1
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
2
|
Behboudi E, Nooreddin Faraji S, Daryabor G, Mohammad Ali Hashemi S, Asadi M, Edalat F, Javad Raee M, Hatam G. SARS-CoV-2 mechanisms of cell tropism in various organs considering host factors. Heliyon 2024; 10:e26577. [PMID: 38420467 PMCID: PMC10901034 DOI: 10.1016/j.heliyon.2024.e26577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
A critical step in the drug design for SARS-CoV-2 is to discover its molecular targets. This study comprehensively reviewed the molecular mechanisms of SARS-CoV-2, exploring host cell tropism and interaction targets crucial for cell entry. The findings revealed that beyond ACE2 as the primary entry receptor, alternative receptors, co-receptors, and several proteases such as TMPRSS2, Furin, Cathepsin L, and ADAM play critical roles in virus entry and subsequent pathogenesis. Additionally, SARS-CoV-2 displays tropism in various human organs due to its diverse receptors. This review delves into the intricate details of receptors, host proteases, and the involvement of each organ. Polymorphisms in the ACE2 receptor and mutations in the spike or its RBD region contribute to the emergence of variants like Alpha, Beta, Gamma, Delta, and Omicron, impacting the pathogenicity of SARS-CoV-2. The challenge posed by mutations raises questions about the effectiveness of existing vaccines and drugs, necessitating consideration for updates in their formulations. In the urgency of these critical situations, repurposed drugs such as Camostat Mesylate and Nafamostat Mesylate emerge as viable pharmaceutical options. Numerous drugs are involved in inhibiting receptors and host factors crucial for SARS-CoV-2 entry, with most discussed in this review. In conclusion, this study may provide valuable insights to inform decisions in therapeutic approaches.
Collapse
Affiliation(s)
- Emad Behboudi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Asadi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fahime Edalat
- Department of Bacteriology & Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Mahin A, Soman SP, Modi PK, Raju R, Keshava Prasad TS, Abhinand CS. Meta-analysis of the serum/plasma proteome identifies significant associations between COVID-19 with Alzheimer's/Parkinson's diseases. J Neurovirol 2024; 30:57-70. [PMID: 38167982 DOI: 10.1007/s13365-023-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
In recent years, we have seen the widespread devastations and serious health complications manifested by COVID-19 globally. Although we have effectively controlled the pandemic, uncertainties persist regarding its potential long-term effects, including prolonged neurological issues. To gain comprehensive insights, we conducted a meta-analysis of mass spectrometry-based proteomics data retrieved from different studies with a total of 538 COVID-19 patients and 523 healthy controls. The meta-analysis revealed that top-enriched pathways were associated with neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). Further analysis confirmed a direct correlation in the expression patterns of 24 proteins involved in Alzheimer's and 23 proteins in Parkinson's disease with COVID-19. Protein-protein interaction network and cluster analysis identified SNCA as a hub protein, a known biomarker for Parkinson's disease, in both AD and PD. To the best of our knowledge, this is the first meta-analysis study providing proteomic profiling evidence linking COVID-19 to neurological complications.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Sreelakshmi Pathappillil Soman
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India.
