The findings indicated that combining nano-silica with polymeric hydrogel particles creates a favorable environment for the pozzolanic reaction to occur, and that nano-silica assists in the refilling of hydrogel void space with hydrated cement phases.
Collapse
|
4
|
Zhang Y, Liu J, Wu X, Yang S, Li Y, Liu S, Zhu S, Cao X, Xie Z, Lei X, Huang H, Peng J. Anti-chronic myeloid leukemia activity and quantitative structure-activity relationship of novel thiazole aminobenzamide derivatives. Bioorg Med Chem Lett 2021; 44:128116. [PMID: 34015503 DOI: 10.1016/j.bmcl.2021.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The anti-chronic myeloid leukemia activity of thiazole aminobenzamide derivatives in vitro was tested by a methanethiosulfonate (MTS)-based viability assay method, and the result showed that some compounds exhibited good inhibitory activities against human chronic myeloid leukemia cell line K562, imatinib-resistant strain K562/R and T135I mutant cell line BaF3-ABL-BCR-T315I. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods were used to analyze the relationship between the structure of thiazole aminobenzamide derivatives and the inhibition of K562/R cell activity. In CoMFA, Q2 was 0.899 and R2 was 0.963; in CoMSIA, Q2 and R2 were 0.840 and 0.903, respectively. These data indicated that the selected test set showed suitable external predictive ability. Combined with the contour map results, we further analyzed the three-dimensional quantitative structure (3D-QSAR) model. The results demonstrated that in the backbone of the thiazole aminobenzamide derivative, the substitution of a small group at R1 position, or the introduction of a hydrophilic group at R2 position, or the introduction of a large-volume amino acid at R3 position may be beneficial to improve the anti-CML activity of the compound.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province 421001, PR China
| | - Juan Liu
- Department of Pharmacy, Yiyang Central Hospital, Hunan Province 413000, PR China
| | - Xin Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Suming Yang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yao Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Songbin Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Saifei Zhu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province 421001, PR China.
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
5
|
Hu Y, Zhang J, Hu H, Xu S, Xu L, Chen E. Gefitinib encapsulation based on nano-liposomes for enhancing the curative effect of lung cancer. Cell Cycle 2020; 19:3581-3594. [PMID: 33300430 DOI: 10.1080/15384101.2020.1852756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gefitinib (GEB) is one of the drugs used for patients with epidermal growth factor receptor (EGFR)-positive mutations in non-small cell lung cancer (NSCLC). However, application of GEB is limited by its low water solubility, stability, and utilization rate, especially the side effects while GEB is given by oral. In this study, nanoliposome was used as a carrier to prepare nanoliposome compound drug (GL) by embedding GEB in the nanoliposome perfectly combined with green nontoxic solvent and thin-film dispersion method. The nanoliposome structure was expected to improve the water solubility and biocompatibility of GEB, thus improving the effect of cancer treatment. The surface electronegative nanoliposomes can effectively avoid protein adsorption and prolong the circulation time in vivo. Meanwhile, the ratio of lecithin to cholesterol (LE/CH) was explored to maximize the encapsulation efficiency of nanoliposome. Subsequent test results showed that GL exhibited better stability, smaller particle size and higher encapsulation efficiency. In addition, in vitro drug release curve also further confirmed that GL had a promising drug sustained-release effect. In particular, a series of in vitro tests such as cell activity, apoptosis, colony formation, scratch, invasion, and cell cycle assays were performed. The results indicated that GL significantly enhanced the pro-apoptotic effect on A549 cells. Most cell cycles of A549 cells were blocked in the G0/G1 phase influenced by GL, thus inhibiting the proliferation of cancer cells. In vivo anti-tumor studies showed that compared with pure GEB, GL had a significant inhibiting effect on NSCLC. In conclusion, the GL which was synthesized by a simple method in this study significantly improved the treatment effect of cancer cells, which proved that the nanoliposome carrier had an excellent application prospect in the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanjie Hu
- Department of Pulmology and Critical Care Medicine, Regional medical center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Jisong Zhang
- Department of Pulmology and Critical Care Medicine, Regional medical center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Huihui Hu
