1
|
Liu JA, Meléndez-Fernández OH, Bumgarner JR, Nelson RJ. Effects of light pollution on photoperiod-driven seasonality. Horm Behav 2022; 141:105150. [PMID: 35304351 PMCID: PMC10137835 DOI: 10.1016/j.yhbeh.2022.105150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/23/2022]
Abstract
Changes to photoperiod (day length) occur in anticipation of seasonal environmental changes, altering physiology and behavior to maximize fitness. In order for photoperiod to be useful as a predictive factor of temperature or food availability, day and night must be distinct. The increasing prevalence of exposure to artificial light at night (ALAN) in both field and laboratory settings disrupts photoperiodic time measurement and may block development of appropriate seasonal adaptations. Here, we review the effects of ALAN as a disruptor of photoperiodic time measurement and season-specific adaptations, including reproduction, metabolism, immune function, and thermoregulation.
Collapse
Affiliation(s)
- Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA.
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, West Virginia, USA
| |
Collapse
|
2
|
Physiological rhythms are influenced by photophase wavelength in a nocturnal and a diurnal rodent species from South Africa. Physiol Behav 2021; 240:113551. [PMID: 34375624 DOI: 10.1016/j.physbeh.2021.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
The quality and quantity of light changes significantly over the course of the day. The effect of light intensity on physiological and behavioural responses of animals has been well documented, particularly during the scotophase, but the effect of the wavelength of light, particularly during the photophase, less so. We assessed the daily responses in urine production, urinary 6-sulfatoxymelatonin (6-SMT) and glucocorticoid metabolite (uGCM) concentrations in the nocturnal Namaqua rock mouse (Micaelamys namaquensis) and diurnal four striped field mouse (Rhabdomys pumilio) under varying wavelengths of near monochromatic photophase (daytime) lighting. Animals were exposed to a short-wavelength light cycle (SWLC; ∼465-470 nm), a medium-wavelength light cycle (MWLC; ∼515-520 nm) and a long-wavelength light cycle (LWLC; ∼625-630 nm). The SWLC significantly attenuated mean daily urine production rates and the mean daily levels of urinary 6-SMT and of uGCM were inversely correlated with wavelength in both species. The presence of the SWLC greatly augmented overall daily 6-SMT levels, and simultaneously led to the highest uGCM concentrations in both species. In M. namaquensis, the urine production rate and urinary 6-SMT concentrations were significantly higher during the scotophase compared to the photophase under the SWLC and MWLC, whereas the uGCM concentrations were significantly higher during the scotophase under all WLCs. In R. pumilio, the urine production rate and uGCM were significantly higher during the scotophase of the SWLC, not the MWLC and LWLC. Our results illustrate that wavelength in the photophase plays a central role in the entrainment of rhythms in diurnal and nocturnal African rodent species.
Collapse
|
3
|
Rybnikova N, Stevens RG, Gregorio DI, Samociuk H, Portnov BA. Kernel density analysis reveals a halo pattern of breast cancer incidence in Connecticut. Spat Spatiotemporal Epidemiol 2018; 26:143-151. [PMID: 30390929 DOI: 10.1016/j.sste.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/30/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
Breast cancer (BC) incidence rates in Connecticut are among the highest in the United States, and are unevenly distributed within the state. Our goal was to determine whether artificial light at night (ALAN) played a role. Using BC records obtained from the Connecticut Tumor Registry, we applied the double kernel density (DKD) estimator to produce a continuous relative risk surface of a disease throughout the State. A multi-variate analysis compared DKD and census track estimates with population density, fertility rate, percent of non-white population, population below poverty level, and ALAN levels. The analysis identified a "halo" geographic pattern of BC incidence, with the highest rates of the disease observed at distances 5-15 km from the state's major cities. The "halo" was of high-income communities, with high ALAN, located in suburban fringes of the state's main cities.
Collapse
Affiliation(s)
- Natalya Rybnikova
- Department of Natural Resources and Environment Management, Faculty of Management, University of Haifa, Haifa, Israel
| | - Richard G Stevens
- Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States.
| | - David I Gregorio
- Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Holly Samociuk
- Department of Community Medicine, School of Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Boris A Portnov
- Department of Natural Resources and Environment Management, Faculty of Management, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Rybnikova N, Portnov BA. Population-level study links short-wavelength nighttime illumination with breast cancer incidence in a major metropolitan area. Chronobiol Int 2018; 35:1198-1208. [PMID: 29768068 DOI: 10.1080/07420528.2018.1466802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several population-level studies revealed a positive association between breast cancer (BC) incidence and artificial light at night (ALAN) exposure. However, the effect of short-wavelength illumination, implicated by laboratory research and small-scale cohort studies as the main driving force behind BC-ALAN association, has not been supported by any population-level study carried out to date. We investigated a possible link between BC and ALAN of different subspectra using a multi-spectral year-2011 satellite image, taken from the International Space Station, and superimposing it with year-2013 BC incidence data available for the Great Haifa Metropolitan Area in Israel. The analysis was performed using both ordinary least square (OLS) and spatial dependency models, controlling for socioeconomic and locational attributes of the study area. The study revealed strong associations between BC and blue and green light subspectra (B = 0.336 ± 0.001 and B = 0.335 ± 0.002, respectively; p < 0.01), compared to a somewhat weaker effect for the red subspectrum (B = 0.056 ± 0.001; p < 0.01). However, spatial dependency models, controlling for spatial autocorrelation of regression residuals, confirmed only a positive association between BC incidence and short-wavelength (blue) ALAN subspectrum (z = 2.462, p < 0.05) while reporting insignificant associations between BC and either green (z = 1.425, p > 0.1) or red (z = -0.604, p > 0.1) subspectra. The obtained result is in line with the results of laboratory- and small-scale cohort studies linking short-wavelength nighttime illumination with circadian disruption and melatonin suppression. The detected effect of blue lights on BC incidence may help to develop informed illumination policies aimed at minimizing the adverse health effects of ALAN exposure on human health.
