1
|
Guo L, Huang E, Wang T, Ling Y, Li Z. Exploring the molecular mechanisms of asthma across multiple datasets. Ann Med 2024; 56:2258926. [PMID: 38489401 PMCID: PMC10946276 DOI: 10.1080/07853890.2023.2258926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/09/2023] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Asthma, a prevalent chronic respiratory disorder, remains enigmatic, notwithstanding considerable advancements in our comprehension. Continuous efforts are crucial for discovering novel molecular targets and gaining a comprehensive understanding of its pathogenesis. MATERIALS AND METHODS In this study, we analyzed gene expression data from 212 individuals, including asthma patients and healthy controls, to identify 267 differentially expressed genes, among which C1orf64 and C7orf26 emerged as potential key genes in asthma pathogenesis. Various bioinformatics tools, including differential gene expression analysis, pathway enrichment, drug target prediction, and single-cell analysis, were employed to explore the potential roles of the genes. RESULTS Quantitative PCR demonstrated differential expression of C1orf64 and C7orf26 in the asthmatic airway epithelial tissue, implying their potential involvement in asthma pathogenesis. GSEA enrichment analysis revealed significant enrichment of these genes in signaling pathways associated with asthma progression, such as ABC transporters, cell cycle, CAMs, DNA replication, and the Notch signaling pathway. Drug target prediction, based on upregulated and downregulated differential expression, highlighted potential asthma treatments, including Tyrphostin-AG-126, Cephalin, Verrucarin-a, and Emetine. The selection of these drugs was based on their significance in the analysis and their established anti-inflammatory and antiviral invasion properties. Utilizing Seurat and Celldex packages for single-cell sequencing analysis unveiled disease-specific gene expression patterns and cell types. Expression of C1orf64 and C7orf26 in T cells, NK cells, and B cells, instrumental in promoting hallmark features of asthma, was observed, suggesting their potential influence on asthma development and progression. CONCLUSION This study uncovers novel genetic aspects of asthma, highlighting potential therapeutic pathways. It exemplifies the power of integrative bioinformatics in decoding complex disease patterns. However, these findings require further validation, and the precise roles of C1orf64 and C7orf26 in asthma warrant additional investigation to validate their therapeutic potential.
Collapse
Affiliation(s)
- Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tongting Wang
- Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Ling
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengzhao Li
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
He J, Xiong W, Zhao L, Liu B, Huang Y. Anti-α-glucosidase, Anti-proliferative and Anti-enterovirus 71 Activity of Secondary Metabolites Identified from Grifola Frondosa. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023; 78:783-789. [PMID: 37812276 DOI: 10.1007/s11130-023-01106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
Grifola frondosa, an edible and medicinal resource, is widely used as functional foods worldwide. To explore bioactive compounds against α-glucosidase, human tumor cells and enterovirus 71 (EV71), eight compounds were isolated from G. frondosa by chromatographic column. Among the isolated compounds, heptadecanoic acid, uridine and adenosine exhibited potent inhibition activity against α-glucosidase, ergosterols and ergosterol-5,8-peroxide showed anti-proliferative activity on tumor cells, while ergosterol and methyl linoleate displayed inhibition against the replication of EV71. Also, to our knowledge, this is the first study to report that fatty acids isolated from G. frondosa show potent inhibition against α-glucosidase and EV71. Further molecular docking results revealed that the active compounds in G. frondosa form hydrogen bonding, hydrophobic interactive and π-stacking with the active sites on the surface of α-glucosidase, CASP3 and VP1 proteins, thus promoting the active compounds to combine with the target protein to form a stable complex, thus playing an antagonistic role. Our results could provide a new active compound and mode of action for G. frondosa to treat diabetes, cancer and EV71-infected patients.
