1
|
Peeyatu C, Prompat N, Voravuthikunchai SP, Roongsawang N, Sangkhathat S, Khongkow P, Saetang J, Tipmanee V. Role of Non-Binding T63 Alteration in IL-18 Binding. Int J Mol Sci 2024; 25:12992. [PMID: 39684709 DOI: 10.3390/ijms252312992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Engineered interleukin-18 (IL-18) has attracted interest as a cytokine-based treatment. However, knowledge-based mutagenesis of IL-18 has been reported for only a few regions of the protein structures, including binding sites I and II. When coupled with the binding region mutant (E6K), the non-binding residue of IL-18, Thr63 (T63), has been shown to increase the flexibility of the binding loop. Nevertheless, the function of Thr63 in conformational regulation is still unknown. Using homology modeling, molecular dynamics simulation, and structural analysis, we investigated the effects of Thr63 alteration coupling with E6K on conformational change pattern, binding loop flexibility, and the hydrogen bond network. The results indicate that the 63rd residue was significantly associated with hydrogen-bond relaxation at the core β-barrel binding sites I and II Glu85-Ile100 loop. This result provided conformational and flexible effects to binding sites I and III by switching their binding loops and stabilizing the 63rd residue cavity. These findings may pave the way for the conceptualization of a new design for IL-18 proteins by modifying non-binding residues for structure-based drug development.
Collapse
Affiliation(s)
- Chariya Peeyatu
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Napat Prompat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia and Natural Product Research Center of Excellent, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Surasak Sangkhathat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Jirakrit Saetang
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- EZ-Mol-Design Laboratory, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Sukketsiri W, Tipmanee V, Rungruang P, Higashihara M, Sumi T, Moriyama T, Zaima N. Octanoic Acid and Decanoic Acid Inhibit Tunicamycin-Induced ER Stress in Rat Aortic Smooth Muscle Cells. Adv Pharmacol Pharm Sci 2024; 2024:9076988. [PMID: 39628939 PMCID: PMC11614520 DOI: 10.1155/adpp/9076988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
ER stress is a crucial factor in the progression of vascular cell diseases. Notably, octanoic acid (OA; C8:0) and decanoic acid (DA; C10:0), prominent components of medium-chain fatty acids (MCFAs), may provide potential health benefits. However, their effects on vascular smooth muscle cells (VSMCs) remain unknown. Given the link between ER stress and vascular cell pathological conditions, the primary goal of this research is to investigate the protective effects of OA and DA against ER stress induction in rat aortic smooth muscle cells (RASMCs). To achieve this objective, RASMCs were pretreated with OA and DA at concentrations of 250 and 500 μM for 24 h. Subsequently, the cells were exposed to 1 μg/mL of tunicamycin, an ER stress inducer, for an additional 24 h. Apoptosis was assessed using DAPI staining, while DCFH2-DA probe was used to measure ROS levels. Furthermore, the gene expression of ER stress markers, such as CHOP, GRP78, ATF4, and eIF2α, as well as contractile markers like αSMA and MYH11, was assessed using real-time reverse transcription polymerase chain reaction. Moreover, the αSMA protein level was measured using immunocytochemistry techniques. The study revealed that OA and DA significantly mitigated cell death caused by tunicamycin, decreased ROS production, and inhibited the gene expression of ER stress markers (CHOP, GRP78, and eIF2α). Notably, OA and DA also inhibited the expression of contractile genes (α-SMA and MYH11) and reduced the number of α-SMA-positive cells in tunicamycin-treated RASMCs. These findings indicate that OA and DA offer protection against ER stress-stimulated cell death and ROS generation in VSMCs, thereby supporting their potential therapeutic applications for safeguarding these cells.
