1
|
Wang K, Chen X. Protective effect of flavonoids on oxidative stress injury in Alzheimer's disease. Nat Prod Res 2025; 39:1272-1299. [PMID: 38910339 DOI: 10.1080/14786419.2024.2345760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 06/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which is mainly caused by the damage of the structure and function of the central nervous system. At present, there are many adverse reactions in market-available drugs, which can't significantly inhibit the occurrence of AD. Therefore, the current focus of research is to find safe and effective therapeutic drugs to improve the clinical treatment of AD. Oxidative stress bridges different mechanism hypotheses of AD and plays a key role in AD. Numerous studies have shown that natural flavonoids have good antioxidant effects. They can directly or indirectly resist -oxidative stress, inhibit Aβ aggregation and Tau protein hyperphosphorylation by activating Nrf2 and other oxidation-antioxidation-related signals, regulating synaptic function-related pathways, promoting mitochondrial autophagy, etc., and play a neuroprotective role in AD. In this review, we summarised the mechanism of flavonoids inhibiting oxidative stress injury in AD in recent years. Moreover, because of the shortcomings of poor biofilm permeability and low bioavailability of flavonoids, the advantages and recent research progress of nano-drug delivery systems such as liposomes and solid lipid nanoparticles were highlighted. We hope this review provides a useful way to explore safe and effective AD treatments.
Collapse
Affiliation(s)
- Kaixuan Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinmei Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Boulebd H. A comprehensive DFT-based study of the antioxidant properties of monolignols: Mechanism, kinetics, and influence of physiological environments. Int J Biol Macromol 2025; 284:138044. [PMID: 39603310 DOI: 10.1016/j.ijbiomac.2024.138044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Monolignols, p-coumaryl alcohol (CouA), coniferyl alcohol (ConiA), and sinapyl alcohol (SinA), are the fundamental materials for lignin biosynthesis, a major component of lignocellulosic biomass. In the present study, we report a comprehensive analysis of the antioxidant properties of monolignols, using density functional theory (DFT) calculations. Under model physiological conditions, monolignols demonstrated a high hydroperoxyl radical scavenging capacity in polar media, with overall rate constants (koverall) ranging from 5.80 × 106 to 1.15 × 107 M-1 s-1. In contrast, this activity was less pronounced in lipid media, with koverall in the range of 2.66 × 102 to 2.61 × 104 M-1 s-1. The single electron transfer (SET) mechanism was found to play a decisive role in water at physiological pH and under basic conditions, whereas the formal hydrogen transfer (FHT) mechanism was the exclusive pathway in aqueous acid conditions and lipid media. Furthermore, the monolignols ConiA and SinA, demonstrated a strong capacity to chelate Cu(II) and Fe(III) ions in water, with apparent equilibrium constants in the range of 9.21 × 1014 to 5.93 × 1021 M-1 s-1. Their complexes were also found to be highly effective in blocking the reduction of Cu(II)-to-Cu(I) and Fe(III)-to-Fe(II) via the ascorbic acid anion pathway.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine 25017, Algeria.
| |
Collapse
|
3
|
Kadi I, Şekerci G, Boulebd H, Zebbiche Z, Tekin S, Benarous K, Serseg T, Küçükbay F, Küçükbay H, Boumoud T. Exploring the anticancer potential of new 3-cyanopyridine derivatives bearing N-acylhydrazone motif: Synthesis, DFT calculations, cytotoxic evaluation, molecular modeling, and antioxidant properties. J Biochem Mol Toxicol 2024; 38:e23819. [PMID: 39180345 DOI: 10.1002/jbt.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
3-Cyanopyridine derivatives are known for exhibiting excellent anticancer activity due to their strong capability to inhibit various biological targets, including Pim-1 kinase, survivin, and tubulin polymerization. On the other hand, N-acylhydrazones (NAH) are known to be a very versatile motif in medicinal chemistry and drug design. Based on these data, we report in this paper, the synthesis of novel 3-cyanopyridines incorporating N-acyl hydrazine scaffold, the evaluation of their cytotoxicity on the breast (MCF-7) and ovarian (A-2780) cancer cell lines and their antioxidant properties. Excluding 4a and 4d, all tested molecules exhibited high cytotoxicity against A-2780, with IC50 values ranging from 1.14 to 1.76 µM. Conversely, only four molecules 3d, 4b, 4c, and 4d demonstrated cytotoxicity against MCF-7, with IC50 values ranging from 1.14 to 3.38 µM. On the other hand, all the tested molecules exhibited a moderate antioxidant capacity in both the DPPH and metal chelation assays. Docking and molecular dynamics studies revealed that 2d, 3d, and 4d are potential inhibitors of tubulin and the œstrogen receptor, which may explain their high cytotoxicity. These results are promising to study these newly synthesized 3-cyanopyridine-N-acylhydrazones in depth for use as potential anticancer candidates.
