1
|
Tan JTM, Cheney CV, Bamhare NES, Hossin T, Bilu C, Sandeman L, Nankivell VA, Solly EL, Kronfeld-Schor N, Bursill CA. Female Psammomys obesus Are Protected from Circadian Disruption-Induced Glucose Intolerance, Cardiac Fibrosis and Adipocyte Dysfunction. Int J Mol Sci 2024; 25:7265. [PMID: 39000372 PMCID: PMC11242371 DOI: 10.3390/ijms25137265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Circadian disruption increases the development of cardiovascular disease and diabetes. We found that circadian disruption causes glucose intolerance, cardiac fibrosis and adipocyte tissue dysfunction in male sand rats, Psammomys obesus. Whether these effects occur in female P. obesus is unknown. Male and female P. obesus were fed a high energy diet and exposed to a neutral (12 light:12 dark, control) or short (5 light:19 dark, circadian disruption) photoperiod for 20 weeks. Circadian disruption impaired glucose tolerance in males but not females. It also increased cardiac perivascular fibrosis and cardiac expression of inflammatory marker Ccl2 in males, with no effect in females. Females had reduced proapoptotic Bax mRNA and cardiac Myh7:Myh6 hypertrophy ratio. Cardiac protection in females occurred despite reductions in the clock gene Per2. Circadian disruption increased adipocyte hypertrophy in both males and females. This was concomitant with a reduction in adipocyte differentiation markers Pparg and Cebpa in males and females, respectively. Circadian disruption increased visceral adipose expression of inflammatory mediators Ccl2, Tgfb1 and Cd68 and reduced browning marker Ucp1 in males. However, these changes were not observed in females. Collectively, our study show that sex differentially influences the effects of circadian disruption on glucose tolerance, cardiac function and adipose tissue dysfunction.
Collapse
Affiliation(s)
- Joanne T M Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Cate V Cheney
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicole E S Bamhare
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Tasnim Hossin
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lauren Sandeman
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Victoria A Nankivell
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Emma L Solly
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Christina A Bursill
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Bilu C, Butensky N, Malamud AR, Einat H, Zimmet P, Zloto O, Ziv H, Kronfeld-Schor N, Vishnevskia-Dai V. Effects of photoperiod and food on glucose intolerance and subsequent ocular pathology in the fat sand rat. Sci Rep 2024; 14:403. [PMID: 38172147 PMCID: PMC10764329 DOI: 10.1038/s41598-023-44584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its ocular complications, such as cataract and diabetic retinopathy (DR) have been linked to circadian rhythm-disturbances. Using a unique diurnal animal model, the sand rat (Psammomys obesus) we examined the effect of circadian disruption by short photoperiod acclimation on the development of T2DM and related ocular pathologies. We experimented with 48 male sand rats. Variables were day length (short photoperiod, SP, vs. neutral photoperiod NP) and diet (standard rodent diet vs. low-energy diet). Blood glucose, the presence of cataract and retinal pathology were monitored. Histological slides were examined for lens opacity, retinal cell count and thickness. Animals under SP and fed standard rodent diet (SPSR) for 20 weeks had higher baseline blood glucose levels and lower glucose tolerance compared with animals kept under NP regardless of diet, and under SP with low energy diet (SPLE). Animals under SPSR had less cells in the outer nuclear layer, a lower total number of cells in the retina, and a thickened retina. Higher blood glucose levels correlated with lower number of cells in all cellular layers of the retina and thicker retina. Animals under SPSR had higher occurrence of cataract, and a higher degree of cataract, which correlated with higher blood glucose levels. Sand rats kept under SPSR develop cataract and retinal abnormalities indicative of DR, whereas sand rats kept under NP regardless of diet, or under SPLE, do not. These ocular abnormalities significantly correlate with hyperglycemia.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel.