Collapse
Affiliation(s)
- Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Panlekha Rungruang
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mayo Higashihara
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tomoko Sumi
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Tatsuya Moriyama
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| | - Nobuhiro Zaima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Khongwichit S, Nualla-Ong A, Prompat N, Amatatongchai M, Lieberzeit PA, Chunta S. Computational and experimental investigations of a novel aptamer targeting oxidized low-density lipoprotein. Comput Biol Med 2024; 180:108994. [PMID: 39121680 DOI: 10.1016/j.compbiomed.2024.108994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Oxidized low-density lipoprotein (oxLDL) induces the formation of atherosclerotic plaques. Apolipoprotein B100 (apoB100) is a crucial protein component in low-density lipoprotein (LDL), which includes oxLDL. The oxidation of amino acids and subsequent alterations in their structure generate oxLDL, which is a significant biomarker for the initial phases of coronary artery disease. This study employed molecular docking and molecular dynamics utilizing the MM/GBSA method to identify aptamers with a strong affinity for oxidized apoB100. Molecular docking and molecular dynamics were performed on two sequences of the aptamer candidates (aptamer no.11 (AP11: 5'-CTTCGATGTAGTTTTTGTATGGGGTGCCCTGGTTCCTGCA-3') and aptamer no.26 (AP26: 5'-GCGAACTCGCGAATCCAGAACGGGCTCGGTCCCGGGTCGA-3')), yielding respective binding free energies of -149.08 kcal/mol and -139.86 kcal/mol. Interaction modeling of the simulation revealed a strong hydrogen bond between the AP11-oxidized apoB100 complexes. In an aptamer-based gold nanoparticle (AuNP) aggregation assay, AP11 exhibits a color shift from red to purple with the highest absorbance ratio, and shows strong binding affinity to oxLDL, correlating with the simulation model results. AP11 demonstrated the potential for application as a novel recognition element in diagnostic methodologies and may also contribute to future advancements in preventive therapies for coronary artery disease.
Collapse
Affiliation(s)
- Soemwit Khongwichit
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand; Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Aekkaraj Nualla-Ong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand; Center for Genomics and Bioinformatic Research, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand; Medical of Technology Service Center, Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Napat Prompat
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand; Medical of Technology Service Center, Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Vienna, 1090, Austria
| | - Suticha Chunta
- Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Jantorn P, Tipmanee V, Wanna W, Prapasarakul N, Visutthi M, Sotthibandhu DS. Potential natural antimicrobial and antibiofilm properties of Piper betle L. against Staphylococcus pseudintermedius and methicillin-resistant strains. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116820. [PMID: 37369337 DOI: 10.1016/j.jep.2023.116820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper betle L. has potent of antimicrobial activity and is widely used as a traditional remedy to treat skin infections. However, no clear evidence exists concerning antimicrobial and antibiofilm activity against Staphylococcus pseudintermedius and methicillin-resistant S. pseudintermedius (MRSP) opportunistic pathogens that cause wound infections and pyoderma in canines and zoonotic disease. AIM OF THE STUDY The antimicrobial and antibiofilm activities of P. betle extract were assessed against S. pseudintermedius and MRSP strains. MATERIALS AND METHODS Ethanol leaf extract of P. betle was investigated for its antibacterial effect on S. pseudintermedius and MRSP by broth microdilution and time-kill assays. Biofilm inhibition and production assays were performed to evaluate antibiofilm and biofilm eradication effects, respectively. Biofilm-associated gene expression was further studied using real-time polymerase chain reaction (PCR). The possible interaction between IcaA and major compounds in P. betle was analyzed by molecular docking. RESULTS The extract showed minimum inhibitory concentration (MIC) at 250 μg/mL. Growth inhibition of P. betle at 1 MIC against the bacteria was initially observed after treatment for 4 h. All isolates were completely killed after 18 h exposure to the extract. Minimum biofilm inhibitory concentrations (MBICs) of the extract against the tested isolates ranged 1/2 MIC to 1 MIC, while minimum biofilm eradication concentration (MBEC) of P. betle was initialed at 8 MIC. Quantitative inhibition and eradication effects were observed in representative strains. The extract at 1/2 MIC and 1 MIC values inhibited biofilm formation up to 100%, with bacterial biofilm removed at up to 94.21% by 4 MIC of the extract. The extract downregulated the expression of the icaA gene among biofilm-producing isolates. The most abundant compounds, 4-allyl-1,2-diacetoxybenzene and eugenol showed a strong affinity with IcaA protein at -5.65 and -5.31 kcal/mol, respectively. CONCLUSIONS P. betle extract demonstrated the antibacterial, antibiofilm, and biofilm-removal activity against S. pseudintermedius and MRSP. Downregulation of the icaA gene expression and protein interaction were possible modes of action of the extract that impacted biofilm production. This extract showed promise as an alternative treatment for S. pseudintermedius infection, especially drug-resistant and biofilm-associated cases.