Collapse
Affiliation(s)
- Ibtissem Kadi
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| | - Güldeniz Şekerci
- Physiology Department, Faculty of Medicine, Malatya Turgut Özal University, Malatya, Turkey
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| | - Zineddine Zebbiche
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| | - Suat Tekin
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Khedidja Benarous
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental Sciences Laboratory, Amar Telidji University, Laghouat, Algeria
- Laboratoire des sciences appliquées et didactiques, Ecole Normale Supérieure de Laghouat, Laghouat, Algeria
| | - Fatümetüzzehra Küçükbay
- Basic Pharmaceutical Sciences Department, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| | - Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Taoues Boumoud
- Laboratory of Synthesis of Molecules with Biological Interest, University of Constantine 1, Constantine, Algeria
| |
Collapse
|
4
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
5
|
Benarous K, Serseg T, Mermer A, Tahmasebifar A, Boulebd H, Linani A. Exploring the Anti-Cancer Potential of Hispidin: A Comprehensive in Silico and in Vitro Study on Human Osteosarcoma Saos2 Cells. Chem Biodivers 2024; 21:e202301833. [PMID: 38456582 DOI: 10.1002/cbdv.202301833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Hispidin was initially discovered in basidiomycete Inonotus hispidus (Bull.) P. Karst and this extraordinary compound possesses immense potency and can be extracted from the wild mushroom through specialized bioreactor cultivation techniques. In our study, we isolated it from Inonotus hispidus (Bull.) P. Karst., with a yield of 3.6 %. We identified and characterized hispidin through the implementation of spectroscopic techniques such as FTIR, NMR, and MS. Additionally, we utilized Thermogravimetric Analysis for thermal characterization of the compound. Computational studies based on DFT were performed to investigate the molecular structure, electronic properties, and chemical reactivity of hispidin. PASS analysis for hispidin demonstrated that 19 of them are anti-neoplastic activities. The Pharmacology prediction of hispidin confirm that it is not toxic, non-carcinogenesis with a good human intestinal absorption. The effect of hispidin on the viability of bone cancer cells was evaluated by MTT assay. The results showed that hispidin significantly reduced SaoS2 cell viability in a dose-dependent manner. Molecular docking was carried out using five targets related to bone cancer to determine the interactions between hispidin and the studied proteins. The results demonstrate that hispidin is a good inhibitor for the five targets. Dynamic simulation shows a good stability of the complex hispidin-protein.
Collapse
Affiliation(s)
- Khedidja Benarous
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| | - Talia Serseg
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
- Laboratoire de sciences appliquées et didactiques, Ecole Normale Supérieure de, Laghouat, Algeria
| | - Arif Mermer
- Department of Biotechnology, University of Health Sciences, İstanbul, Türkiye
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, İstanbul, Türkiye
| | - Aydin Tahmasebifar
- Department of Biomaterials, University of Health Sciences, İstanbul, Türkiye
- Experimental Medicine Application and Research Center, Validebag Research Park, University of Health Sciences, İstanbul, Türkiye
| | - Houssem Boulebd
- Chemistry Department, Faculty of Exact Science, University of Constantine 1, Constantine, 25000, Algeria
| | - Abderahmane Linani
- Fundamental sciences laboratory, Amar Telidji University, Laghouat, Algeria
| |
Collapse
|
6
|
Boulebd H, Spiegel M. Computational assessment of the primary and secondary antioxidant potential of alkylresorcinols in physiological media. RSC Adv 2023; 13:29463-29476. [PMID: 37818267 PMCID: PMC10561184 DOI: 10.1039/d3ra05967g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Alkylresorcinols are a group of natural phenolic compounds found in various foods such as whole grain cereals, bread, and certain fruits. They are known for their beneficial health effects, such as anti-inflammatory and anti-cancer properties. This study aimed to evaluate the antioxidant activity of two typical alkylresorcinols namely olivetol and olivetolic acid (Oli and OliA) under physiological conditions. The free radical scavenging capacity of Oli and OliA toward oxygenated free radicals (HO˙ and HOO˙ radicals) was investigated using thermodynamic and kinetic calculations. The results revealed that Oli and OliA are potent scavengers of HO˙ radical in both polar and lipid media, acting exclusively via the FHT (formal hydrogen transfer) mechanism. Moreover, they demonstrated excellent scavenging activity toward HOO˙ radical in water via the SET (single electron transfer) mechanism, outperforming the common antioxidant BHT. In lipid media, Oli and OliA showed moderate scavenging activity toward HOO˙ radical via the FHT mechanism. Significant prooxidant potential of OliA- was also demonstrated through the formation of complexes with copper ions. Additionally, docking studies indicate that the compounds exhibited a good affinity for ROS-producing enzymes, including myeloperoxidase (MP), cytochrome P450 (CP450), lipoxygenase (LOX), and xanthine oxidase (XO), highlighting their potential as natural antioxidants with promising therapeutic applications.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1 Constantine 25000 Algeria