- Department of Pulmology and Critical Care Medicine, Regional medical center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Shan Xu
- Department of Pulmology and Critical Care Medicine, Regional medical center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Li Xu
- Department of Pulmology and Critical Care Medicine, Regional medical center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| | - Enguo Chen
- Department of Pulmology and Critical Care Medicine, Regional medical center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou, China
| |
Collapse
|
6
|
Sinha M, Jagadeesan R, Kumar N, Saha S, Kothandan G, Kumar D. In-silico studies on Myo inositol-1-phosphate synthase of Leishmania donovani in search of anti-leishmaniasis. J Biomol Struct Dyn 2020; 40:3371-3384. [PMID: 33200690 DOI: 10.1080/07391102.2020.1847194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myo-inositol is one of the vital nutritional requirements for the Leishmania parasites' survival and virulence in the mammalian host. . Myo-inositol-1-phosphate synthase (MIPS) is responsible for the synthesis of myo-inositol in Leishmania, which plays a vital role in Leishmania's virulence to mammalian hosts. Earlier studies suggest MIP synthase as a potential drug target against which valproate was used as a drug. So, MIP synthase can be used as a target for anti-leishmanial drugs, and its inhibition may help in preventing leishmaniasis. The present study aims to identify valproate's potent analogs as drugs against MIP synthase of L. donovani (Ld-MIPS) with minimum side effects and toxicity to host.In this study, the three-dimensional structure of Ld-MIPS was built, followed by active site prediction. Ligand-based virtual screening was done using hybrid similarity recognition methods. The best 123 valproate analogs were filtered based on their quantitative structure activity relationship (QSAR) properties and were docked against Ld-MIPS using FlexX, PyRx and iGEMDOCK software. The topmost five ligands were selected for molecular dynamics simulation and pharmacokinetic analysis based on the docking score. Simulation studies up to 30 ns revealed that all five lead molecules bound with Ld-MIPS throughout MD simulation and there was no variation in their backbone. All the chosen inhibitors exhibited good pharmacokinetics/ADMET predictions with an excellent absorption profile, metabolism, oral bioavailability, solubility, excretion, and minimal toxicity, suggesting that these inhibitors may further be developed as anti-leishmaniasis drugs to prevent the spread of leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mousumi Sinha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Neeraj Kumar
- Functional Genomics & Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Gugan Kothandan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, Tamil Nadu, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
7
|
Gao C, Liao J, Lu J, Ma J, Kianfar E. The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polyimide membranes and network hybrid membranes exhibit high permeability despite good thermal and chemical stability, and high selectivity in gas mixture separation. In this study, the effect of nanoparticle distribution on the network polymer network, and changes in permeability, selectivity, and structure of the composite lattice membrane are investigated. According to the obtained permeability results, this increase in permeability was due to the increase of polymer network free volume and the formation of cavities in the nanoparticle-polymer interface. The significant results were that the permeability growth of gases with larger molecular size such as methane and nitrogen was higher than other gases. A comparison of the permeability growth of gases with the increasing volume fraction of nanoparticles confirms the dominance of the molecular sieve mechanism and the type of membrane transport mechanism change over polyimide and network Hybrid.
Collapse
Affiliation(s)
- Chengyun Gao
- College of Chemical and Biological Engineering , Taiyuan University of Science and Technology , Taiyuan , Shanxi , 030024, China
| | - Jiayou Liao
- College of Chemistry and Chemical Engineering , Taiyuan University of Technology , Taiyuan , Shanxi , 030024, China
| | - Jingqiong Lu
- College of Chemical and Biological Engineering , Taiyuan University of Science and Technology , Taiyuan , Shanxi , 030024, China
| | - Jiwei Ma
- College of Chemical and Biological Engineering , Taiyuan University of Science and Technology , Taiyuan , Shanxi , 030024, China
| | - Ehsan Kianfar
- Department of Chemical Engineering, Arak Branch , Islamic Azad University , Arak , Islamic Republic of Iran
- Young Researchers and Elite Club, Gachsaran Branch , Islamic Azad University , Gachsaran , Islamic Republic of Iran
| |
Collapse
|