Collapse
Affiliation(s)
- Pavarish Jantorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Warapond Wanna
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nuvee Prapasarakul
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Monton Visutthi
- Biology Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | | |
Collapse
|
6
|
Zhou S, Li J, Ling X, Dong S, Zhang Z, Li M. Conessine inhibits enveloped viruses replication through up-regulating cholesterol level. Virus Res 2023; 338:199234. [PMID: 37802295 PMCID: PMC10590996 DOI: 10.1016/j.virusres.2023.199234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Dengue virus (DENV) is one of the most prevalent arthropod-borne diseases. It may cause dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), while no effective vaccines and drugs are available. Our study demonstrated that conessine exhibits broad antiviral activity against several enveloped viruses, including DENV, vesicular stomatitis virus, and herpes simplex virus. In addition, conessine has no direct destructive effect on the integrity or infectivity of virions. Both pre-treatment and post-treatment with conessine significantly reduce DENV replication. Pre-treatment with conessine disrupts the endocytosis of enveloped viruses, while post-treatment disturbs DENV RNA replication or translation at an early stage. Through screening differentially expressed genes by transcriptome sequencing, we found that conessine may affect cholesterol biosynthesis, metabolism or homeostasis. Finally, we confirmed that conessine inhibits virus replication through up-regulating cholesterol levels. Our work suggests that conessine could be developed as a prophylactic and therapeutic treatment for infectious diseases caused by enveloped viruses.
Collapse
Affiliation(s)
- Shili Zhou
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Xiaomei Ling
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Shirui Dong
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Zhen Zhang
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China
| | - Ming Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
7
|
Suwanhom P, Nualnoi T, Khongkow P, Tipmanee V, Lomlim L. Novel Lawsone-Quinoxaline Hybrids as New Dual Binding Site Acetylcholinesterase Inhibitors. ACS OMEGA 2023; 8:32498-32511. [PMID: 37720764 PMCID: PMC10500570 DOI: 10.1021/acsomega.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
A new family of lawsone-quinoxaline hybrids was designed, synthesized, and evaluated as dual binding site cholinesterase inhibitors (ChEIs). In vitro tests revealed that compound 6d was the most potent AChEI (IC50 = 20 nM) and BChEI (IC50 = 220 nM). The compound 6d did not show cytotoxicity against the SH-SY5Y neuronal cells (GI50 > 100 μM). In silico and enzyme kinetic experiments demonstrated that compound 6d bound to both the catalytic anionic site and the peripheral anionic site of HuAChE. The lawsone-quinoxaline hybrids exhibited potential for further development of potent acetylcholinesterase inhibitors for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Paptawan Suwanhom
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine
and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty
of Pharmaceutical Sciences, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapat Nualnoi
- Department
of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Pasarat Khongkow
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Luelak Lomlim
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Phytomedicine
and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty
of Pharmaceutical Sciences, Prince of Songkla
University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
8
|
Pattaranggoon NC, Daduang S, Rungrotmongkol T, Teajaroen W, Tipmanee V, Hannongbua S. Computational model for lipid binding regions in phospholipase (Ves a 1) from Vespa venom. Sci Rep 2023; 13:10652. [PMID: 37391452 PMCID: PMC10313747 DOI: 10.1038/s41598-023-36742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
The Thai banded tiger wasp (Vespa affinis) is a dangerous vespid species found in Southeast Asia, and its stings often result in fatalities due to the presence of lethal phospholipase A[Formula: see text], known as Vespapase or Ves a 1. Developing anti-venoms for Ves a 1 using chemical drugs, such as chemical drug guide, remains a challenging task. In this study, we screened 2056 drugs against the opening conformation of the venom using the ZINC 15 and e-Drug 3D databases. The binding free energy of the top five drug candidates complexed with Ves a 1 was calculated using 300-ns-MD trajectories. Our results revealed that voxilaprevir had a higher binding free energy at the catalytic sites than other drug candidates. Furthermore, the MD simulation results indicated that voxilaprevir formed stable conformations within the catalytic pocket. Consequently, voxilaprevir could act as a potent inhibitor, opening up avenues for the development of more effective anti-venom therapeutics for Ves a 1.
