1
|
Linani A, Benarous K, Erol E, Bou-Salah L, Serseg T, Yousfi M. In silico analysis of identified molecules using LC-HR/MS of Cupressus sempervirens L. ethyl acetate fraction against three monkeypox virus targets. J Biomol Struct Dyn 2025; 43:534-549. [PMID: 37982304 DOI: 10.1080/07391102.2023.2283149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Monkeypox virus is a viral disease transmitted to humans through contact with infected animals, such as monkeys and rodents, or through direct contact with the bodily fluids or lesions of infected humans. The aim of this study is to evaluate in silico the inhibition effect of eight Cupressus sempervirens L. ethyl acetate fraction identified molecules using LC-MS on three monkeypox targets such as the vaccinia virus thymidylate kinase (VTK), the viral profilin-like protein (VPP), and the viral RNA polymerase (VRP). The study consist of using molecular docking with AutoDock vina based on the lowest energy value in kcal/mol, pharmacokinetics prediction with pre-ADMET v2.0 server, and prediction of biological activity with the PASS server tool. The best complexes were subjected to molecular dynamics simulation (MD) study to confirm their stability using Desmond software. The used molecules were vitamin C, vanillic acid (Pol), Flav1 (Catechin), Flav2 (Epicatechin), Flav3 (Hyperoside), Flav4 (Luteolin), Flav5 (Taxifolin), and Flav6 (Quercetin). The results show that flavonoids are potent to VTK, VPP and effectively block the VRP channel with energy values ranging from -7.0 to -9.3 kcal/mol. Further, MD simulation supports Flav1 and, Flav2 for notable stability in the VTK binding pocket through hydrogen and hydrophobic interactions. PASS results predicted various biological activities with promising VTK and VRP inhibition activities. The studied molecules could constitute a safer alternative to current drugs, which often cause adverse side effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abderahmane Linani
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Khedidja Benarous
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Ebru Erol
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye
| | - Leila Bou-Salah
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
- Laboratoire de sciences appliquées et didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
| | - Mohamed Yousfi
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| |
Collapse
|
2
|
Bouakkaz H, Neşetoğlu N, Benarous K, Bou-Salah L, Serseg T, Linani A, Özer Unal D, Gölcü A, Khemili A. The evaluation of Hertia cheirifolia L. extract by GC-MS coupled with in silico study as potent inhibitors of human pancreatic lipase. J Biomol Struct Dyn 2024:1-12. [PMID: 39671231 DOI: 10.1080/07391102.2024.2439048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/05/2024] [Indexed: 12/14/2024]
Abstract
Hertia cheirifolia L. leaves have a long history of traditional use in treating hemorrhoids, diarrhea, rheumatic discomfort, and stomachaches. The aerial part of this plant is extracted using hexane after hydroalcoholic maceration. Analysis of the crude extract by GC-MS revealed the presence of 34 compounds, which were further investigated using in silico techniques. Notably, ligularenolide demonstrated promising cytotoxicity profiles without any indication of carcinogenic activity or cardiovascular risks. In contrast, other compounds exhibited moderate enzyme inhibition alongside notable levels of toxicity. Interestingly, our dynamic studies highlighted the stability of the ligularenolide-human pancreatic lipase (HPL) complex, showcasing its potential as an anti-obesity agent. Importantly, ligularenolide exhibited significant inhibition of HPL, (Predicted biological activities 1115 PBA) compared to orlistat, as confirmed by PASS predictions and docking results. These findings underscore the potential of Hertia cheirifolia L. extract as a natural source of anti-obesity agents, warranting further investigation into its therapeutic applications.
Collapse
Affiliation(s)
- Hicham Bouakkaz
- Laboratory of Fundamental Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Neşet Neşetoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
- Drug Research and Application Center, Istanbul University, Istanbul, Türkiye
| | - Khedidja Benarous
- Laboratory of Fundamental Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Leila Bou-Salah
- Laboratoire des sciences appliquées et didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
| | - Talia Serseg
- Laboratory of Fundamental Sciences, University of Amar Telidji, Laghouat, Algeria
- Laboratoire des sciences appliquées et didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
| | - Abderahmane Linani
- Laboratory of Fundamental Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Durisehvar Özer Unal
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, Istanbul, Türkiye
- Drug Research and Application Center, Istanbul University, Istanbul, Türkiye
| | - Ayşegül Gölcü
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Türkiye
| | - Aicha Khemili
- Laboratory of Biotechnology, Water, Environment and Health, University of Abbes Laghrour Khenchela, Khenchela, Algeria
| |
Collapse
|
3
|
Bellahcene F, Benarous K, Mermer A, Boulebd H, Serseg T, Linani A, Kaouka A, Yousfi M, Syed A, Elgorban AM, Ozeki Y, Kawsar SM. Unveiling potent Schiff base derivatives with selective xanthine oxidase inhibition: In silico and in vitro approach. Saudi Pharm J 2024; 32:102062. [PMID: 38601975 PMCID: PMC11004395 DOI: 10.1016/j.jsps.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
This research describes the synthesis by an environmentally-friendly method, microwave irradiation, development and analysis of three novel and one previously identified Schiff base derivative as a potential inhibitor of bovine xanthine oxidase (BXO), a key enzyme implicated in the progression of gout. Meticulous experimentation revealed that these compounds (10, 9, 4, and 7) have noteworthy inhibitory effects on BXO, with IC50 values ranging from 149.56 µM to 263.60 µM, indicating their good efficacy compared to that of the standard control. The validation of these results was further enhanced through comprehensive in silico studies, which revealed the pivotal interactions between the inhibitors and the catalytic sites of BXO, with a particular emphasis on the imine group (-C = N-) functionalities. Intriguingly, the compounds exhibiting the highest inhibition rates also showcase advantageous ADMET profiles, alongside encouraging initial assessments via PASS, hinting at their broad-spectrum potential. The implications of these findings are profound, suggesting that these Schiff base derivatives not only offer a new vantage point for the inhibition of BXO but also hold considerable promise as innovative therapeutic agents in the management and treatment of gout, marking a significant leap forward in the quest for more effective gout interventions.