| |
Collapse
|
4
|
Liu T, Han R, Yan Y. Preliminary study on molecular mechanism of COVID-19 intervention by Polygonum cuspidatum through computer bioinformatics. Medicine (Baltimore) 2024; 103:e36918. [PMID: 38215091 PMCID: PMC10783314 DOI: 10.1097/md.0000000000036918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
To explore the mechanism of action of Polygonum cuspidatum in intervening in coronavirus disease 2019 using a network pharmacology approach and to preliminarily elucidate its mechanism. The active ingredients and action targets of P cuspidatum were classified and summarized using computer virtual technology and molecular informatics methods. The active ingredients and relevant target information of P cuspidatum were identified using the TCM Systematic Pharmacology Database and Analysis Platform, the TCM Integrated Pharmacology Research Platform v2.0, and the SwissTarget database. The GENECARDS database was used to search for COVID-19 targets. The STRING database was analyzed and combined with Cytoscape 3.7.1 software to construct a protein interaction network map to screen the core targets. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was then performed. The core compound, polydatin, was selected and the core targets were analyzed by computer virtual docking using software such as discovery studio autodock tool. In vitro cell models were constructed to experimentally validate the activity of the core compound, polydatin. By computer screening, we identified 9 active ingredients and their corresponding 286 targets from P cuspidatum. A search of the GENECARDS database for COVID-19 yielded 303 core targets. By mapping the active ingredient targets to the disease targets, 27 overlapping targets could be extracted as potential targets for the treatment of COVID-19 with P cuspidatum. In addition, the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes pathway on core targets showed that the coronavirus disease, MAPK signaling pathway, NF kappa B signaling pathway, and other signaling pathways were highly enriched. Combined with the degree-high target analysis in the protein interaction network, it was found to be mainly concentrated in the NF-kappaB (NF-κB) signaling pathway, indicating that the NF-κB signaling pathway may be an important pathway for P cuspidatum intervention. In vitro assays showed no effect of 0.1 to 10 μM polydatin on cell viability, but an inhibitory effect on the transcriptional activity of NF-κB-RE. Molecular docking showed stable covalent bonding of polydatin molecules with Il-1β protein at residue leu-26, TNF protein ser-60, residue gly-121, and residue ile-258 of ICAM-1 protein, indicating a stable docking result. The treatment of COVID-19 with P cuspidatum is characterized by multi-component, multi-target, and multi-pathway, which can exert a complex network of regulatory effects through the interaction between different targets, providing a new idea and basis for further exploration of the mechanism of action of P cuspidatum in the treatment of COVID-19.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Han
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Abhinand CS, Prabhakaran AA, Krishnamurthy A, Raju R, Keshava Prasad TS, Nair AS, Rajasekharan KN, Oommen OV, Sudhakaran PR. SARS-CoV-2 variants infectivity prediction and therapeutic peptide design using computational approaches. J Biomol Struct Dyn 2023; 41:11166-11177. [PMID: 36572420 DOI: 10.1080/07391102.2022.2160819] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
The outbreak of severe acute respiratory coronavirus 2 (SARS-CoV-2) has created a public health emergency globally. SARS-CoV-2 enters the human cell through the binding of the spike protein to human angiotensin converting enzyme 2 (ACE2) receptor. Significant changes have been reported in the mutational landscape of SARS-CoV-2 in the receptor binding domain (RBD) of S protein, subsequent to evolution of the pandemic. The present study examines the correlation between the binding affinity of mutated S-proteins and the rate of viral infectivity. For this, the binding affinity of SARS-CoV and variants of SARS-CoV-2 towards ACE2 was computationally determined. Subsequently, the RBD mutations were classified on the basis of the number of strains identified with respect to each mutation and the resulting variation in the binding affinity was computationally examined. The molecular docking studies indicated a significant correlation between the Z-Rank score of mutated S proteins and the rate of infectivity, suitable for predicting SARS-CoV-2 infectivity. Accordingly, a 30-mer peptide was designed and the inhibitory properties were computationally analyzed. Single amino acid-wise mutation was performed subsequently to identify the peptide with the highest binding affinity. Molecular dynamics and free energy calculations were then performed to examine the stability of the peptide-protein complexes. Additionally, selected peptides were synthesized and screened using a colorimetric assay. Together, this study developed a model to predict the rate of infectivity of SARS-CoV-2 variants and propose a potential peptide that can be used as an inhibitor for the viral entry to human.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandran S Abhinand
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Athira A Prabhakaran
- Inter-University Centre for Genomics and Gene Technology, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Oommen V Oommen
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Perumana R Sudhakaran
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Zhao S, Jiang M, Qing H, Ni J. Cathepsins and SARS-CoV-2 infection: From pathogenic factors to potential therapeutic targets. Br J Pharmacol 2023; 180:2455-2481. [PMID: 37403614 DOI: 10.1111/bph.16187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023] Open
Abstract
Coronavirus disease-19 (COVID-19) is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection. The COVID-19 pandemic began in March 2020 and has wrought havoc on health and economic systems worldwide. Efficacious treatment for COVID-19 is lacking: Only preventive measures as well as symptomatic and supportive care are available. Preclinical and clinical studies have indicated that lysosomal cathepsins might contribute to the pathogenesis and disease outcome of COVID-19. Here, we discuss cutting-edge evidence on the pathological roles of cathepsins in SARS-CoV-2 infection, host immune dysregulations, and the possible underlying mechanisms. Cathepsins are attractive drug targets because of their defined substrate-binding pockets, which can be exploited as binding sites for pharmaceutical enzyme inhibitors. Accordingly, the potential modulatory strategies of cathepsin activity are discussed. These insights could shed light on the development of cathepsin-based interventions for COVID-19.