Collapse
Affiliation(s)
- Nawanwat C Pattaranggoon
- Programme in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Programme in Bioinformatics and Computational Biology, Graduate school, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Withan Teajaroen
- Faculty of Associated Medical Sciences, Center for Innovation and Standard for Medical Technology and Physical Therapy, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Supot Hannongbua
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Karnjana K, Jewboonchu J, Niyomtham N, Tangngamsakul P, Bunluepuech K, Goodla L, Mordmuang A. The potency of herbal extracts and its green synthesized nanoparticle formulation as antibacterial agents against Streptococcus mutans associated biofilms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 37:e00777. [PMID: 36582762 PMCID: PMC9792395 DOI: 10.1016/j.btre.2022.e00777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
This study aims to determine the effects of the extracts of Streblus asper, Cymbopogon citratus, Syzygium aromaticum and its formulation of green synthesized silver nanoparticle (AgNPs) on Streptococcus mutans growth and biofilm formation. The ethanolic extracts of S. asper, C. citratus, S. aromaticum, and a mix of the three herbs demonstrated antibacterial activity against S. mutans isolates by reducing bacterial biofilm formation and decreasing bacterial cell surface hydrophobicity. The formulated AgNPs from the ethanolic extracts could enhance the antibacterial activities of the plant extracts. Molecular docking found the best interaction between luteolin isolated from C. citratus and glucosyltransferase protein (GtfB), assuming the promising anti-biofilm activity. The scanning electron microscopy revealed morphological changes in the biofilm structure and a significant decrease in the biofilm area of the AgNPs treated. The study suggested that the extracts and its application could be used as natural alternative agents with multi-action against S. mutans infections.
Collapse
Affiliation(s)
- Kulwadee Karnjana
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Juntamanee Jewboonchu
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Nattisa Niyomtham
- International College of Dentistry, Walailak University, Bangkok, 10400, Thailand
| | - Paveen Tangngamsakul
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kingkan Bunluepuech
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Lavnaya Goodla
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, United States of America
| | - Auemphon Mordmuang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand,Corresponding author at: 222, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
10
|
Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Molecules 2022; 27:molecules27134194. [PMID: 35807438 PMCID: PMC9268608 DOI: 10.3390/molecules27134194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/20/2023] Open
Abstract
Breast cancer cell proliferation and migration are inhibited by naturally extracted trans-(−)-kusunokinin. However, three additional enantiomers of kusunokinin have yet to be investigated: trans-(+)-kusunokinin, cis-(−)-isomer and cis-(+)-isomer. According to the results of molecular docking studies of kusunokinin isomers on 60 breast cancer-related proteins, trans-(−)-kusunokinin was the most preferable and active component of the trans-racemic mixture. Trans-(−)-kusunokinin targeted proteins involved in cell growth and proliferation, whereas the cis-(+)-isomer targeted proteins involved in metastasis. Trans-(−)-kusunokinin targeted CSF1R specifically, whereas trans-(+)-kusunokinin and both cis-isomers may have bound AKR1B1. Interestingly, the compound’s stereoisomeric effect may influence protein selectivity. CSF1R preferred trans-(−)-kusunokinin over trans-(+)-kusunokinin because the binding pocket required a ligand planar arrangement to form a π-π interaction with a selective Trp550. Because of its large binding pocket, EGFR exhibited no stereoselectivity. MD simulation revealed that trans-(−)-kusunokinin, trans-(+)-kusunokinin and pexidartinib bound CSF1R differently. Pexidartinib had the highest binding affinity, followed by trans-(−)-kusunokinin and trans-(+)-kusunokinin, respectively. The trans-(−)-kusunokinin-CSF1R complex was found to be stable, whereas trans-(+)-kusunokinin was not. Trans-(±)-kusunokinin, a potential racemic compound, could be developed as a selective CSF1R inhibitor when combined.
Collapse
|
11
|
Rahmati A, Shakib P, Javadi A, Zolfaghari MR. Synthesis and Evaluation of Antimicrobial Activities of Gold and ZnO Nanoparticles on Inhibiting the MexAB-OprM Efflux Pump in Pseudomonas aeruginosa Isolates. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Suwanhom P, Saetang J, Khongkow P, Nualnoi T, Tipmanee V, Lomlim L. Synthesis, Biological Evaluation, and In Silico Studies of New Acetylcholinesterase Inhibitors Based on Quinoxaline Scaffold. Molecules 2021; 26:4895. [PMID: 34443482 PMCID: PMC8400540 DOI: 10.3390/molecules26164895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
A quinoxaline scaffold exhibits various bioactivities in pharmacotherapeutic interests. In this research, twelve quinoxaline derivatives were synthesized and evaluated as new acetylcholinesterase inhibitors. We found all compounds showed potent inhibitory activity against acetylcholinesterase (AChE) with IC50 values of 0.077 to 50.080 µM, along with promising predicted drug-likeness and blood-brain barrier (BBB) permeation. In addition, potent butyrylcholinesterase (BChE) inhibitory activity with IC50 values of 14.91 to 60.95 µM was observed in some compounds. Enzyme kinetic study revealed the most potent compound (6c) as a mixed-type AChE inhibitor. No cytotoxicity from the quinoxaline derivatives was noticed in the human neuroblastoma cell line (SHSY5Y). In silico study suggested the compounds preferred the peripheral anionic site (PAS) to the catalytic anionic site (CAS), which was different from AChE inhibitors (tacrine and galanthamine). We had proposed the molecular design guided for quinoxaline derivatives targeting the PAS site. Therefore, the quinoxaline derivatives could offer the lead for the newly developed candidate as potential acetylcholinesterase inhibitors.