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| |
Collapse
|
7
|
Kadi I, Şekerci G, Boulebd H, Zebbiche Z, Tekin S, Küçükbay H, Küçükbay F, Boumoud T. Synthesis, in vitro, and in silico studies of novel poly‐heterocyclic compounds bearing pyridine and furan moieties as potential anticancer agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Djafarou S, Amine Khodja I, Boulebd H. Computational design of new tacrine analogs: an in silico prediction of their cholinesterase inhibitory, antioxidant, and hepatotoxic activities. J Biomol Struct Dyn 2023; 41:91-105. [PMID: 34825629 DOI: 10.1080/07391102.2021.2004232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tacrine, the first drug approved for the treatment of Alzheimer's disease (AD), is a non-competitive cholinesterase inhibitor withdrawn due to its acute hepatotoxicity. However, new non-hepatotoxic forms of tacrine have been actively researched. Moreover, several recent reports have shown that oxidative stress is the cause of damage and plays a role in the pathogenesis of several neurodegenerative diseases including AD. The aim of the present study is the design of new easily synthesized tacrine analogs with less hepatotoxicity and potent antioxidant activity. In this context, a library of 34 novel tacrine analogs bearing an antioxidant fragment was designed and evaluated for its hepatotoxicity as well as anticholinesterase and antioxidant activities using computational methods. As a result, six new tacrine analogs have been proposed as potential inhibitors of cholinesterase with antioxidant activity and low or no hepatotoxicity. Furthermore, ADME calculations suggest that these compounds are promising oral drug candidates. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Selsabil Djafarou
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
9
|
Mermer A, Boulebd H. An eco-friendly method for the synthesis of 1,2,4-triazole-Schiff base derivatives in aqueous medium and DFT calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Synthesis, antibacterial evaluation, and in silico investigations of novel 3-amino-1,2-dihydroisoquinoline derivatives. Struct Chem 2022. [DOI: 10.1007/s11224-022-02116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Alia Abdulaziz Alfi, Alharbi A, Qurban J, Abualnaja MM, Abumelha HM, Saad FA, El-Metwaly NM. Molecular modeling and docking studies of new antioxidant pyrazole-thiazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Zebbiche Z, Şekerci G, Boulebd H, Küçükbay F, Tekin S, Tekin Z, Küçükbay H, Sandal S, Boumoud B. Preparation, DFT calculations, docking studies, antioxidant, and anticancer properties of new pyrazole and pyridine derivatives. J Biochem Mol Toxicol 2022; 36:e23135. [PMID: 35670538 DOI: 10.1002/jbt.23135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 05/29/2022] [Indexed: 01/30/2023]
Abstract
Seven novel pyrazole derivatives (4a-g) and four novel starting compounds incorporating substituted pyridine moieties were synthesized successfully. Cell viability assay for the tested compounds was performed, and the inhibitory concentrationlogarithmic 50 (LogIC50 ) values of the compounds were calculated after a 24-h treatment. Four of the examined compounds (3d, 3g, 4f, and 4g) showed comparable cytotoxic activity against CaCo-2 compared to the standard drug docetaxel at 0.1 and 1 μM concentrations. Although the LogIC50 of docetaxel was -0.678 μM for CaCo-2 cells at 24 h, the LogIC50 values of compounds were -0.794, -0.567, -0.657, and -0.498 μM, respectively. Five of the compounds (2d, 2g, 3d, 3g, and 4e) showed comparable cytotoxic activity against MCF-7 at 0.1 μM concentration compared to docetaxel (p < 0.05). Docking studies revealed the compounds have a good affinity to the active site of the human topoisomerase II β enzyme. The antioxidant capacities of all compounds were determined using both 1,1-diphenyl-2-picrylhydrazyl and metal chelation methods. Although the compounds did not show significant antioxidant activity, relatively effective are compounds 3c, 3d, and 3g, which are hydrazine derivatives with approximately 50% antioxidant activity of standard antioxidants at concentrations of 62.5 and 125 μg/ml.