Collapse
Affiliation(s)
- Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
7
|
Abdelrady YA, Ashraf NM, Hamid A, Thabet HS, Sayed AM, Salem SH, Hassanein EHM, Sayed AM. In silico assessment of diterpenes as potential inhibitors of SARS-COV-2 main protease. Future Virol 2023; 18:295-308. [PMID: 38052000 PMCID: PMC10207350 DOI: 10.2217/fvl-2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/03/2023] [Indexed: 12/07/2023]
Abstract
Aim We aimed to investigate the potential inhibitory effects of diterpenes on SARS-CoV-2 main protease (Mpro). Materials & methods We performed a virtual screening of diterpenoids against Mpro using molecular docking, molecular dynamics simulation and absorption, distribution, metabolism and excretion) analysis. Results Some tested compounds followed Lipinski's rule and showed drug-like properties. Some diterpenoids possessed remarkable binding affinities with SARS-CoV-2 Mpro and drug-like pharmacokinetic properties. Three derivatives exhibited structural deviations lower than 1 Å. Conclusion The findings of the study suggest that some of the diterpenes could be candidates as potential inhibitors for Mpro of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Naeem Mahmood Ashraf
- School of Biochemistry & Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Arslan Hamid
- LIMES Institute (AG-Netea), University of Bonn, Bonn, Germany
| | - Hayam S Thabet
- Microbiology department, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Asmaa M Sayed
- Botany & Microbiology Department, Faculty of Science, Assiut University, Egypt
| | - Shimaa H Salem
- Botany & Microbiology Department, Faculty of Science, Assiut University, Egypt
| | - Emad HM Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71516, Egypt
| |
Collapse
|
8
|
Aharon A, Dangot A, Kinaani F, Zavaro M, Bannon L, Bar-Lev T, Keren-Politansky A, Avivi I, Jacob G. Extracellular Vesicles of COVID-19 Patients Reflect Inflammation, Thrombogenicity, and Disease Severity. Int J Mol Sci 2023; 24:ijms24065918. [PMID: 36982991 PMCID: PMC10054500 DOI: 10.3390/ijms24065918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Severe COVID-19 infections present with cytokine storms, hypercoagulation, and acute respiratory distress syndrome, with extracellular vesicles (EVs) being involved in coagulation and inflammation. This study aimed to determine whether coagulation profiles and EVs reflect COVID-19 disease severity. Thirty-six patients with symptomatic COVID-19 infection with mild/moderate/severe disease (12 in each group) were analyzed. Sixteen healthy individuals served as controls. Coagulation profiles and EV characteristics were tested by nanoparticle tracking analysis (NTA), flow cytometry, and Western blot. While coagulation factors VII, V, VIII, and vWF were comparable, significant differences were found in patients' D-Dimer/fibrinogen/free protein S levels compared to controls. Severe patients' EVs displayed higher percentages of small EVs (<150 nm) with increased expression of exosome marker CD63. Severe patients' EVs displayed high levels of platelet markers (CD41) and coagulation factors (tissue factor activity, endothelial protein C receptor). EVs of patients with moderate/severe disease expressed significantly higher levels of immune cell markers (CD4/CD8/CD14) and contained higher levels of IL-6. We demonstrated that EVs, but not the coagulation profile, may serve as biomarkers for COVID-19 severity. EVs demonstrated elevated levels of immune- and vascular-related markers in patients with moderate/severe disease, and may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Anat Aharon
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Ayelet Dangot
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Fadi Kinaani
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Mor Zavaro
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Lian Bannon
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tali Bar-Lev
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | | | - Irit Avivi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | - Giris Jacob