Collapse
Affiliation(s)
- Fatna Bellahcene
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Khedidja Benarous
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Arif Mermer
- Department of Biotechnology, University of Health Sciences, İstanbul, Turkey
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, İstanbul, Turkey
- Department of Pharmacy, University of Health Sciences, İstanbul, Turkey
| | - Houssem Boulebd
- Department of Chemistry, Faculty of Exact Sciences, University of Constantine 1, Constantine, Algeria
| | - Talia Serseg
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, Algeria
| | - Abderahmane Linani
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Alaeddine Kaouka
- Laboratoire des Sciences Appliquées et Didactiques, Ecole Normale Supérieure de Laghouat, Algeria
| | - Mohamed Yousfi
- Laboratory of Fundamental Sciences, Faculty of Sciences, University of Amar Telidji, Laghouat, Algeria
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Yasuhiro Ozeki
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Sarkar M.A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| |
Collapse
|
4
|
Todorov L, Saso L, Kostova I. Antioxidant Activity of Coumarins and Their Metal Complexes. Pharmaceuticals (Basel) 2023; 16:ph16050651. [PMID: 37242434 DOI: 10.3390/ph16050651] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications-in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature. The authors of this review have noted that, during the past five years, research efforts seem to have been focused on the synthesis and examination of synthetic coumarin derivatives with the aim to produce potential drugs with enhanced, modified or entirely novel effects. As many pathologies are associated with oxidative stress, coumarin-based compounds could be excellent candidates for novel medicinal molecules. The present review aims to inform the reader on some prominent results from investigations into the antioxidant properties of novel coumarin compounds over the past five years.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
5
|
A New 3D La(III) Complex: Gas Adsorption Properties and Inhibitory Activity on the Glioma by Regulating the Expression of VEGF Signaling Pathway. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Todorov L, Saso L, Benarous K, Traykova M, Linani A, Kostova I. Synthesis, Structure and Impact of 5-Aminoorotic Acid and Its Complexes with Lanthanum(III) and Gallium(III) on the Activity of Xanthine Oxidase. Molecules 2021; 26:4503. [PMID: 34361656 PMCID: PMC8348579 DOI: 10.3390/molecules26154503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
The superoxide radical ion is involved in numerous physiological processes, associated with both health and pathology. Its participation in cancer onset and progression is well documented. Lanthanum(III) and gallium(III) are cations that are known to possess anticancer properties. Their coordination complexes are being investigated by the scientific community in the search for novel oncological disease remedies. Their complexes with 5-aminoorotic acid suppress superoxide, derived enzymatically from xanthine/xanthine oxidase (X/XO). It seems that they, to differing extents, impact the enzyme, or the substrate, or both. The present study closely examines their chemical structure by way of modern methods-IR, Raman, and 1H NMR spectroscopy. Their superoxide-scavenging behavior in the presence of a non-enzymatic source (potassium superoxide) is compared to that in the presence of an enzymatic source (X/XO). Enzymatic activity of XO, defined in terms of the production of uric acid, seems to be impacted by both complexes and the pure ligand in a concentration-dependent manner. In order to better relate the compounds' chemical characteristics to XO inhibition, they were docked in silico to XO. A molecular docking assay provided further proof that 5-aminoorotic acid and its complexes with lanthanum(III) and gallium(III) very probably suppress superoxide production via XO inhibition.
Collapse
Affiliation(s)
- Lozan Todorov
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Khedidja Benarous
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat 03000, Algeria; (K.B.); (A.L.)
| | - Maria Traykova
- Department of Physics and Biophysics, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Abderahmane Linani
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat 03000, Algeria; (K.B.); (A.L.)
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, 1000 Sofia, Bulgaria;
| |
Collapse
|
7
|
Di Dalmazi G, Giuliani C. Plant constituents and thyroid: A revision of the main phytochemicals that interfere with thyroid function. Food Chem Toxicol 2021; 152:112158. [PMID: 33789121 DOI: 10.1016/j.fct.2021.112158] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 01/06/2023]
Abstract
In the past few decades, there has been a lot of interest in plant constituents for their antioxidant, anti-inflammatory, anti-microbial and anti-proliferative properties. However, concerns have been raised on their potential toxic effects particularly when consumed at high dose. The anti-thyroid effects of some plant constituents have been known for some time. Indeed, epidemiological observations have shown the causal association between staple food based on brassicaceae or soybeans and the development of goiter and/or hypothyroidism. Herein, we review the main plant constituents that interfere with normal thyroid function such as cyanogenic glucosides, polyphenols, phenolic acids, and alkaloids. In detail, we summarize the in vitro and in vivo studies present in the literature, focusing on the compounds that are more abundant in foods or that are available as dietary supplements. We highlight the mechanism of action of these compounds on thyroid cells by giving a particular emphasis to the experimental studies that can be significant for human health. Furthermore, we reveal that the anti-thyroid effects of these plant constituents are clinically evident only when they are consumed in very large amounts or when their ingestion is associated with other conditions that impair thyroid function.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy; Department of Medicine and Aging Science, Translational Medicine PhD Program, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST) and Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, 66100, Chieti, Italy.
| |
Collapse
|