Collapse
Affiliation(s)
- Junqiang He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenyu Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Lina Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
3
|
Noumi E, Ahmad I, Adnan M, Patel H, Merghni A, Haddaji N, Bouali N, Alabbosh KF, Kadri A, Caputo L, Polito F, Snoussi M, Feo VD. Illicium verum L. (Star Anise) Essential Oil: GC/MS Profile, Molecular Docking Study, In Silico ADME Profiling, Quorum Sensing, and Biofilm-Inhibiting Effect on Foodborne Bacteria. Molecules 2023; 28:7691. [PMID: 38067422 PMCID: PMC10707387 DOI: 10.3390/molecules28237691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Illicium verum, or star anise, has many uses ranging from culinary to religious. It has been used in the food industry since ancient times. The main purpose of this study was to determine the chemical composition, antibacterial, antibiofilm, and anti-quorum sensing activities of the essential oil (EO) obtained via hydro-distillation of the aerial parts of Illicium verum. Twenty-four components were identified representing 92.55% of the analyzed essential oil. (E)-anethole (83.68%), limonene (3.19%), and α-pinene (0.71%) were the main constituents of I. verum EO. The results show that the obtained EO was effective against eight bacterial strains to different degrees. Concerning the antibiofilm activity, trans-anethole was more effective against biofilm formation than the essential oil when tested using sub-inhibitory concentrations. The results of anti-swarming activity tested against P. aeruginosa PAO1 revealed that I. verum EO possesses more potent inhibitory effects on the swarming behavior of PAO1 when compared to trans-anethole, with the percentage reaching 38% at a concentration of 100 µg/mL. The ADME profiling of the identified phytocompounds confirmed their important pharmacokinetic and drug-likeness properties. The in silico study using a molecular docking approach revealed a high binding score between the identified compounds with known target enzymes involved in antibacterial and anti-quorum sensing (QS) activities. Overall, the obtained results suggest I. verum EO to be a potentially good antimicrobial agent to prevent food contamination with foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, Maharashtra, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India;
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Najla Haddaji
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Nouha Bouali
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Khulood Fahad Alabbosh
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
| | - Adel Kadri
- College of Science and Arts in Baljurashi, Al-Baha University, P.O. Box 1988, Al Baha 65527, Saudi Arabia;
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Flavio Polito
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 2440, Saudi Arabia; (M.A.); (N.H.); (N.B.); (K.F.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (L.C.); (F.P.)
| |
Collapse
|
4
|
Noumi E, Ahmad I, Bouali N, Patel H, Ghannay S, ALrashidi AA, Abdulhakeem MA, Patel M, Ceylan O, Badraoui R, Mousa Elayyan AE, Adnan M, Kadri A, Snoussi M. Thymus musilii Velen. Methanolic Extract: In Vitro and In Silico Screening of Its Antimicrobial, Antioxidant, Anti-Quorum Sensing, Antibiofilm, and Anticancer Activities. Life (Basel) 2022; 13:62. [PMID: 36676011 PMCID: PMC9862435 DOI: 10.3390/life13010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Thymus musilii Velen. is a rare plant species cultivated in the Ha'il region (Saudi Arabia) under greenhouse conditions. In this work, we described, for the first time, the phytochemical composition, antimicrobial, antioxidant, anti-quorum sensing, and anticancer activities of T. musilii methanolic extract using both experimental and computational approaches. The obtained results showed the identification of eight small-like peptides and eighteen phyto-compounds by using high-resolution liquid chromatography-mass spectrometry (HR-LCMS) dominated mainly by compounds belonging to isoprenoid, fatty acyl, flavonoid, and alkaloid classes. The tested extracts exhibited high antifungal and antibacterial activity with the mean diameter of growth inhibition zones ranging from 12.33 ± 0.57 mm (Pseudomonas aeruginosa ATCC 27853) to 29.33 ± 1.15 mm (Candida albicans ATCC 10231). Low minimal inhibitory concentrations were recorded for the tested micro-organisms ranging from 0.781 mg/mL to 12.5 mg/mL. While higher doses were necessary to completely kill all tested bacterial and fungal strains. Thyme extract was able to scavenge DPPH•, ABTS•+, β-carotene, and FRAP free radicals, and the IC50 values were 0.077 ± 0.0015 mg/mL, 0.040 ± 0.011 mg/mL, 0.287 ± 0.012 mg/mL, and 0.106 ± 0.007 mg/mL, respectively. The highest percentage of swarming and swimming inhibition was recorded at 100 µg/mL with 39.73 ± 1.5% and 25.18 ± 1%, respectively. The highest percentage of biofilm inhibition was recorded at 10 mg/mL for S. typhimurium ATCC 14028 (53.96 ± 4.21%) and L. monocytogenes ATCC 7644 (49.54 ± 4.5 mg/mL). The in silico docking study revealed that the observed antimicrobial, antioxidant, and anticancer activities of the constituent compounds of T. musilii are thermodynamically feasible, notably, such as those of the tripeptides (Asn-Met-His, His-Cys-Asn, and Phe-His-Gln), isoprenoids (10-Hydroxyloganin), and diterpene glycosides (4-Ketoretinoic acid glucuronide).