Collapse
Affiliation(s)
- Nataliya Rybnikova
- a Department of Natural Resources and Environmental Management , University of Haifa , Haifa , Israel
| | - Boris A Portnov
- a Department of Natural Resources and Environmental Management , University of Haifa , Haifa , Israel
| |
Collapse
|
5
|
Gaston KJ, Holt LA. Nature, extent and ecological implications of night-time light from road vehicles. J Appl Ecol 2018; 55:2296-2307. [PMID: 30147142 PMCID: PMC6099288 DOI: 10.1111/1365-2664.13157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/09/2018] [Indexed: 11/28/2022]
Abstract
The erosion of night‐time by the introduction of artificial lighting constitutes a profound pressure on the natural environment. It has altered what had for millennia been reliable signals from natural light cycles used for regulating a host of biological processes, with impacts ranging from changes in gene expression to ecosystem processes. Studies of these impacts have focused almost exclusively on those resulting from stationary sources of light emissions, and particularly streetlights. However, mobile sources, especially road vehicle headlights, contribute substantial additional emissions. The ecological impacts of light emissions from vehicle headlights are likely to be especially high because these are (1) focused so as to light roadsides at higher intensities than commonly experienced from other sources, and well above activation thresholds for many biological processes; (2) projected largely in a horizontal plane and thus can carry over long distances; (3) introduced into much larger areas of the landscape than experience street lighting; (4) typically broad “white” spectrum, which substantially overlaps the action spectra of many biological processes and (5) often experienced at roadsides as series of pulses of light (produced by passage of vehicles), a dynamic known to have major biological impacts. The ecological impacts of road vehicle headlights will markedly increase with projected global growth in numbers of vehicles and the road network, increasing the local severity of emissions (because vehicle numbers are increasing faster than growth in the road network) and introducing emissions into areas from which they were previously absent. The effects will be further exacerbated by technological developments that are increasing the intensity of headlight emissions and the amounts of blue light in emission spectra. Synthesis and applications. Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Emissions from vehicle headlights need to be considered as a major, and growing, source of ecological impacts of artificial night‐time lighting. It will be a significant challenge to minimise these impacts whilst balancing drivers' needs at night and avoiding risk and discomfort for other road users. Nonetheless, there is potential to identify solutions to these conflicts, both through the design of headlights and that of roads.
Collapse
Affiliation(s)
- Kevin J. Gaston
- Environment & Sustainability Institute; University of Exeter; Cornwall UK
- Wissenschaftskolleg zu Berlin, Institute for Advanced Study; Berlin Germany
| | - Lauren A. Holt
- Environment & Sustainability Institute; University of Exeter; Cornwall UK
| |
Collapse
|
6
|
Huang DJ, Yang SK. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:390-5. [PMID: 26950871 PMCID: PMC4811791 DOI: 10.5713/ajas.15.0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/08/2015] [Accepted: 06/22/2015] [Indexed: 11/27/2022]
Abstract
This study was conducted to investigate the effect of nocturnal light pulses (NLPs) on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control) or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day), whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR) was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05) the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05) than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime.
Collapse
|
7
|
Le Tallec T, Théry M, Perret M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J Mammal 2016. [DOI: 10.1093/jmammal/gyw003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
8
|
Rybnikova N, Haim A, Portnov BA. Artificial Light at Night (ALAN) and breast cancer incidence worldwide: A revisit of earlier findings with analysis of current trends. Chronobiol Int 2015; 32:757-73. [DOI: 10.3109/07420528.2015.1043369] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
LeTallec T, Théry M, Perret M. Effects of light pollution on seasonal estrus and daily rhythms in a nocturnal primate. J Mammal 2015. [DOI: 10.1093/jmammal/gyv047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
10
|
Gaston KJ, Duffy JP, Gaston S, Bennie J, Davies TW. Human alteration of natural light cycles: causes and ecological consequences. Oecologia 2014; 176:917-31. [PMID: 25239105 PMCID: PMC4226844 DOI: 10.1007/s00442-014-3088-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022]
Abstract
Artificial light at night is profoundly altering natural light cycles, particularly as perceived by many organisms, over extensive areas of the globe. This alteration comprises the introduction of light at night at places and times at which it has not previously occurred, and with different spectral signatures. Given the long geological periods for which light cycles have previously been consistent, this constitutes a novel environmental pressure, and one for which there is evidence for biological effects that span from molecular to community level. Here we provide a synthesis of understanding of the form and extent of this alteration, some of the key consequences for terrestrial and aquatic ecosystems, interactions and synergies with other anthropogenic pressures on the environment, major uncertainties, and future prospects and management options. This constitutes a compelling example of the need for a thoroughly interdisciplinary approach to understanding and managing the impact of one particular anthropogenic pressure. The former requires insights that span molecular biology to ecosystem ecology, and the latter contributions of biologists, policy makers and engineers.
