1
|
An X, Cho H. Increased GIRK channel activity prevents arrhythmia in mice with heart failure by enhancing ventricular repolarization. Sci Rep 2023; 13:22479. [PMID: 38110503 PMCID: PMC10728207 DOI: 10.1038/s41598-023-50088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023] Open
Abstract
Ventricular arrhythmia causing sudden cardiac death is the leading mode of death in patients with heart failure. Yet, the mechanisms that prevent ventricular arrhythmias in heart failure are not well characterized. Using a mouse model of heart failure created by transverse aorta constriction, we show that GIRK channel, an important regulator of cardiac action potentials, is constitutively active in failing ventricles in contrast to normal cells. Evidence is presented indicating that the tonic activation of M2 muscarinic acetylcholine receptors by endogenously released acetylcholine contributes to the constitutive GIRK activity. This constitutive GIRK activity prevents the action potential prolongation in heart failure ventricles. Consistently, GIRK channel blockade with tertiapin-Q induces QT interval prolongation and increases the incidence of arrhythmia in heart failure, but not in control mice. These results suggest that constitutive GIRK channels comprise a key mechanism to protect against arrhythmia by providing repolarizing currents in heart failure ventricles.
Collapse
Affiliation(s)
- Xue An
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| |
Collapse
|
2
|
Gök C, Fuller W. Regulation of NCX1 by palmitoylation. Cell Calcium 2020; 86:102158. [PMID: 31935590 DOI: 10.1016/j.ceca.2019.102158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 11/17/2022]
Abstract
Palmitoylation (S-acylation) is the reversible conjugation of a fatty acid (usually C16 palmitate) to intracellular cysteine residues of proteins via a thioester linkage. Palmitoylation anchors intracellular regions of proteins to membranes because the palmitoylated cysteine is recruited to the lipid bilayer. NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular loop. The presence of an amphipathic α-helix immediately adjacent to the NCX1 palmitoylation site is required for NCX1 palmitoylation. The NCX1 palmitoylation site is conserved through most metazoan phlya. Although palmitoylation does not regulate the normal forward or reverse ion transport modes of NCX1, NCX1 palmitoylation is required for its inactivation: sodium-dependent inactivation and inactivation by PIP2 depletion are significantly impaired for unpalmitoylatable NCX1. Here we review the role of palmitoylation in regulating NCX1 activity, and highlight future questions that must be addressed to fully understand the importance of this regulatory mechanism for sodium and calcium transport in cardiac muscle.
Collapse
Affiliation(s)
- Caglar Gök
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - William Fuller
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. https://twitter.com@FullerLabGlas
| |
Collapse
|
3
|
A dual potassium channel activator improves repolarization reserve and normalizes ventricular action potentials. Biochem Pharmacol 2016; 108:36-46. [PMID: 27002181 DOI: 10.1016/j.bcp.2016.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND A loss of repolarization reserve due to downregulation of K(+) currents has been observed in cultured ventricular myocytes. A similar reduction of K(+) currents is well documented under numerous pathophysiological conditions. We examined the extent of K(+) current downregulation in cultured canine cardiac myocytes and determined whether a dual K(+) current activator can normalize K(+) currents and restore action potential (AP) configuration. METHODS AND RESULTS Ventricular myocytes were isolated and cultured for up to 48 h. Current and voltage clamp recordings were made using patch electrodes. Application of NS3623 to coronary-perfused left ventricular wedges resulted in increased phase 1 magnitude, epicardial AP notch and J wave amplitude. Patch clamp measurements of IKr and Ito revealed an increase in the magnitude of both currents. Culturing of Mid ventricular cells resulted in a significant decrease in Ito and IKr density. NS3623 increased Ito from 16.4 ± 2.23 to 31.8 ± 4.5 pA/pF, and IKr from 0.28 ± 0.06 to 0.47 ± 0.09 pA/pF after 2 days in culture. AP recordings from 2 day cultured cells exhibited a reduced phase 1 repolarization, AP prolongation, and early afterdepolarizations (EADs). NS3623 restored the AP notch and was able to suppress EADs. CONCLUSIONS NS3623 is a dual Ito and IKr activator. Application of this compound to cells with a reduced repolarization reserve resulted in an increase in these currents and a shortening of AP duration, increase in phase 1 repolarization and suppression of EADs. Our results suggest a potential benefit of K(+) current activators under conditions of reduced repolarization reserve including heart failure.