Collapse
Affiliation(s)
- Emira Noumi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule 424002, India
| | - Nouha Bouali
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, P.O. Box 6688, Buraidah 51452, Saudi Arabia
| | - Ayshah Aysh ALrashidi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mohammad A Abdulhakeem
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Mitesh Patel
- Centre of Research for Development, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, India
| | - Ozgur Ceylan
- Ula Ali Kocman Vocational School, Mugla Sitki Kocman University, Mugla 48147, Turkey
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Department of Histo Embryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Afnan Elayyan Mousa Elayyan
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
| | - Adel Kadri
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Hail 81451, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Guerra Y, Celi D, Cueva P, Perez-Castillo Y, Giampieri F, Alvarez-Suarez JM, Tejera E. Critical Review of Plant-Derived Compounds as Possible Inhibitors of SARS-CoV-2 Proteases: A Comparison with Experimentally Validated Molecules. ACS OMEGA 2022; 7:44542-44555. [PMID: 36530229 PMCID: PMC9753184 DOI: 10.1021/acsomega.2c05766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Ever since coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, was declared a pandemic on March 11, 2020, by the WHO, a concerted effort has been made to find compounds capable of acting on the virus and preventing its replication. In this context, researchers have refocused part of their attention on certain natural compounds that have shown promising effects on the virus. Considering the importance of this topic in the current context, this study aimed to present a critical review and analysis of the main reports of plant-derived compounds as possible inhibitors of the two SARS-CoV-2 proteases: main protease (Mpro) and Papain-like protease (PLpro). From the search in the PubMed database, a total of 165 published articles were found that met the search patterns. A total of 590 unique molecules were identified from a total of 122 articles as potential protease inhibitors. At the same time, 114 molecules reported as natural products and with annotation of theoretical support and antiviral effects were extracted from the COVID-19 Help database. After combining the molecules extracted from articles and those obtained from the database, we identified 648 unique molecules predicted as potential inhibitors of Mpro and/or PLpro. According to our results, several of the predicted compounds with higher theoretical confidence are present in many plants used in traditional medicine and even food, such as flavonoids, carboxylic acids, phenolic acids, triterpenes, terpenes phytosterols, and triterpenoids. These are potential inhibitors of Mpro and PLpro. Although the predictions of several molecules against SARS-CoV-2 are promising, little experimental information was found regarding certain families of compounds. Only 45 out of the 648 unique molecules have experimental data validating them as inhibitors of Mpro or PLpro, with the most frequent scaffold present in these 45 compounds being the flavone. The novelty of this work lies in the analysis of the structural diversity of the chemical space among the molecules predicted as inhibitors of SARS-CoV-2 Mpro and PLpro proteases and the comparison to those molecules experimentally validated. This work emphasizes the need for experimental validation of certain families of compounds, preferentially combining classical enzymatic assays with interaction-based methods. Furthermore, we recommend checking the presence of Pan-Assay Interference Compounds (PAINS) and the presence of molecules previously reported as inhibitors of Mpro or PLpro to optimize resources and time in the discovery of new SARS-CoV-2 antivirals from plant-derived molecules.