Collapse
Affiliation(s)
- Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK,
| | | | | | | | | |
Collapse
|
11
|
Ashkenazy-Frolinger T, Einat H, Kronfeld-Schor N. Diurnal rodents as an advantageous model for affective disorders: novel data from diurnal degu (Octodon degus). J Neural Transm (Vienna) 2013; 122 Suppl 1:S35-45. [PMID: 24352409 DOI: 10.1007/s00702-013-1137-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/06/2013] [Indexed: 01/13/2023]
Abstract
Circadian rhythms are strongly associated with affective disorders and recent studies have suggested utilization of diurnal rodents as model animal for circadian rhythms-related domains of these disorders. Previous work with the diurnal fat sand rat and Nile grass rat demonstrated that short photoperiod conditions result in behavioral changes including anxiety- and depression-like behavior. The present study examined the effect of manipulating day length on activity rhythms and behavior of the diurnal degu. Animals were housed for 3 weeks under either a short photoperiod (5-h:19-h LD) or a neutral photoperiod (12-h:12-h LD) and then evaluated by sweet solution test and the forced swim test for depression-like behavior, and in the light/dark box and open field for anxiety-like behavior. Results indicate that short photoperiod induced depression-like behavior in the forced swim test and the sweet solution preference test and anxiety-like behavior in the open field compared with animals maintained in a neutral photoperiod. No effects were shown in the light/dark box. Short photoperiod-acclimated degu showed reduced total activity duration and activity was not restricted to the light phase. The present study further supports the utilization of diurnal rodents to model circadian rhythms-related affective change. Beyond the possible diversity in the mechanisms underlying diurnality in different animals, there are now evidences that in three different diurnal species, the fat sand rat, the grass Nile rat and the degu, shortening of photoperiod results in the appearance of anxiety- and depression-like behaviors.
Collapse
|
12
|
|
13
|
Le Tallec T, Perret M, Théry M. Light pollution modifies the expression of daily rhythms and behavior patterns in a nocturnal primate. PLoS One 2013; 8:e79250. [PMID: 24236115 PMCID: PMC3827385 DOI: 10.1371/journal.pone.0079250] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/19/2013] [Indexed: 11/23/2022] Open
Abstract
Among anthropogenic pressures, light pollution altering light/dark cycles and changing the nocturnal component of the environment constitutes a threat for biodiversity. Light pollution is widely spread across the world and continuously growing. However, despite the efforts realized to describe and understand the effects of artificial lighting on fauna, few studies have documented its consequences on biological rhythms, behavioral and physiological functions in nocturnal mammals. To determine the impacts of light pollution on nocturnal mammals an experimental study was conducted on a nocturnal primate, the grey mouse lemur Microcebus murinus. Male mouse lemurs (N = 8) were exposed 14 nights to moonlight treatment and then exposed 14 nights to light pollution treatment. For both treatments, chronobiological parameters related to locomotor activity and core temperature were recorded using telemetric transmitters. In addition, at the end of each treatment, the 14th night, nocturnal and feeding behaviors were explored using an infrared camera. Finally, throughout the study, body mass and daily caloric food intake were recorded. For the first time in a nocturnal primate, light pollution was demonstrated to modify daily rhythms of locomotor activity and core temperature especially through phase delays and increases in core temperature. Moreover, nocturnal activity and feeding behaviors patterns were modified negatively. This study suggests that light pollution induces daily desynchronization of biological rhythms and could lead to seasonal desynchronization with potential deleterious consequences for animals in terms of adaptation and anticipation of environmental changes.
Collapse
Affiliation(s)
- Thomas Le Tallec
- Mécanismes Adaptatifs et Evolution, UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Martine Perret
- Mécanismes Adaptatifs et Evolution, UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Marc Théry
- Mécanismes Adaptatifs et Evolution, UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
- * E-mail:
| |
Collapse
|
14
|
Schwimmer H, Metzer A, Pilosof Y, Szyf M, Machnes ZM, Fares F, Harel O, Haim A. Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol Int 2013; 31:144-50. [DOI: 10.3109/07420528.2013.842925] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Haim A, Shanas U, Brandes O, Gilboa A. Suggesting the use of integrated methods for vole population management in alfalfa fields. Integr Zool 2013; 2:184-190. [PMID: 21396034 DOI: 10.1111/j.1749-4877.2007.00054.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human-made agro-ecosystems lack negative feedback controls, which may result in rodent population explosions, causing considerable economic loss and thus increasing human-wildlife conflicts. The traditional solution is the extensive use of rodenticides, which have a negative impact on the environment. In Beit-Sheaan Valley, Israel, which is located on a major route for migrating birds, poisoning of voles may result in the death of birds that prey on the dead voles (e.g. storks and herons). In the present essay we discuss some integrated methods, based on the implementation of ecological principles in agro-ecosystems, that could be used to decrease the use of rodenticides. The first method is light interference during winter (long scotophase), which can result in the death of the social vole Microtus socialis kept in enclosures under natural conditions. Under laboratory conditions such interference causes a decrease in thermoregulatory ability in the cold. As light interference is a source of pollution, only active vole burrows should be illuminated. The second method involves using the mobile irrigation pipelines to flood the vole burrows and force them to escape into the open, where diurnal birds such as storks and herons will prey on them. The third method involves the use of nesting boxes for barn owls and stands for diurnal raptors, both of which prey on voles. The great advantage of using an integrated approach is that voles cannot become adapted to any one of the methods. Such integrated methods, together with appropriate treatment of alfalfa fields by farmers, can provide an efficient and sustainable pest control approach.