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Recanati Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Qayed WS, Ferreira RS, Silva JRA. In Silico Study towards Repositioning of FDA-Approved Drug Candidates for Anticoronaviral Therapy: Molecular Docking, Molecular Dynamics and Binding Free Energy Calculations. Molecules 2022; 27:molecules27185988. [PMID: 36144718 PMCID: PMC9505381 DOI: 10.3390/molecules27185988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/18/2023] Open
Abstract
The SARS-CoV-2 targets were evaluated for a set of FDA-approved drugs using a combination of drug repositioning and rigorous computational modeling methodologies such as molecular docking and molecular dynamics (MD) simulations followed by binding free energy calculations. Six FDA-approved drugs including, Ouabain, Digitoxin, Digoxin, Proscillaridin, Salinomycin and Niclosamide with promising anti-SARS-CoV-2 activity were screened in silico against four SARS-CoV-2 proteins—papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), SARS-CoV-2 main protease (Mpro), and adaptor-associated kinase 1 (AAK1)—in an attempt to define their promising targets. The applied computational techniques suggest that all the tested drugs exhibited excellent binding patterns with higher scores and stable complexes compared to the native protein cocrystallized inhibitors. Ouabain was suggested to act as a dual inhibitor for both PLpro and Mpro enzymes, while Digitoxin bonded perfectly to RdRp. In addition, Salinomycin targeted PLpro. Particularly, Niclosamide was found to target AAK1 with greater affinity compared to the reference drug. Our study provides comprehensive molecular-level insights for identifying or designing novel anti-COVID-19 drugs.
Collapse
Affiliation(s)
- Wesam S. Qayed
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: (W.S.Q.); (J.R.A.S.)
| | - Rafaela S. Ferreira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém 66075-110, Brazil
- Correspondence: (W.S.Q.); (J.R.A.S.)
| |
Collapse
|
10
|
Abu Zeid I. Inhibitory Activity of Balanites aegyptiaca Phytochemicals on Main Protease of SARS-CoV-2: Virtual Screening and Molecular Dynamics Simulation. INT J PHARMACOL 2021. [DOI: 10.3923/ijp.2021.482.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Galvez J, Zanni R, Galvez-Llompart M, Benlloch JM. Macrolides May Prevent Severe Acute Respiratory Syndrome Coronavirus 2 Entry into Cells: A Quantitative Structure Activity Relationship Study and Experimental Validation. J Chem Inf Model 2021; 61:2016-2025. [PMID: 33734704 PMCID: PMC7986980 DOI: 10.1021/acs.jcim.0c01394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The global pandemic caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening the health and economic systems worldwide. Despite the enormous efforts of scientists and clinicians around the world, there is still no drug or vaccine available worldwide for the treatment and prevention of the infection. A rapid strategy for the identification of new treatments is based on repurposing existing clinically approved drugs that show antiviral activity against SARS-CoV-2 infection. In this study, after developing a quantitative structure activity relationship analysis based on molecular topology, several macrolide antibiotics are identified as promising SARS-CoV-2 spike protein inhibitors. To confirm the in silico results, the best candidates were tested against two human coronaviruses (i.e., 229E-GFP and SARS-CoV-2) in cell culture. Time-of-addition experiments and a surrogate model of viral cell entry were used to identify the steps in the virus life cycle inhibited by the compounds. Infection experiments demonstrated that azithromycin, clarithromycin, and lexithromycin reduce the intracellular accumulation of viral RNA and virus spread as well as prevent virus-induced cell death, by inhibiting the SARS-CoV-2 entry into cells. Even though the three macrolide antibiotics display a narrow antiviral activity window against SARS-CoV-2, it may be of interest to further investigate their effect on the viral spike protein and their potential in combination therapies for the coronavirus disease 19 early stage of infection.