Collapse
|
4
|
Wang Y, Tandan S, Hill JA. Calcineurin-dependent ion channel regulation in heart. Trends Cardiovasc Med 2013; 24:14-22. [PMID: 23809405 DOI: 10.1016/j.tcm.2013.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 02/05/2023]
Abstract
Calcineurin, a serine-threonine-specific, Ca(2+)-calmodulin-activated protein phosphatase, conserved from yeast to humans, plays a key role in regulating cardiac development, hypertrophy, and pathological remodeling. Recent studies demonstrate that calcineurin regulates cardiomyocyte ion channels and receptors in a manner which often entails direct interaction with these target proteins. Here, we review the current state of knowledge of calcineurin-mediated regulation of ion channels in the myocardium with emphasis on the transient outward potassium current (Ito) and L-type calcium current (ICa,L). We go on to discuss unanswered questions that surround these observations and provide perspective on future directions in this exciting field.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | - Samvit Tandan
- Department of Internal Medicine (Cardiology), University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas, Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Physiological consequences of transient outward K+ current activation during heart failure in the canine left ventricle. J Mol Cell Cardiol 2012; 52:1291-8. [PMID: 22434032 DOI: 10.1016/j.yjmcc.2012.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/08/2012] [Accepted: 03/03/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Remodeling of ion channel expression is well established in heart failure (HF). We determined the extent to which I(to) is reduced in tachypacing-induced HF and assessed the ability of an I(to) activator (NS5806) to recover this current. METHOD AND RESULTS Whole-cell patch clamp was used to record I(to) in epicardial (Epi) ventricular myocytes. Epi- and endocardial action potentials were recorded from left ventricular wedge preparations. Right ventricular tachypacing-induced heart failure reduced I(to) density in Epi myocytes (Control=22.1±1.9pA/pF vs 16.1±1.4 after 2weeks and 10.7±1.4pA/pF after 5 weeks, +50mV). Current decay as well as recovery of I(to) from inactivation progressively slowed with the development of heart failure. Reduction of I(to) density was paralleled by a reduction in phase 1 magnitude, epicardial action potential notch and J wave amplitude recorded from coronary-perfused left ventricular wedge preparations. NS5806 increased I(to) (at +50mV) from 16.1±1.4 to 23.9±2.1pA/pF (p<0.05) at 2weeks and from 10.7±1.4 to 14.4±1.9pA/pF (p<0.05) in 5 weeks tachypaced dogs. NS5806 increased both fast and slow phases of I(to) recovery in 2 and 5-week HF cells and restored the action potential notch and J wave in wedge preparations from HF dogs. CONCLUSIONS The I(to) agonist NS5806 increases the rate of recovery and density of I(to), thus reversing the HF-induced reduction in these parameters. In wedge preparations from HF dogs, NS5806 restored the spike-and-dome morphology of the Epi action potential providing proof of principal that some aspects of electrical remodelling during HF can be pharmacologically reversed.
Collapse
|
6
|
Cutler MJ, Jeyaraj D, Rosenbaum DS. Cardiac electrical remodeling in health and disease. Trends Pharmacol Sci 2011; 32:174-80. [PMID: 21316769 DOI: 10.1016/j.tips.2010.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/25/2010] [Accepted: 12/01/2010] [Indexed: 01/12/2023]
Abstract
Electrical remodeling of the heart takes place in response to both functional (altered electrical activation) and structural (including heart failure and myocardial infarction) stressors. These electrophysiological changes produce a substrate that is prone to malignant ventricular arrhythmias. Understanding the cellular and molecular mechanisms of electrical remodeling is important in elucidating potential therapeutic targets designed to alter maladaptive electrical remodeling. For example, altered patterns of electrical activation lead primarily to electrical remodeling, without significant structural remodeling. By contrast, secondary remodeling arises in response to a structural insult. In this article we review cardiac electrical remodeling (predominantly in the ventricle) with an emphasis on the mechanisms causing these adaptations. These mechanisms suggest novel therapeutic targets for the management or prevention of the most devastating manifestation of heart disease, sudden cardiac death (SCD).
Collapse
Affiliation(s)
- Michael J Cutler
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
7
|
Salama G, Akar FG. Deciphering Arrhythmia Mechanisms - Tools of the Trade. Card Electrophysiol Clin 2011; 3:11-21. [PMID: 21572551 PMCID: PMC3093299 DOI: 10.1016/j.ccep.2010.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pathophysiological remodeling of cardiac function occurs at multiple levels, spanning the spectrum from molecular and sub-cellular changes to those occurring at the organ-system levels. Of key importance to arrhythmias are changes in electrophysiological and calcium handling properties at the tissue level. In this review, we discuss how high-resolution optical action potential and calcium transient imaging has advanced our understanding of basic arrhythmia mechanisms associated with multiple cardiovascular disorders, including the long QT syndrome, heart failure, and ischemia-reperfusion injury. We focus on the role of repolarization gradients (section 1) and calcium mediated triggers (section 2) in the initiation and maintenance of complex arrhythmias in these settings.