Collapse
Affiliation(s)
- Abraham Haim
- Department of Biology, University of Haifa - Oranim, Kiryat Tivon, IsraelEden Experimental Farm, Emeq Beit Sheaan, Israel
| | - Uri Shanas
- Department of Biology, University of Haifa - Oranim, Kiryat Tivon, IsraelEden Experimental Farm, Emeq Beit Sheaan, Israel
| | - Ora Brandes
- Department of Biology, University of Haifa - Oranim, Kiryat Tivon, IsraelEden Experimental Farm, Emeq Beit Sheaan, Israel
| | - Abraham Gilboa
- Department of Biology, University of Haifa - Oranim, Kiryat Tivon, IsraelEden Experimental Farm, Emeq Beit Sheaan, Israel
| |
Collapse
|
16
|
Gaston KJ, Bennie J, Davies TW, Hopkins J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol Rev Camb Philos Soc 2013; 88:912-27. [PMID: 23565807 DOI: 10.1111/brv.12036] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 02/16/2013] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.
Collapse
Affiliation(s)
- Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ, U.K
| | | | | | | |
Collapse
|
17
|
Scantlebury M, Haim A. Environmental challenges and physiological solutions: comparative energetic daily rhythms of field mice populations from different ecosystems. PLoS One 2012; 7:e51247. [PMID: 23251469 PMCID: PMC3522656 DOI: 10.1371/journal.pone.0051247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 11/05/2012] [Indexed: 11/22/2022] Open
Abstract
Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO2) and body temperature (Tb) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) ‘winter’ and long-day (LD) ‘summer’ photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO2 values than sub-Alpine mice. In addition, mice exposed to short days had higher VO2 values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased Tb in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing Tb during (‘winter’) conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher Tb during (‘summer’) conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during ‘summer’ conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO2 and Tb daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges.
Collapse
|
18
|
The effects of acute stress on Pavlovian-instrumental transfer in rats. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2012; 13:174-85. [DOI: 10.3758/s13415-012-0129-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Ashkenazi L, Haim A. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice. ACTA ACUST UNITED AC 2012; 215:4034-40. [PMID: 22933613 DOI: 10.1242/jeb.073429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.
Collapse
Affiliation(s)
- Lilach Ashkenazi
- The Israeli Center for Interdisciplinary Research in Chronobiology, Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | |
Collapse
|
20
|
Zubidat AE, Nelson RJ, Haim A. Spectral and duration sensitivity to light-at-night in 'blind' and sighted rodent species. ACTA ACUST UNITED AC 2012; 214:3206-17. [PMID: 21900468 DOI: 10.1242/jeb.058883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light-at-night (LAN) has become a defining feature of human and animal ecosystems and may possibly compromise human and animal physiology and health. Spectral and acclimation duration (AD) sensitivity were compared between social voles (Microtus socialis) and 'blind' mole rats (Spalax ehrenbergi) in four increasing ADs (0, 1, 7 and 21 days) to LAN (1×30 min, 293 μW cm(-2)) of three different monochromatic lights [blue (479 nm), yellow (586 nm) and red (697 nm)]. Animals were sampled for urine and oxygen consumption (V(O(2))) promptly after each LAN-AD. Urine samples were analyzed for production rate, urinary 6-sulfatoxymelatonin and urinary metabolites of adrenalin and cortisol. Overall, the blue light elicited the greatest effects on the biological markers of M. socialis, whereas similar effects were detected for S. ehrenbergi in response to red light. The increasing LAN-AD resulted in a dose-dependent decrement of all markers tested, except of stress hormones, which showed a direct positive correlation with LAN-AD. Our results suggest that: (1) photoperiod is an important cue for entraining physiological functions in the 'blind' S. ehrenbergi, which is essentially characterized by red-shifted sensitivity compared with the blue-shifted sensitivity detected for the sighted counterpart species, and (2) there is a strong association between LAN of the appropriate wavelength and adrenal endocrine responses, suggesting that LAN is a potential environmental stressor.