Collapse
Affiliation(s)
- Yasel Guerra
- Ingeniería
en Biotecnología, Facultad de Ingeniería y Ciencias
Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, Quito 170125, Ecuador
| | - Diana Celi
- Facultad
de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Paul Cueva
- Facultad
de Posgrado, Universidad de Las Américas, Quito 170125, Ecuador
| | - Yunierkis Perez-Castillo
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, Quito 170125, Ecuador
- Área
de Ciencias Aplicadas, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
| | - Francesca Giampieri
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Research
Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - José Miguel Alvarez-Suarez
- Departamento
de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170157, Ecuador
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Eduardo Tejera
- Ingeniería
en Biotecnología, Facultad de Ingeniería y Ciencias
Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador
- Grupo
de Bio-Quimioinformática, Universidad
de Las Américas, Quito 170125, Ecuador
| |
Collapse
|
6
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Ji X, Meng X, Zhu X, He Q, Cui Y. Research and development of Chinese anti-COVID-19 drugs. Acta Pharm Sin B 2022; 12:4271-4286. [PMID: 36119967 PMCID: PMC9472487 DOI: 10.1016/j.apsb.2022.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
The outbreak and spread of coronavirus disease 2019 (COVID-19) highlighted the importance and urgency of the research and development of therapeutic drugs. Very early into the COVID-19 pandemic, China has begun developing drugs, with some notable progress. Herein, we summarizes the anti-COVID-19 drugs and promising drug candidates originally developed and researched in China. Furthermore, we discussed the developmental prospects, mechanisms of action, and advantages and disadvantages of the anti-COVID-19 drugs in development, with the aim to contribute to the rational use of drugs in COVID-19 treatment and more effective development of new drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the variants. Neutralizing antibody is an effective approach to overcome COVID-19. However, drug resistance induced by rapid virus mutation will likely to challenge neutralizing antibodies. Taking into account current epidemic trends, small molecule drugs have a crucial role in fighting COVID-19 due to their significant advantage of convenient administration and affordable and broad-spectrum. Traditional Chinese medicines, including natural products and traditional Chinese medicine prescriptions, contribute to the treatment of COVID-19 due to their unique mechanism of action. Currently, the research and development of Chinese anti-COVID-19 drugs have led to some promising achievements, thus prompting us to expect even more rapidly available solutions.
Collapse
Affiliation(s)
- Xiwei Ji
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| | - Xiangrui Meng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
8
|
Multifunctional Derivatives of Spiropyrrolidine Tethered Indeno-Quinoxaline Heterocyclic Hybrids as Potent Antimicrobial, Antioxidant and Antidiabetic Agents: Design, Synthesis, In Vitro and In Silico Approaches. Molecules 2022; 27:molecules27217248. [PMID: 36364077 PMCID: PMC9653804 DOI: 10.3390/molecules27217248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
To combat emerging antimicrobial-resistant microbes, there is an urgent need to develop new antimicrobials with better therapeutic profiles. For this, a series of 13 new spiropyrrolidine derivatives were designed, synthesized, characterized and evaluated for their in vitro antimicrobial, antioxidant and antidiabetic potential. Antimicrobial results revealed that the designed compounds displayed good activity against clinical isolated strains, with 5d being the most potent (MIC 3.95 mM against Staphylococcus aureus ATCC 25923) compared to tetracycline (MIC 576.01 mM). The antioxidant activity was assessed by trapping DPPH, ABTS and FRAP assays. The results suggest remarkable antioxidant potential of all synthesized compounds, particularly 5c, exhibiting the strongest activity with IC50 of 3.26 ± 0.32 mM (DPPH), 7.03 ± 0.07 mM (ABTS) and 3.69 ± 0.72 mM (FRAP). Tested for their α-amylase inhibitory effect, the examined analogues display a variable degree of α-amylase activity with IC50 ranging between 0.55 ± 0.38 mM and 2.19 ± 0.23 mM compared to acarbose (IC50 1.19 ± 0.02 mM), with the most active compounds being 5d, followed by 5c and 5j, affording IC50 of 0.55 ± 0.38 mM, 0.92 ± 0.10 mM, and 0.95 ± 0.14 mM, respectively. Preliminary structure–activity relationships revealed the importance of such substituents in enhancing the activity. Furthermore, the ADME screening test was applied to optimize the physicochemical properties and determine their drug-like characteristics. Binding interactions and stability between ligands and active residues of the investigated enzymes were confirmed through molecular docking and dynamic simulation study. These findings provided guidance for further developing leading new spiropyrrolidine scaffolds with improved dual antimicrobial and antidiabetic activities.