Collapse
Affiliation(s)
- Zineddine Zebbiche
- Laboratory of Synthesis of Molecules With Biological Interest, Mentouri Constantine University, Constantine, Algeria
| | - Güldeniz Şekerci
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules With Biological Interest, Mentouri Constantine University, Constantine, Algeria
| | | | - Suat Tekin
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Zehra Tekin
- Basic Pharmaceutical Sciences Department, Faculty of Pharmacy, Adiyaman University
| | - Hasan Küçükbay
- Department of Chemistry, Faculty of Arts and Sciences, İnönü University, Malatya, Turkey
| | - Süleyman Sandal
- Physiology Department, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Boudjemaa Boumoud
- Laboratory of Synthesis of Molecules With Biological Interest, Mentouri Constantine University, Constantine, Algeria
| |
Collapse
|
14
|
Boulebd H, Zine Y, Khodja IA, Mermer A, Demir A, Debache A. Synthesis and radical scavenging activity of new phenolic hydrazone/hydrazide derivatives: Experimental and theoretical studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Sandeli AEK, Boulebd H, Khiri-Meribout N, Benzerka S, Bensouici C, Özdemir N, Gürbüz N, Özdemir İ. New benzimidazolium N-heterocyclic carbene precursors and their related Pd-NHC complex PEPPSI-type: Synthesis, structures, DFT calculations, biological activity, docking study, and catalytic application in the direct arylation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Nam PC, Thong NM, Hoa NT, Quang DT, Hoang LP, Mechler A, Vo QV. Is natural fraxin an overlooked radical scavenger? RSC Adv 2021; 11:14269-14275. [PMID: 35423974 PMCID: PMC8697747 DOI: 10.1039/d1ra01360b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/02/2021] [Indexed: 01/08/2023] Open
Abstract
Fraxin (FX) (7-hydroxy-6-methoxycoumarin 8-glucoside) is a typical natural product of the coumarin family. This compound was shown to protect endothelial cells from oxidative stress; however, the nature of its antioxidant properties is still ambiguous. In this study, we report on a systematic evaluation of the radical scavenging activity of FX using a two-tier protocol based on thermodynamic and kinetic calculations. The results show that FX has moderate activity in the aqueous physiological environment against a range of radicals including HO˙, CCl3O˙, CCl3OO˙, NO2, , and HOO˙. The latter was examined in detail due to the prevalence of HOO˙ as a source of oxidative stress in biological systems. HOO˙ scavenging activity was promising in the gas phase but low in physiological environments with k overall = 1.57 × 106, 3.13 × 102 and 2.68 × 103 M-1 s-1 in the gas phase, pentyl ethanoate and water solvents, respectively. The formal hydrogen transfer mechanism at the O7-H bond dominates the hydroperoxyl radical scavenging of FX in the nonpolar media, whereas, in the polar environment, the activity is exerted by the single electron transfer mechanism of the anion state. This activity falls behind typical antioxidants such as Trolox, ascorbic acid, and trans-resveratrol under the studied conditions. Thus FX may have multiple health benefits, but it is not an outstanding natural antioxidant.
Collapse
Affiliation(s)
- Pham Cam Nam
- Department of Chemical Engineering, The University of Danang - University of Science and Technology Danang 550000 Vietnam
| | - Nguyen Minh Thong
- The University of Danang, Campus in Kon Tum 704 Phan Dinh Phung Kon Tum Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| | | | - Loc Phuoc Hoang
- Institute of Research and Development, Duy Tan University Danang 550000 Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University Victoria 3086 Australia
| | - Quan V Vo
- The University of Danang - University of Technology and Education Danang 550000 Vietnam
| |
Collapse
|