Collapse
Affiliation(s)
- Abed E Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
21
|
Haim A, Portnov BA. LAN and Breast Cancer Risk: Can We See a Forest Through the Trees?—Response to “Measurements of Light at Night (LAN) for a Sample of Female School Teachers” by M. S. Rea, J. A. Brons, and M. G. Figueiro. Chronobiol Int 2011; 28:734-6. [DOI: 10.3109/07420528.2011.604591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
van der Veen DR, Saaltink DJ, Gerkema MP. Behavioral responses to combinations of timed light, food availability, and ultradian rhythms in the common vole (Microtus arvalis). Chronobiol Int 2011; 28:563-71. [PMID: 21790327 DOI: 10.3109/07420528.2011.591953] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Light is the main entraining signal of the central circadian clock, which drives circadian organization of activity. When food is made available during only certain parts of the day, it can entrain the clock in the liver without changing the phase of the central circadian clock. Although a hallmark of food entrainment is a behavioral anticipation of food availability, the extent of behavioral alterations in response to food availability has not been fully characterized. The authors have investigated interactions between light and temporal food availability in the timing of activity in the common vole. Temporally restricted food availability enhanced or attenuated re-entrainment to a phase advance in light entrainment when it was shifted together with the light or remained at the same time of day, respectively. When light-entrained behavior was challenged with temporal food availability cycles with a different period, two distinct activity components were observed. More so, the present data indicate that in the presence of cycles of different period length of food and light, an activity component emerged that appeared to be driven by a free-running (light-entrainable) clock. Because the authors have previously shown that in the common vole altering activity through running-wheel availability can alter the effectiveness of food availability to entrain the clock in the liver, the authors included running-wheel availability as a parameter that alters the circadian/ultradian balance in activity. In the current protocols, running-wheel availability enhanced the entraining potential of both light and food availability in a differential way. The data presented here show that in the vole activity is a complex of individually driven components and that this activity is, itself, an important modulator of the effectiveness of entraining signals such as light and food.
Collapse
Affiliation(s)
- Daan R van der Veen
- Department of Chronobiology, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
23
|
Thakurdas P, Sharma S, Singh B, Vanlalhriatpuia K, Joshi D. Varying the length of dim nocturnal illumination differentially affects the pacemaker controlling the locomotor activity rhythm of Drosophila jambulina. Chronobiol Int 2011; 28:390-6. [PMID: 21721854 DOI: 10.3109/07420528.2011.574021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Photic entrainment of animals in the field is basically attributed to their exposure to the dimly lit nights flanked by the dawn and dusk twilight transitions. This implicates the functional significance of the dimly lit nights as that of the twilight transitions. Recently, the authors have demonstrated that the dimly lit night at 0.0006 lux altered the attributes of the circadian rhythm of locomotor activity of Drosophila jambulina. The present study examined whether the durations of such dimly lit nights affect the entrainment and free-running rhythmicity of D. jambulina. Flies were subjected for 10 days to two types of 24-h lighting regimes in which the photophase (L) was at 10 lux for all flies but the scotophase, which varied in duration from 9 to 15 h, was either at 0 lux (D phase) for control flies or 0.0006 lux (the artificial starlight or S phase) for experimental flies. Thereafter, they were transferred to constant darkness (DD) to compare the after-effects of the dimly lit nights on the period (τ) of free-running rhythm in DD with that of the completely dark nights. Control flies were entrained by all LD cycles, but the experimental flies were entrained only by five LS cycles in which the duration of the S phases ranged from 10 to 14 h. The two LS cycles with very short (9 h) and long (15 h) S phases rendered the flies completely arrhythmic. Control flies started activity shortly before lights-on and continued well after lights-off. The experimental flies, however, commenced activity several hours prior to lights-on but ended activity abruptly at lights-off as the result of a negative masking effect of nocturnal illumination. Length of the midday rest was considerably shorter in the control than in the experimental flies in each lighting regime. The active phase in the control flies was predictably shortened; nonetheless, it was invariable in the experimental flies as the nights lengthened. Transfer from lighting regimes to DD initiated robust free-running rhythmicity in all flies including the arrhythmic ones subjected to LS cycles with 9 and 15 h of scotophases. The τ was profoundly affected by the nocturnal irradiance of the prior entraining lighting regime, as it was always shorter in the experimental than in the control flies. Thus, these results indisputably demonstrate the changes in fundamental properties of the circadian pacemaker of D. jambulina were solely attributed to the extremely dim nocturnal irradiance. This strain of D. jambulina is entrained essentially by the dimly lit natural nights, since it is never exposed to the prevailing photic cues such as the twilight transitions or bright photoperiod, owing to the dense vegetation of its habitat.
Collapse
Affiliation(s)
- Pooja Thakurdas
- Center for Biological Rhythm Research, Ahmednagar College, Ahmednag, M.S., India
| | | | | | | | | |
Collapse
|
24
|
Zubidat AE, Nelson RJ, Haim A. Photoentrainment in blind and sighted rodent species: responses to photophase light with different wavelengths. J Exp Biol 2010; 213:4213-22. [DOI: 10.1242/jeb.048629] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SUMMARY
Our study examined the impact of daylight (photophase) wavelength on the photoentrainment sensitivity of two species with vastly different visual systems. Social voles (Microtus socialis) and ‘blind’ mole rats (Spalax ehrenbergi) were exposed to short-wavelength (479 nm) or long-wavelength (697 nm) light at an intensity of 293 μW cm–2. Rhythms of urine production, urinary 6-sulfatoxymelatonin (6-SMT), urinary metabolites of adrenaline and cortisol, and oxygen consumption (VO2) were used as markers for the sensitivity of the photoentrainment system. Significant 24-h rhythms were detected in all variables for both species under short-wavelength light, whereas ultradian rhythms of 12- or 8-h were detected under long-wavelength light. Wavelength inversely affected 6-SMT levels in M. socialis (negative correlation) and S. ehrenbergi (positive correlation). Increased levels of stress hormone metabolites were detected in M. socialis under the long-wavelength light whereas, in S. ehrenbergi elevated levels were secreted under short-wavelength light. Long-wavelength light increased VO2 in M. socialis and decreased it in S. ehrenbergi; short-wavelength light elicited the opposite effects. Our results indicate that photophase wavelength is an integral light property for modulating photoperiodic responses in mammals, including visually challenged species. Finally, the spectral-induced differential responses between the two species potentially represent adaptive physiological flexibility in species with contrasting visual and habitat challenges.