Collapse
Affiliation(s)
- Guy Salama
- University of Pittsburgh, The Cardiovascular Institute, Pittsburgh, PA, 15261
| | - Fadi G. Akar
- Mount Sinai School of Medicine, New York, NY 10029, Tel: 212-241-9251; FAX: 212-241-4080
| |
Collapse
|
8
|
Auerbach SS, Thomas R, Shah R, Xu H, Vallant MK, Nyska A, Dunnick JK. Comparative phenotypic assessment of cardiac pathology, physiology, and gene expression in C3H/HeJ, C57BL/6J, and B6C3F1/J mice. Toxicol Pathol 2011; 38:923-42. [PMID: 21037199 DOI: 10.1177/0192623310382864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human cardiomyopathies often lead to heart failure, a major cause of morbidity and mortality in industrialized nations. Described here is a phenotypic characterization of cardiac function and genome-wide expression from C3H/HeJ, C57BL/6J, and B6C3F1/J male mice. Histopathologic analysis identified a low-grade background cardiomyopathy (murine progressive cardiomyopathy) in eight of nine male C3H/HeJ mice (age nine to ten weeks), but not in male C57BL/6J and in only of ten male B6C3F1/J mice. The C3H/HeJ mouse had an increased heart rate and a shorter RR interval compared to the B6C3F1/J and C57BL/6J mice. Cardiac genomic studies indicated the B6C3F1/J mice exhibited an intermediate gene expression phenotype relative to the 2 parental strains. Disease-centric enrichment analysis indicated a number of cardiomyopathy-associated genes were induced in B6C3F1/J and C3H/HeJ mice, including Myh7, My14, and Lmna and also indicated differential expression of genes associated with metabolic (e.g., Pdk2) and hypoxic stress (e.g. Hif1a). A novel coexpression and integrated pathway network analysis indicated Prkaa2, Pdk2, Rhoj, and Sgcb are likely to play a central role in the pathophysiology of murine progressive cardiomyopathy in C3H/HeJ mice. Our studies indicate that genetically determined baseline differences in cardiac phenotype have the potential to influence the results of cardiotoxicity studies.
Collapse
Affiliation(s)
- Scott S Auerbach
- National Toxicology Program, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Gwathmey JK, Yerevanian AI, Hajjar RJ. Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol 2010; 50:803-12. [PMID: 21093451 DOI: 10.1016/j.yjmcc.2010.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 10/27/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
While progress in conventional treatments is making steady and incremental gains to reduce mortality associated with heart failure, there remains a need to explore potentially new therapeutic approaches. Heart failure induced by different etiologies such as coronary artery disease, hypertension, diabetes, infection, or inflammation results generally in calcium cycling dysregulation at the myocyte level. Recent advances in understanding of the molecular basis of these calcium cycling abnormalities, together with the evolution of increasingly efficient gene transfer technology, have placed heart failure within reach of gene-based therapy. Furthermore, the recent successful completion of a phase 2 trial targeting the sarcoplasmic reticulum calcium pump (SERCA2a) ushers in a new era for gene therapy for the treatment of heart failure. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
|
10
|
|
11
|
AKAR FADIG. Use-Dependent Modulation of Myocardial Conduction by a New Class of HERG Agonists: Deal Breaker or Cherry on Top? J Cardiovasc Electrophysiol 2010; 21:930-2. [DOI: 10.1111/j.1540-8167.2010.01747.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Beharier O, Etzion Y, Levi S, Mor M, Mor M, Dror S, Kahn J, Katz A, Moran A. The involvement of ZnT-1, a new modulator of cardiac L-type calcium channels, in remodeling atrial tachycardia. Ann N Y Acad Sci 2010; 1188:87-95. [DOI: 10.1111/j.1749-6632.2009.05087.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Wang Y, Hill JA. Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 2010; 48:619-32. [PMID: 20096285 DOI: 10.1016/j.yjmcc.2010.01.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Heart failure affects nearly 6 million Americans, with a half-million new cases emerging each year. Whereas up to 50% of heart failure patients die of arrhythmia, the diverse mechanisms underlying heart failure-associated arrhythmia are poorly understood. As a consequence, effectiveness of antiarrhythmic pharmacotherapy remains elusive. Here, we review recent advances in our understanding of heart failure-associated molecular events impacting the electrical function of the myocardium. We approach this from an anatomical standpoint, summarizing recent insights gleaned from pre-clinical models and discussing their relevance to human heart failure.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
14
|