Collapse
Affiliation(s)
- Paptawan Suwanhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Jirakrit Saetang
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Pasarat Khongkow
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Teerapat Nualnoi
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Luelak Lomlim
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
- Phytomedicine and Pharmaceutical Biotechnology Excellent Center (PPBEC), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| |
Collapse
|
13
|
Rattanaburee T, Tanawattanasuntorn T, Thongpanchang T, Tipmanee V, Graidist P. Trans-(-)-Kusunokinin: A Potential Anticancer Lignan Compound against HER2 in Breast Cancer Cell Lines? Molecules 2021; 26:molecules26154537. [PMID: 34361688 PMCID: PMC8348432 DOI: 10.3390/molecules26154537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/16/2022] Open
Abstract
Trans-(−)-kusunokinin, an anticancer compound, binds CSF1R with low affinity in breast cancer cells. Therefore, finding an additional possible target of trans-(−)-kusunokinin remains of importance for further development. Here, a computational study was completed followed by indirect proof of specific target proteins using small interfering RNA (siRNA). Ten proteins in breast cancer were selected for molecular docking and molecular dynamics simulation. A preferred active form in racemic trans-(±)-kusunokinin was trans-(−)-kusunokinin, which had stronger binding energy on HER2 trans-(+)-kusunokinin; however, it was weaker than the designed HER inhibitors (03Q and neratinib). Predictively, trans-(−)-kusunokinin bound HER2 similarly to a reversible HER2 inhibitor. We then verified the action of (±)-kusunokinin compared with neratinibon breast cancer cells (MCF-7). (±)-Kusunokinin exhibited less cytotoxicity on normal L-929 and MCF-7 than neratinib. (±)-Kusunokinin and neratinib had stronger inhibited cell proliferation than siRNA-HER2. Moreover, (±)-kusunokinin decreased Ras, ERK, CyclinB1, CyclinD and CDK1. Meanwhile, neratinib downregulated HER, MEK1, ERK, c-Myc, CyclinB1, CyclinD and CDK1. Knocking down HER2 downregulated only HER2. siRNA-HER2 combination with (±)-kusunokinin suppressed HER2, c-Myc, CyclinB1, CyclinD and CDK1. On the other hand, siRNA-HER2 combination with neratinib increased HER2, MEK1, ERK, c-Myc, CyclinB1, CyclinD and CDK1 to normal levels. We conclude that trans-(±)-kusunokinin may bind HER2 with low affinity and had a different action from neratinib.
Collapse
Affiliation(s)
- Thidarath Rattanaburee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
| | - Tanotnon Tanawattanasuntorn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
| | - Tienthong Thongpanchang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
- Correspondence: (V.T.); (P.G.); Tel.: +66-74-45-1743 (V.T.); +66-74-45-1184 (P.G.)
| | - Potchanapond Graidist
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (T.R.); (T.T.)
- Correspondence: (V.T.); (P.G.); Tel.: +66-74-45-1743 (V.T.); +66-74-45-1184 (P.G.)