Collapse
Affiliation(s)
- Abed E. Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Randy J. Nelson
- Departments of Neuroscience and Psychology, Ohio State University, Columbus, OH 43210, USA
| | - Abraham Haim
- Department of Evolution and Environmental Biology, University of Haifa, Mount Carmel, Haifa 31905, Israel
- The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
25
|
Zubidat AE, Nelson RJ, Haim A. Differential effects of photophase irradiance on metabolic and urinary stress hormone concentrations in blind and sighted rodents. Chronobiol Int 2010; 27:487-516. [PMID: 20524797 DOI: 10.3109/07420521003678577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of different photophase irradiance levels on the daily rhythms of energy expenditure (DEE, calculated from oxygen consumption, VO(2)) and urinary metabolites of stress hormones in sighted (Microtus socialis) and blind (Spalax ehrenbergi) rodents were compared. Five groups of each species were exposed to different irradiance levels (73, 147, 293, 366, and 498 microW/cm(2)) under short photoperiod (8L:16D) condition with constant ambient temperature 25 +/- 2 degrees C for 21 days before assessments. As light intensity increased from 73 microW/cm(2), both species reduced DEE, especially among M. socialis. Cosinor analysis revealed significant ultradian rhythms in VO(2) of M. socialis with period length being inversely related to irradiance level. Conversely, in S. ehrenbergi, robust 24 h VO(2) rhythms were detected at all irradiances. In M. socialis, significant 24 h rhythms in urinary output of adrenaline were detected only at 293 microW/cm(2), whereas for cortisol, unambiguous rhythms were detected at 73 and 147 microW/cm(2). Distinct adrenaline daily rhythms of S. ehrenbergi were observed at 73 and 293 microW/cm(2), whereas this species exhibited significant rhythms in cortisol at 147 and 293 microW/cm(2). Changes in photophase irradiance levels affected stress hormone concentrations in a dose-dependent manner. There were significant negative and positive correlations of M. socialis and S. ehrenbergi stress hormones, respectively, with increasing irradiance. Our results indicate photophase light intensity is another environmental factor that can significantly affect entrainment of mammalian daily rhythms. Both low and high irradiance conditions can trigger stress responses, depending on the species' natural habitat.
Collapse
Affiliation(s)
- Abed E Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel.
| | | | | |
Collapse
|
26
|
Terrien J, Zizzari P, Epelbaum J, Perret M, Aujard F. Daily Rhythms of Core Temperature and Locomotor Activity Indicate Different Adaptive Strategies to Cold Exposure in Adult and Aged Mouse Lemurs Acclimated to a Summer-Like Photoperiod. Chronobiol Int 2010; 26:838-53. [DOI: 10.1080/07420520903044281] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Vivanco P, López-Espinoza A, Madariaga AM, Rol MÁ, Madrid JA. NOCTURNALISM INDUCED BY SCHEDULED FEEDING IN DIURNALOCTODON DEGUS. Chronobiol Int 2010; 27:233-50. [DOI: 10.3109/07420520903398575] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Thakurdas P, Sharma S, Sinam B, Chib M, Joshi D. Nocturnal illumination dimmer than starlight altered the circadian rhythm of adult locomotor activity of a fruit fly. Chronobiol Int 2010; 27:83-94. [PMID: 20205559 DOI: 10.3109/07420520903398567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of nocturnal irradiance tenfold dimmer than starlight intensity on the locomotor activity rhythm of Drosophila jambulina were investigated in two types of light-dark (12 h:12 h) cycles, in which light intensity of the photophase was 10 lux while that of the scotophase was either 0 lux for control flies or 0.0006 lux for experimental flies. Activity onset in the experimental flies was approximately 5.4 h prior to lights-on, so it occurred around midnight. However, activity onset of the control flies coincided almost with the lights-on. Nevertheless, activity offset was the same in both groups, occurring at lights-off. Duration of the active phase (alpha) and activity passes/fly/cycle (APC) in the experimental flies was far greater than in controls. After-effects of the nocturnal illumination of the light-dark cycles when the flies were transferred to constant darkness were evident as the period of the free-running rhythm was shortened, alpha was lengthened, and APC was enhanced in the experimental compared to control flies. Thus, very low photic sensitivity of these flies appears to be a physiological adaptation to dim-light ambiance in its natural breeding site in the field.