Collapse
Affiliation(s)
- Jorge Galvez
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Riccardo Zanni
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
| | - Maria Galvez-Llompart
- Molecular Topology and Drug Design
Unit, Department of Physical Chemistry, Universitat de
Valencia, Burjassot 46100,
Spain
- Instituto de Tecnología
Química, UPV-CSIC, Universidad Politícnica
de Valencia, Valencia 46022,
Spain
| | - Jose Maria Benlloch
- Instituto de Instrumentación para
Imagen Molecular, Centro Mixto CSIC—Universitat
Politècnica de València, Valencia
46022, Spain
| |
Collapse
|
12
|
Bollavaram K, Leeman TH, Lee MW, Kulkarni A, Upshaw SG, Yang J, Song H, Platt MO. Multiple sites on SARS-CoV-2 spike protein are susceptible to proteolysis by cathepsins B, K, L, S, and V. Protein Sci 2021; 30:1131-1143. [PMID: 33786919 PMCID: PMC8138523 DOI: 10.1002/pro.4073] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 12/23/2022]
Abstract
SARS‐CoV‐2 is the coronavirus responsible for the COVID‐19 pandemic. Proteases are central to the infection process of SARS‐CoV‐2. Cleavage of the spike protein on the virus's capsid causes the conformational change that leads to membrane fusion and viral entry into the target cell. Since inhibition of one protease, even the dominant protease like TMPRSS2, may not be sufficient to block SARS‐CoV‐2 entry into cells, other proteases that may play an activating role and hydrolyze the spike protein must be identified. We identified amino acid sequences in all regions of spike protein, including the S1/S2 region critical for activation and viral entry, that are susceptible to cleavage by furin and cathepsins B, K, L, S, and V using PACMANS, a computational platform that identifies and ranks preferred sites of proteolytic cleavage on substrates, and verified with molecular docking analysis and immunoblotting to determine if binding of these proteases can occur on the spike protein that were identified as possible cleavage sites. Together, this study highlights cathepsins B, K, L, S, and V for consideration in SARS‐CoV‐2 infection and presents methodologies by which other proteases can be screened to determine a role in viral entry. This highlights additional proteases to be considered in COVID‐19 studies, particularly regarding exacerbated damage in inflammatory preconditions where these proteases are generally upregulated. PDB Code(s): 6VYB, 4Z2A, 5F02, 4P6E, 5TUN, 2IPP and 3H6S;
Collapse
Affiliation(s)
- Keval Bollavaram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Tiffanie H Leeman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Maggie W Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Akhil Kulkarni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Sophia G Upshaw
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Jiabei Yang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA.,Biomedical Engineering, Peking University, Beijing, China
| | - Hannah Song
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Nekoukar Z, Ala S, Moradi S, Hill A, Davoudi Badabi AR, Alikhani A, Alian S, Moghimi M, Shabani AM, Abbaspour Kasgari H. Comparison of the Efficacy and Safety of Atazanavir/Ritonavir Plus Hydroxychloroquine with Lopinavir/Ritonavir Plus Hydroxychloroquine in Patients with Moderate COVID-19, A Randomized, Double-blind Clinical Trial. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:278-288. [PMID: 35194446 PMCID: PMC8842611 DOI: 10.22037/ijpr.2021.115157.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This was a randomized, double-blind clinical trial to compare the efficacy and safety of Atazanavir/Ritonavir (ATZ/RTV) with Lopinavir/Ritonavir (LPV/RTV) in moderate Coronavirus disease 2019 (COVID-19). Participants were randomly assigned to receive a single dose of hydroxychloroquine (HCQ) plus ATZ/RTV or LPV/RTV for a minimum of 5 to a maximum of 10 days. The primary outcomes were the reduced length of hospital stay and clinical recovery within 10 days from starting the intervention. The rate of intensive care unit (ICU) admission, intubation, and mortality, the lengths of ICU stay and being intubated, recovery within 14 days, and the frequency of adverse reactions were considered as secondary outcomes. Among 132 enrolled patients, 62 cases in each arm were analyzed at the end of the intervention. Fifty-one (82.3%) cases in the ATZ/RTV arm versus 41 (66.1%) in the LPV/RTV arm were discharged within 10 days (P = 0.06). The median number of the intervention days was 6 (IQR: 5-8) in ATZ/RTV arm versus 7 (IQR: 6-9) in LPV/RTV arm (P = 0.01). The rate and length of ICU admission and intubation (P ≥ 0.99), rate of mortality (P = 0.49), and recovery within 14 days (P = 0.09) were not statistically different between groups. The most reported adverse reactions were nausea and vomiting that all cases were in the LPV/RTV arm (P = 0.006). ATZ/RTV is better tolerated in comparison with LPV/RTV; however, it did not show more efficacy than LPV/RTV in clinical outcomes of COVID-19 in this study.