Collapse
|
9
|
Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon 2022; 8:e10702. [PMID: 36157310 PMCID: PMC9484857 DOI: 10.1016/j.heliyon.2022.e10702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 remains an international concern. Although there are drugs to fight it, new natural alternatives such as polyphenols are essential due to their antioxidant activity and high antiviral potential. In this context, this review reports the main findings on the effect of phenolic compounds (PCs) against SARS-CoV-2 virus. First, the proven activity of PCs against different human viruses is briefly detailed, which serves as a starting point to study their anti-COVID-19 potential. SARS-CoV-2 targets (its proteins) are defined. Findings from in silico, in vitro and in vivo studies of a wide variety of phenolic compounds are shown, emphasizing their mechanism of action, which is fundamental for drug design. Furthermore, clinical trials have demonstrated the effectiveness of PCs in the prevention and as a possible therapeutic management against COVID-19. The results were complemented with information on the influence of polyphenols in strengthening/modulating the immune system. It is recommended to investigate compounds such as vitamins, minerals, alkaloids, triterpenes and fatty acids, and their synergistic use with PCs, many of which have been successful against SARS-CoV-2. Based on findings on other viruses, synergistic evaluation of PCs with accepted drugs against COVID-19 is also suggested. Other recommendations and limitations are also shown, which is useful for professionals involved in the development of efficient, safe and low-cost therapeutic strategies based on plant matrices rich in PCs. To the authors' knowledge, this manuscript is the first to evaluate the relationship between the antiviral and immunomodulatory (including anti-inflammatory and antioxidant effects) activity of PCs and their underlying mechanisms in relation to the fight against COVID-19. It is also of interest for the general population to be informed about the importance of consuming foods rich in bioactive compounds for their health benefits.
Collapse
|
10
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Zhang K, Wang K, Zhang C, Teng X, Li D, Chen M. Exploring the potential mechanism of emetine against coronavirus disease 2019 combined with lung adenocarcinoma: bioinformatics and molecular simulation analyses. BMC Cancer 2022; 22:687. [PMID: 35733175 PMCID: PMC9214478 DOI: 10.1186/s12885-022-09763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) may be more predisposed to coronavirus disease 2019 (COVID-19) and have a poorer prognosis. Currently, there is still a lack of effective anti-LUAD/COVID-19 drugs. Thus, this study aimed to screen for an effective anti-LUAD/COVID-19 drug and explore the potential mechanisms. METHODS Firstly, we performed differentially expressed gene (DEG) analysis on LUAD transcriptome profiling data in The Cancer Genome Atlas (TCGA), where intersections with COVID-19-related genes were screened out. Then, we conducted Cox proportional hazards analyses on these LUAD/COVID-19 DEGs to construct a risk score. Next, LUAD/COVID-19 DEGs were uploaded on Connectivity Map to obtain drugs for anti-LUAD/COVID-19. Finally, we used network pharmacology, molecular docking, and molecular dynamics (MD) simulation to explore the drug's therapeutic targets and potential mechanisms for anti-LUAD/COVID-19. RESULTS We identified 230 LUAD/COVID-19 DEGs and constructed a risk score containing 7 genes (BTK, CCL20, FURIN, LDHA, TRPA1, ZIC5, and SDK1) that could classify LUAD patients into two risk groups. Then, we screened emetine as an effective drug for anti-LUAD/COVID-19. Network pharmacology analyses identified 6 potential targets (IL6, DPP4, MIF, PRF1, SERPING1, and SLC6A4) for emetine in anti-LUAD/COVID-19. Molecular docking and MD simulation analyses showed that emetine exhibited excellent binding capacities to DDP4 and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSIONS This study found that emetine may inhibit the entry and replication of SARS-CoV-2 and enhance tumor immunity by bounding to DDP4 and Mpro.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Chaoguo Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xiuli Teng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Dan Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
12
|