Collapse
Affiliation(s)
- Pooja Thakurdas
- Center for Biological Rhythm Research, Ahmednagar College, Ahmednagar 414001, M.S., India
| | | | | | | | | |
Collapse
|
29
|
Zubidat AE, Nelson RJ, Haim A. Photosensitivity to different light intensities in blind and sighted rodents. J Exp Biol 2009; 212:3857-64. [DOI: 10.1242/jeb.033969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Photoperiod is an important cue regulating biological rhythms in mammals, including ‘blind’ subterranean and sighted fossorial rodent species. These species may respond differentially to changes in light quality according to their retinal complexity. The effects of increasing light intensity on daily rhythms of urine excretion and urinary output of 6-sulfatoxymelatonin levels were compared in ‘blind’ mole rats Spalax ehrenbergi and sighted social voles, Microtus socialis. Our results show that the threshold irradiance required to entrain rhythms of voles is three magnitudes greater than that for mole rats. The results suggest that mole rats have an operational photoreceptive pathway with a lower threshold irradiance than voles. Such a low threshold reflects the remarkable capability of this ‘blind’ species to utilize light signals even under challenging light conditions.
Collapse
Affiliation(s)
- A. E. Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Haifa 31905, Israel
| | - R. J. Nelson
- Departments of Psychology and Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - A. Haim
- Department of Evolution and Environmental Biology, University of Haifa, Haifa 31905, Israel
- Department of Biology, University of Haifa—Oranim, Kiryat Tivon 36006, Israel
| |
Collapse
|
30
|
Ellis DJ, Firth BT, Belan I. THERMOCYCLIC AND PHOTOCYCLIC ENTRAINMENT OF CIRCADIAN LOCOMOTOR ACTIVITY RHYTHMS IN SLEEPY LIZARDS,TILIQUA RUGOSA. Chronobiol Int 2009; 26:1369-88. [DOI: 10.3109/07420520903412392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Rani S, Singh S, Malik S, Singh J, Kumar V. Synchronization of Indian Weaver Bird Circadian Rhythms to Food and Light Zeitgebers: Role of Pineal. Chronobiol Int 2009; 26:653-65. [DOI: 10.1080/07420520902926009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Vivanco P, Rol MÁ, Madrid JA. Two Steady‐Entrainment Phases and Graded Masking Effects by Light Generate Different Circadian Chronotypes inOctodon degus. Chronobiol Int 2009; 26:219-41. [DOI: 10.1080/07420520902768203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Portaluppi F. Consistency and Accuracy of the Medical Subject Headings® Thesaurus for Electronic Indexing and Retrieval of Chronobiologic References. Chronobiol Int 2009; 24:1213-29. [DOI: 10.1080/07420520701791570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
We are in the dark here: induction of depression- and anxiety-like behaviours in the diurnal fat sand rat, by short daylight or melatonin injections. Int J Neuropsychopharmacol 2009; 12:83-93. [PMID: 18631427 DOI: 10.1017/s1461145708009115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Circadian rhythms are considered an important factor in the aetiology, expression and treatment of major affective disorders, including seasonal affective disorder (SAD). However, data on the effects of daylight length manipulation or melatonin administration are complex. It has been suggested that since diurnal and nocturnal mammals differ significantly in their physiological and behavioural responses to daylight, diurnal rodents offer a preferable model of disorders related to circadian rhythms in the diurnal human. We previously found that diurnal fat sand rats maintained under short daylight (SD), show depression-like behaviour in the forced swim test (FST). The present study was designed to test additional behaviours related to affective disorders and study the involvement of melatonin in these behaviours. Sand rats were divided into short-daylight (SD, 5 h light:19 h dark) and long-daylight (LD, 12 h light:12 h dark) groups, and received 100 microg melatonin or vehicle administration for 3 wk (5 h and 8.5 h after light onset in the LD room). Animals were then tested for reward-seeking behaviour (saccharin consumption), anxiety (elevated plus-maze), aggression (resident-intruder test), and depression-like behaviour (FST). SD or melatonin administration resulted in a depressed/anxious-like behavioural phenotype including reduced reward seeking, increased anxiety, decreased aggression and decreased activity in the FST, supporting the notion that in a diurnal animal, reduced light results in a variety of behavioural changes that may model depression and anxiety; and that melatonin may be a significant factor in these changes. We suggest that the sand rat may offer an excellent model species to explore the interactions between daylight, affective behaviour and the related underlying mechanisms.
Collapse
|
35
|
A differential response in the reproductive system and energy balance of spiny mice Acomys populations to vasopressin treatment. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:499-504. [PMID: 18640282 DOI: 10.1016/j.cbpa.2008.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 11/22/2022]
Abstract
Increased dietary salinity suppressed reproduction of the xeric adapted golden spiny mouse, Acomys russatus. Testicular and uterine mass were reduced, suppressed spermatogenesis and vaginal closure were observed. The anti-diuretic hormone, vasopressin (VP), was suggested to mediate such effects. However, increased dietary salinity did not affect reproductive status of a mesic adapted population of the common spiny mouse, A. cahirinus. In the present study, the effect of exogenous VP on the reproductive status and energy balance of both males and females of A. russatus and of a mesic population of A. cahirinus was tested. Vasopressin (Sigma, 50 microg/kg) was injected intraperitoneally in three-day intervals for four weeks. In VP-treated A. russatus, spermatogenesis was significantly suppressed while the change in testis mass did not show significant difference. Both control and VP-treated females lost body mass (W(b)) significantly and the latter also exhibited a higher energy expenditure compared to their male counterparts. VP did not affect reproductive status in both sexes of A. cahirinus. Also it did not have a significant effect on W(b), energy intake, and energy expenditure in this species. Our results support the idea that VP mediates the effects of increased diet salinity on reproduction in A. russatus. The results also reinforce previous knowledge that different physiological systems could be integrated by a single biochemical signal.