Undrovinas A, Maltsev VA. Late sodium current is a new therapeutic target to improve contractility and rhythm in failing heart. Cardiovasc Hematol Agents Med Chem 2008; 6:348-59. [PMID: 18855648 PMCID: PMC2575131 DOI: 10.2174/187152508785909447] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most cardiac Na+ channels open transiently within milliseconds upon membrane depolarization and are responsible for the excitation propagation. However, some channels remain active during hundreds of milliseconds, carrying the so-called persistent or late Na+ current (I(NaL)) throughout the action potential plateau. I(NaL) is produced by special gating modes of the cardiac-specific Na+ channel isoform. Experimental data accumulated over the past decade show the emerging importance of this late current component for the function of both normal and especially failing myocardium, where I(NaL) is reportedly increased. Na+ channels represent a multi-protein complex and its activity is determined not only by the pore-forming alpha subunit but also by its auxiliary beta subunits, cytoskeleton, and by Ca2+ signaling and trafficking proteins. Remodeling of this protein complex and intracellular signaling pathways may lead to alterations of I(NaL) in pathological conditions. Increased I(NaL) and the corresponding Na+ influx in failing myocardium contribute to abnormal repolarization and an increased cell Ca2+ load. Interventions designed to correct I(NaL) rescue normal repolarization and improve Ca2+ handling and contractility of the failing cardiomyocytes. New therapeutic strategies to target both arrhythmias and deficient contractility in HF may not be limited to the selective inhibition of I(NaL) but also include multiple indirect, modulatory (e.g. Ca(2+)- or cytoskeleton- dependent) mechanisms of I(NaL) function.
Collapse
Affiliation(s)
- Albertas Undrovinas
- Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202-2689, USA.
| | | |
Collapse
|
15
|
Wang Y, Tandan S, Cheng J, Yang C, Nguyen L, Sugianto J, Johnstone JL, Sun Y, Hill JA. Ca2+/calmodulin-dependent protein kinase II-dependent remodeling of Ca2+ current in pressure overload heart failure. J Biol Chem 2008; 283:25524-25532. [PMID: 18622016 DOI: 10.1074/jbc.m803043200] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity is increased in heart failure (HF), a syndrome characterized by markedly increased risk of arrhythmia. Activation of CaMKII increases peak L-type Ca(2+) current (I(Ca)) and slows I(Ca) inactivation. Whether these events are linked mechanistically is unknown. I(Ca) was recorded in acutely dissociated subepicardial and subendocardial murine left ventricular (LV) myocytes using the whole cell patch clamp method. Pressure overload heart failure was induced by surgical constriction of the thoracic aorta. I(Ca) density was significantly larger in subepicardial myocytes than in subendocardial/myocytes. Similar patterns were observed in the cell surface expression of alpha1c, the channel pore-forming subunit. In failing LV, I(Ca) density was increased proportionately in both cell types, and the time course of I(Ca) inactivation was slowed. This typical pattern of changes suggested a role of CaMKII. Consistent with this, measurements of CaMKII activity revealed a 2-3-fold increase (p < 0.05) in failing LV. To test for a causal link, we measured frequency-dependent I(Ca) facilitation. In HF myocytes, this CaMKII-dependent process could not be induced, suggesting already maximal activation. Internal application of active CaMKII in failing myocytes did not elicit changes in I(Ca). Finally, CaMKII inhibition by internal diffusion of a specific peptide inhibitor reduced I(Ca) density and inactivation time course to similar levels in control and HF myocytes. I(Ca) density manifests a significant transmural gradient, and this gradient is preserved in heart failure. Activation of CaMKII, a known pro-arrhythmic molecule, is a major contributor to I(Ca) remodeling in load-induced heart failure.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Samvit Tandan
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Jun Cheng
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Chunmei Yang
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Lan Nguyen
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Jessica Sugianto
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Janet L Johnstone
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573
| | - Yuyang Sun
- Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), Dallas, Texas 75390-8573; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573 and the.
| |
Collapse
|
16
|
Yeh YH, Wakili R, Qi XY, Chartier D, Boknik P, Kääb S, Ravens U, Coutu P, Dobrev D, Nattel S. Calcium-Handling Abnormalities Underlying Atrial Arrhythmogenesis and Contractile Dysfunction in Dogs With Congestive Heart Failure. Circ Arrhythm Electrophysiol 2008; 1:93-102. [DOI: 10.1161/circep.107.754788] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Congestive heart failure (CHF) is a common cause of atrial fibrillation. Focal sources of unknown mechanism have been described in CHF-related atrial fibrillation. The authors hypothesized that abnormal calcium (Ca
2+
) handling contributes to the CHF-related atrial arrhythmogenic substrate.