| | - Neta Butensky
- School of Zoology, Tel-Aviv University, 69978, Ramat Aviv, Tel Aviv, Israel
| | | | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Ofira Zloto
- Ocular Oncology, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hana Ziv
- Maurice and Gabriela Goldschleger Eye Research Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | | | - Vicktoria Vishnevskia-Dai
- Ocular Oncology, The Goldschleger Eye Institute, The Chaim Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Britz J, Ojo E, Haque N, Dhukhwa A, Hascup ER, Hascup KN, Tischkau SA. Sex-Dependent Effects of Chronic Circadian Disruption in AβPP/PS1 Mice. J Alzheimers Dis 2024; 97:855-870. [PMID: 38143343 PMCID: PMC10860643 DOI: 10.3233/jad-230089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Chronic disruption of the circadian timing system, often reflected as a loss of restful sleep, also includes myriad other pathophysiological effects. OBJECTIVE The current study examined how chronic circadian disruption (CD) could contribute to pathology and rate of progression in the AβPP/PS1 mouse model of Alzheimer's disease (AD). METHODS A chronic CD was imposed until animals reached 6 or 12 months of age in AβPP/PS1 and C57BL/6J control mice. Home cage activity was monitored for a period of 3-4 weeks prior to the endpoint along with a single timepoint measure of glucose sensitivity. To assess long term effects of CD on the AD phenotype, animals were re-entrained to a no disruption (ND) schedule just prior to the endpoint, after which a Morris water maze (MWM) was used to assess spatial learning and memory. RESULTS Dampening of nighttime activity levels occurred in disrupted animals, and female animals demonstrated a greater adaptability to CD. Diminished arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) levels in the suprachiasmatic nucleus (SCN) of 12-month male AβPP/PS1 exposed to the CD paradigm were observed, potentially accounting for the diminished re-entrainment response. Similarly, CD worsened performance in the MWM in 12-month male AβPP/PS1 animals, whereas no effect was seen in females. CONCLUSIONS Collectively, these findings show that exposure to chronic CD impairs circadian behavioral patterns and cognitive phenotypes of AβPP/PS1 mouse model in a sex-dependent manner.
Collapse
Affiliation(s)
- Jesse Britz
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Emmanuel Ojo
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Erin R. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin N. Hascup
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
4
|
Lees J, Pèrtille F, Løtvedt P, Jensen P, Bosagna CG. The mitoepigenome responds to stress, suggesting novel mito-nuclear interactions in vertebrates. BMC Genomics 2023; 24:561. [PMID: 37736707 PMCID: PMC10515078 DOI: 10.1186/s12864-023-09668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The mitochondria are central in the cellular response to changing environmental conditions resulting from disease states, environmental exposures or normal physiological processes. Although the influences of environmental stressors upon the nuclear epigenome are well characterized, the existence and role of the mitochondrial epigenome remains contentious. Here, by quantifying the mitochondrial epigenomic response of pineal gland cells to circadian stress, we confirm the presence of extensive cytosine methylation within the mitochondrial genome. Furthermore, we identify distinct epigenetically plastic regions (mtDMRs) which vary in cytosinic methylation, primarily in a non CpG context, in response to stress and in a sex-specific manner. Motifs enriched in mtDMRs contain recognition sites for nuclear-derived DNA-binding factors (ATF4, HNF4A) important in the cellular metabolic stress response, which we found to be conserved across diverse vertebrate taxa. Together, these findings suggest a new layer of mito-nuclear interaction in which the nuclear metabolic stress response could alter mitochondrial transcriptional dynamics through the binding of nuclear-derived transcription factors in a methylation-dependent context.