Collapse
|
36
|
Beery AK, Loo TJ, Zucker I. Day length and estradiol affect same-sex affiliative behavior in the female meadow vole. Horm Behav 2008; 54:153-9. [PMID: 18387611 PMCID: PMC2501115 DOI: 10.1016/j.yhbeh.2008.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/09/2008] [Accepted: 02/11/2008] [Indexed: 11/22/2022]
Abstract
Non-sexual social bonding between adult mammals is poorly understood, despite its importance in many species. Female meadow voles are territorial and nest alone in long summer day lengths when circulating estradiol concentrations are high, but cohabit in groups in short winter photoperiods when estradiol secretion is low. The influence of day length and estradiol on same-sex huddling behavior was assessed in adult female pairs housed together in long day lengths (LDs) or short day lengths (SDs) from weaning. The behavior of intact, ovariectomized, and estradiol-treated ovariectomized females from each photoperiod was assessed during 3 h partner-preference tests. Intact SD voles, unlike intact LD voles, spent the majority of the test in proximity to their cage-mates. Estradiol treatment of SD voles significantly reduced time spent huddling with the partner. Neither ovariectomy nor estradiol treatment significantly affected the amount of time LD females spent in contact with their partners. Low estradiol availability is therefore a necessary but not sufficient condition for maintenance of high levels of huddling. These results establish that ovarian hormones interact with photoperiod to affect same-sex social behavior.
Collapse
Affiliation(s)
- Annaliese K Beery
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
37
|
Zubidat AE, Nelson RJ, Haim A. Urinary adrenalin and cortisol secretion patterns of social voles in response to adrenergic blockade under basal conditions. Physiol Behav 2008; 93:243-9. [PMID: 17910962 DOI: 10.1016/j.physbeh.2007.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/08/2007] [Accepted: 08/29/2007] [Indexed: 11/19/2022]
Abstract
The effect of alpha(1)- and beta-adrenergic blockade on daily rhythms of urinary adrenalin (ADR) and cortisol (CORT) under basal conditions were evaluated. Voles acclimated to a 12:12 h light/dark cycle at 26+/-2 degrees C received a single dose of either propranolol (PROP; 4.5 mg/kg) or prazosin (PRAZ; 1 mg/kg) 1 h before lights off. Urine samples were collected for 24 h at 4 h intervals. PROP evokes a significant increase in mean urinary ADR; although CORT was unaffected by PROP, PRAZ administration significantly decreased both urinary ADR and CORT during the scotophase as compared with control voles. Cosinor analysis indicated a significant 24 h rhythm in urinary ADR, but not in CORT secretion. ADR mesor and amplitude were increased and acrophase was significantly delayed by 5 h in PROP-treated voles; PRAZ elicited opposite effects. Unexpectedly, these changes in the 24 h ADR rhythm persisted 4-weeks after PROP-treatment. The 24 h rhythm components of urinary CORT were marginally altered 4-weeks post-PROP, but only the acrophase showed a significant change. Collectively, the results indicate that sympathetic activity has a redundant compensatory mechanism defending against physiological changes induced by beta-blockade. The simultaneous decrease in adrenal hormones induced by PRAZ suggests that alpha(1)-adrenoceptors may contribute to the mechanism of integrated stress responses.
Collapse
Affiliation(s)
- Abed Elsalam Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Haifa 31905, Israel.
| | | | | |
Collapse
|
38
|
Zubidat AE, Haim A. The effect of α- and β-adrenergic blockade on daily rhythms of body temperature, urine production, and urinary 6-sulfatoxymelatonin of social voles Microtus socialis. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:301-7. [PMID: 17544305 DOI: 10.1016/j.cbpa.2007.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 04/21/2007] [Accepted: 04/21/2007] [Indexed: 11/28/2022]
Abstract
To examine the effect of adrenergic blockade on daily rhythms of rectal body temperature (T(b)), urine production rate, and melatonin (MEL; measured as urinary 6-sulfatoxymelatonin; 6-SMT), social voles Microtus socialis received a single intra-peritoneal injection of either prazosin (PRAZ, 1 mg/kg) or propranolol (PROP, 4.5 mg/kg); alpha- and beta-adrenergic blocking agents respectively, 1 h prior to scotophase onset (light/dark, 12L:12D; lights on 07:00 h). Both blockers caused significant decrease in T(b) values mainly during scotophase. Nocturnal urine production rates were higher for M. socialis treated with the drugs compared with controls. Overall, urine production rates were systematically higher in PROP-voles over the 24 h period when compared with PRAZ-voles; however these differences were not statistically significant. Interestingly, PROP caused significant elevation in urinary 6-SMT at the second half of the dark phase, whereas PRAZ had no effects. These data suggest that the mechanisms regulating MEL synthesis and thermoregulatory responses in M. socialis are different from those described in other rodents' species. Importantly, the data also suggest that the beta-blockade-induced elevation in MEL levels may be directly associated with increased urination in M. socialis.
Collapse
Affiliation(s)
- Abed E Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Haifa 31905, Israel.
| | | |
Collapse
|