| |
Collapse
|
14
|
Saechan C, Nguyen UH, Wang Z, Sugimoto S, Yamano Y, Matsunami K, Otsuka H, Phan GM, Pham VH, Tipmanee V, Kaewsrichan J. Potency of bisresorcinol from Heliciopsis terminalis on skin aging: in vitro bioactivities and molecular interactions. PeerJ 2021; 9:e11618. [PMID: 34221723 PMCID: PMC8231342 DOI: 10.7717/peerj.11618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background A bisresorcinol was isolated as the main constituent of Heliciopsis terminalis’s trunk (Proteaceae). Recently, resorcinol is applied as an active whitening agent in various cosmetic products. Because of the structural mimic to resorcinol, benefits of the bisresorcinol as an aging-enzyme antagonist were demonstrated in this study. Methods The bisresorcinol was purified from the crude ethanolic extract of H. terminalis’s trunk by solvent extraction and preparative chromatography, respectively. Inhibitory activity on collagenase, elastase, and tyrosinase of the compound was investigated by using a different spectroscopic technique. Molecular docking was carried out to predict possible interactions of the substance around the enzyme active sites. Results The IC50 values on collagenase of the bisresorcinol and caffeic acid were 156.7 ± 0.7 and 308.9 ± 1.6 µmole L−1, respectively. For elastase activity, the IC50 of 33.2 ± 0.5 and 34.3 ± 0.3 µmole L−1 was respectively determined for the bisresorcinol and ursolic acid. The bisresorcinol was inhibitory to tyrosinase by exhibiting the IC50 of 22.8 µmole L−1, and that of 78.4 µmole L−1 was present for β-arbutin. The bisresorcinol bound to collagenase, elastase, and tyrosinase with the respective binding energies of −5.89, −5.69, and −6.57 kcal mol−1. These binding energies were in the same ranges of tested inhibitors. The aromatic phenol groups in the structure were responsible for principle as well as supporting binding interactions with enzymes. Hydrogen binding due to hydroxyl groups and π-related attractive forces from an aromatic ring(s) provided binding versatility to bisresorcinol. Conclusion The bisresorcinol purified from H. terminalis might be useful for inclusion in cosmetic products as an aging-enzyme antagonist.
Collapse
Affiliation(s)
- Charinrat Saechan
- Department of Pharmaceutical Chemistry and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Uyen Hoang Nguyen
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Zhichao Wang
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sachiko Sugimoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshi Yamano
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuyoshi Matsunami
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideaki Otsuka
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Giang Minh Phan
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Viet Hung Pham
- Research Center for Environmental Technology and Sustainable Development, VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jasadee Kaewsrichan
- Department of Pharmaceutical Chemistry and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
15
|
Tanawattanasuntorn T, Thongpanchang T, Rungrotmongkol T, Hanpaibool C, Graidist P, Tipmanee V. (-)-Kusunokinin as a Potential Aldose Reductase Inhibitor: Equivalency Observed via AKR1B1 Dynamics Simulation. ACS OMEGA 2021; 6:606-614. [PMID: 33458512 PMCID: PMC7807751 DOI: 10.1021/acsomega.0c05102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 05/14/2023]
Abstract
(-)-Kusunokinin performed its anticancer potency through CFS1R and AKT pathways. Its ambiguous binding target has, however, hindered the next development phase. Our study thus applied molecular docking and molecular dynamics simulation to predict the protein target from the pathways. Among various candidates, aldo-keto reductase family 1 member B1 (AKR1B1) was finally identified as a (-)-kusunokinin receptor. The predicted binding affinity of (-)-kusunokinin was better than the selected aldose reductase inhibitors (ARIs) and substrates. The compound also had no significant effect on AKR1B1 conformation. An intriguing AKR1B1 efficacy, with respect to the known inhibitors (epalrestat, zenarestat, and minalrestat) and substrates (UVI2008 and prostaglandin H2), as well as a similar interactive insight of the enzyme pocket, pinpointed an ARI equivalence of (-)-kusunokinin. An aromatic ring and a γ-butyrolactone ring shared a role with structural counterparts in known inhibitors. The modeling explained that the aromatic constituent contributed to π-π attraction with Trp111. In addition, the γ-butyrolactone ring bound the catalytic His110 using hydrogen bonds, which could lead to enzymatic inhibition as a consequence of substrate competitiveness. Our computer-based findings suggested that the potential of (-)-kusunokinin could be furthered by in vitro and/or in vivo experiments to consolidate (-)-kusunokinin as a new AKR1B1 antagonist in the future.
Collapse
Affiliation(s)
- Tanotnon Tanawattanasuntorn
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Tienthong Thongpanchang
- Department
of Chemistry, Faculty of Science and Center of Excellence for Innovation
in Chemistry, Mahidol University, Bangkok 10400, Thailand
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology
Research Unit, Department
of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Graduate School, Chulalongkorn
University, Bangkok 10300, Thailand
| | - Chonnikan Hanpaibool
- Biocatalyst and Environmental Biotechnology
Research Unit, Department
of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational
Biology, Graduate School, Chulalongkorn
University, Bangkok 10300, Thailand
| | - Potchanapond Graidist
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department
of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|