Collapse
Affiliation(s)
- John Lees
- Evolutionsbiologiskt Centrum (EBC), Uppsala University, Uppsala, 75236, Sweden
| | - Fábio Pèrtille
- Evolutionsbiologiskt Centrum (EBC), Uppsala University, Uppsala, 75236, Sweden
| | - Pia Løtvedt
- Institutionen För Fysik, Kemi Och Biologi (IFM), Linköping University, Linköping, 58330, Sweden
| | - Per Jensen
- Institutionen För Fysik, Kemi Och Biologi (IFM), Linköping University, Linköping, 58330, Sweden
| | | |
Collapse
|
5
|
Meyer C, Schoettner K, Amir S. The effects of circadian desynchronization on alcohol consumption and affective behavior during alcohol abstinence in female rats. Front Behav Neurosci 2022; 16:1044783. [PMID: 36620855 PMCID: PMC9813852 DOI: 10.3389/fnbeh.2022.1044783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Disruption of circadian rhythmicity distorts physiological and psychological processes and has major consequences on health and well-being. A chronic misalignment within the internal time-keeping system modulates alcohol consumption and contributes to stress-related psychiatric disorders which are known to trigger alcohol misuse and relapse. While there is growing evidence of the deleterious impact of circadian disruption on male physiology and behavior, knowledge about the effect in females remains limited. The present study aims to fill the gap by assessing the relationship between internal desynchronization and alcohol intake behavior in female rats. Female Wistar rats kept under standard 24-h, 22-h light-dark conditions, or chronic 6-h advanced phase shifts, were given intermittent access to 20% alcohol followed by an extended alcohol deprivation period. Alcohol consumption under altered light-dark (LD) conditions was assessed and emotional behavior during alcohol abstinence was evaluated. Internally desynchronization in female rats does not affect alcohol consumption but alters scores of emotionality during alcohol abstinence. Changes in affective-like behaviors were accompanied by reduced body weight gain and estrous irregularities under aberrant LD conditions. Our data suggest that internal desynchronization caused by environmental factors is not a major factor contributing to the onset and progression of alcohol abuse, but highlights the need of maintaining circadian hygiene as a supportive remedy during alcohol rehabilitation.
Collapse
|
6
|
Bilu C, Einat H, Zimmet P, Kronfeld-Schor N. Circadian rhythms-related disorders in diurnal fat sand rats under modern lifestyle conditions: A review. Front Physiol 2022; 13:963449. [PMID: 36160856 PMCID: PMC9489903 DOI: 10.3389/fphys.2022.963449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Modern lifestyle reduces environmental rhythmicity and may lead to circadian desynchrony. We are exposed to poor day-time lighting indoors and excessive night-time artificial light. We use air-conditioning to reduce ambient temperature cycle, and food is regularly available at all times. These disruptions of daily rhythms may lead to type 2 diabetes mellitus (T2DM), obesity, cardiometabolic diseases (CMD), depression and anxiety, all of which impose major public health and economic burden on societies. Therefore, we need appropriate animal models to gain a better understanding of their etiologic mechanisms, prevention, and management.We argue that the fat sand rat (Psammomys obesus), a diurnal animal model, is most suitable for studying the effects of modern-life conditions. Numerous attributes make it an excellent model to study human health disorders including T2DM, CMD, depression and anxiety. Here we review a comprehensive series of studies we and others conducted, utilizing the fat sand rat to study the underlying interactions between biological rhythms and health. Understanding these interactions will help deciphering the biological basis of these diseases, which often occur concurrently. We found that when kept in the laboratory (compared with natural and semi-wild outdoors conditions where they are diurnal), fat sand rats show low amplitude, nocturnal or arrhythmic activity patterns, dampened daily glucose rhythm, glucose intolerance, obesity and decreased survival rates. Short photoperiod acclimation exacerbates these pathologies and further dampens behavioral and molecular daily rhythms, resulting in CMD, T2DM, obesity, adipocyte dysfunction, cataracts, depression and anxiety. Increasing environmental rhythmicity by morning bright light exposure or by access to running wheels strengthens daily rhythms, and results in higher peak-to-trough difference in activity, better rhythmicity in clock genes expression, lower blood glucose and insulin levels, improved glucose tolerance, lower body and heart weight, and lower anxiety and depression. In summary, we have demonstrated that fat sand rats living under the correspondent of “human modern lifestyle” conditions exhibit dampened behavioral and biological rhythms and develop circadian desynchrony, which leads to what we have named “The Circadian Syndrome”. Environmental manipulations that increase rhythmicity result in improvement or prevention of these pathologies. Similar interventions in human subjects could have the same positive results and further research on this should be undertaken.
Collapse
Affiliation(s)
- Carmel Bilu
- School of Zoology, Tel-Aviv University, Tel Aviv, Israel
- *Correspondence: Carmel Bilu,
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel
| | - Paul Zimmet
- Department of Diabetes, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|