Valipour M. Different Aspects of Emetine's Capabilities as a Highly Potent SARS-CoV-2 Inhibitor against COVID-19. ACS Pharmacol Transl Sci 2022; 5:387-399. [PMID: 35702393 PMCID: PMC9159504 DOI: 10.1021/acsptsci.2c00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 01/18/2023]
Abstract
In the global movement to find the appropriate agents to fight the coronavirus disease of 2019 (COVID-19), emetine is one of the strongest anti-SARS-CoV-2 compounds with sub-micromolar EC50 values, identified in several studies and high-throughput screening efforts. The reported anti-SARS-CoV-2 mechanisms indicate the effect of this compound on both virus-based and host-based targets. In addition to having excellent antiviral effects, emetine can relieve COVID-19 patients by reducing inflammation through inhibitory activity against NF-κB by the mechanism of IκBα phosphorylation inhibition; it can also limit the lipopolysaccharide-induced expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-6. Emetine also can well reduce pulmonary arterial hypertension as an important COVID-19 complication by modulating a variety of cellular processes such as the Rho-kinase/CyPA/Bsg signaling pathway. The therapeutic value of emetine for combating COVID-19 was highlighted when in vivo pharmacokinetic studies showed that the concentration of this compound in the lungs increases significantly higher than the EC50 of the drug. Despite its valuable therapeutic effects, emetine has some cardiotoxic effects that limit its use in high doses. However, high therapeutic capabilities make emetine a valuable lead compound that can be used for the design and development of less toxic anti-COVID-19 agents in the future. This Review provides a collection of information on the capabilities of emetine and its potential for the treatment of COVID-19, along with structural analysis which could be used for further research in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry,
Faculty of Pharmacy, Mazandaran University
of Medical Sciences, 48175-866 Sari, Iran
| |
Collapse
|
13
|
Zhang S, Lyons N, Koedam M, van de Peppel J, van Leeuwen JP, van der Eerden BCJ. Identification of small molecules as novel anti-adipogenic compounds based on Connectivity Map. Front Endocrinol (Lausanne) 2022; 13:1017832. [PMID: 36589834 PMCID: PMC9800878 DOI: 10.3389/fendo.2022.1017832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Several physiological and pathological conditions such as aging, obesity, diabetes, anorexia nervosa are associated with increased adipogenesis in the bone marrow. A lack of effective drugs hinder the improved treatment for aberrant accumulation of bone marrow adipocytes. Given the higher costs, longer duration and sometimes lack of efficacy in drug discovery, computational and experimental strategies have been used to identify previously approved drugs for the treatment of diseases, also known as drug repurposing. Here, we describe the method of small molecule-prioritization by employing adipocyte-specific genes using the connectivity map (CMap). We then generated transcriptomic profiles using human mesenchymal stromal cells under adipogenic differentiation with the treatment of prioritized compounds, and identified emetine and kinetin-riboside to have a potent inhibitory effect on adipogenesis. Overall, we demonstrated a proof-of-concept method to identify repurposable drugs capable of inhibiting adipogenesis, using the Connectivity Map.
Collapse
Affiliation(s)
- Shuang Zhang
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicholas Lyons
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen van de Peppel
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johannes P.T.M. van Leeuwen
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram C. J. van der Eerden
- Laboratory for Calcium and Bone Metabolism, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Bram C. J. van der Eerden,
| |
Collapse
|
14
|
Zrieq R, Ahmad I, Snoussi M, Noumi E, Iriti M, Algahtani FD, Patel H, Saeed M, Tasleem M, Sulaiman S, Aouadi K, Kadri A. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10693. [PMID: 34639036 PMCID: PMC8509278 DOI: 10.3390/ijms221910693] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab., Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- BAT Center—Interuniversity Center for Studies on Bioispired Agro-Environmental Technology, University of Napoli “Federico II”, Portici, 80055 Napoli, Italy
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Shadi Sulaiman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Al Bahah 65731, Saudi Arabia;
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|