Collapse
Affiliation(s)
- Zahra Nekoukar
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Shahram Ala
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Siavash Moradi
- Education Development Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Andrew Hill
- Department of Translational Medicine, University of Liverpool, UK.
| | - Ali Reza Davoudi Badabi
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Ahmad Alikhani
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Shahriar Alian
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Minoo Moghimi
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Amir Mohammad Shabani
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamideh Abbaspour Kasgari
- Department of Clinical Pharmacy, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Saadah LM, Deiab GIA, Al-Balas Q, Basheti IA. Carnosine to Combat Novel Coronavirus (nCoV): Molecular Docking and Modeling to Cocrystallized Host Angiotensin-Converting Enzyme 2 (ACE2) and Viral Spike Protein. Molecules 2020; 25:molecules25235605. [PMID: 33260592 PMCID: PMC7730390 DOI: 10.3390/molecules25235605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Aims: Angiotensin-converting enzyme 2 (ACE2) plays an important role in the entry of coronaviruses into host cells. The current paper described how carnosine, a naturally occurring supplement, can be an effective drug candidate for coronavirus disease (COVID-19) on the basis of molecular docking and modeling to host ACE2 cocrystallized with nCoV spike protein. Methods: First, the starting point was ACE2 inhibitors and their structure–activity relationship (SAR). Next, chemical similarity (or diversity) and PubMed searches made it possible to repurpose and assess approved or experimental drugs for COVID-19. Parallel, at all stages, the authors performed bioactivity scoring to assess potential repurposed inhibitors at ACE2. Finally, investigators performed molecular docking and modeling of the identified drug candidate to host ACE2 with nCoV spike protein. Results: Carnosine emerged as the best-known drug candidate to match ACE2 inhibitor structure. Preliminary docking was more optimal to ACE2 than the known typical angiotensin-converting enzyme 1 (ACE1) inhibitor (enalapril) and quite comparable to known or presumed ACE2 inhibitors. Viral spike protein elements binding to ACE2 were retained in the best carnosine pose in SwissDock at 1.75 Angstroms. Out of the three main areas of attachment expected to the protein–protein structure, carnosine bound with higher affinity to two compared to the known ACE2 active site. LibDock score was 92.40 for site 3, 90.88 for site 1, and inside the active site 85.49. Conclusion: Carnosine has promising inhibitory interactions with host ACE2 and nCoV spike protein and hence could offer a potential mitigating effect against the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Loai M. Saadah
- Faculty of Pharmacy, Applied Science Private University, 11931 Amman, Jordan;
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
- Correspondence: ; Tel.: +962-79-822-2044
| | | | - Qosay Al-Balas
- Faculty of Pharmacy, Jordan University for Science & Technology, 22110 Irbid, Jordan;
| | - Iman A. Basheti
- Faculty of Pharmacy, Applied Science Private University, 11931 Amman, Jordan;
- Faculty of Pharmacy, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|