Methods and Results—
CHF was induced in dogs by ventricular tachypacing (240 bpm �2 weeks). Cellular Ca
2+
-handling properties and expression/phosphorylation status of key Ca
2+
handling and myofilament proteins were assessed in control and CHF atria. CHF decreased cell shortening but increased left atrial diastolic intracellular Ca
2+
concentration ([Ca
2+
]
i
), [Ca
2+
]
i
transient amplitude, and sarcoplasmic reticulum (SR) Ca
2+
load (caffeine-induced [Ca
2+
]
i
release). SR Ca
2+
overload was associated with spontaneous Ca
2+
transient events and triggered ectopic activity, which was suppressed by the inhibition of SR Ca
2+
release (ryanodine) or Na
+
/Ca
2+
exchange. Mechanisms underlying abnormal SR Ca
2+
handling were then studied. CHF increased atrial action potential duration and action potential voltage clamp showed that CHF-like action potentials enhance Ca
2+
i
loading. CHF increased calmodulin-dependent protein kinase II phosphorylation of phospholamban by 120%, potentially enhancing SR Ca
2+
uptake by reducing phospholamban inhibition of SR Ca
2+
ATPase, but it did not affect phosphorylation of SR Ca
2+
-release channels (RyR2). Total RyR2 and calsequestrin (main SR Ca
2+
-binding protein) expression were significantly reduced, by 65% and 15%, potentially contributing to SR dysfunction. CHF decreased expression of total and protein kinase A–phosphorylated myosin-binding protein C (a key contractile filament regulator) by 27% and 74%, potentially accounting for decreased contractility despite increased Ca
2+
transients. Complex phosphorylation changes were explained by enhanced calmodulin-dependent protein kinase IIδ expression and function and type-1 protein-phosphatase activity but downregulated regulatory protein kinase A subunits.
Conclusions—
CHF causes profound changes in Ca
2+
-handling and -regulatory proteins that produce atrial fibrillation–promoting atrial cardiomyocyte Ca
2+
-handling abnormalities, arrhythmogenic triggered activity, and contractile dysfunction.
Collapse
Affiliation(s)
- Yung-Hsin Yeh
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Reza Wakili
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Xiao-Yan Qi
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Denis Chartier
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Peter Boknik
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Stefan Kääb
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Ursula Ravens
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Pierre Coutu
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Dobromir Dobrev
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| | - Stanley Nattel
- From the Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal (Y.H.Y., R.W., X.Q., D.C., P.C., S.N.), Montreal, Canada; the Department of Pharmacology and Toxicology (R.W., U.R., D.D.), Dresden University of Technology, Dresden, Germany; Chang Gung Memorial Hospital and Chang Gung University (Y.H.Y.), Tao-Yuan, Taiwan; the Department of Pharmacology and Toxicology (P.B.), University of Münster, Münster, Germany; and Ludwig-Maximilians University,
| |
Collapse
|
17
|
miRNAs at the heart of the matter. J Mol Med (Berl) 2008; 86:771-83. [PMID: 18415070 PMCID: PMC2480593 DOI: 10.1007/s00109-008-0341-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/18/2008] [Accepted: 02/27/2008] [Indexed: 01/08/2023]
Abstract
Cardiovascular disease is among the main causes of morbidity and mortality in developed countries. The pathological process of the heart is associated with altered expression profile of genes that are important for cardiac function. MicroRNAs (miRNAs) have emerged as one of the central players of gene expression regulation. The implications of miRNAs in the pathological process of cardiovascular system have recently been recognized, representing the most rapidly evolving research field. Here, we summarize and analyze the currently available data from our own laboratory and other groups, providing a comprehensive overview of miRNA function in the heart, including a brief introduction of miRNA biology, expression profile of miRNAs in cardiac tissue, role of miRNAs in cardiac hypertrophy and heart failure, the arrhythmogenic potential of miRNAs, the involvement of miRNAs in vascular angiogenesis, and regulation of cardiomyocyte apoptosis by miRNAs. The target genes and signaling pathways linking the miRNAs to cardiovascular disease are highlighted. The applications of miRNA interference technologies for manipulating miRNA expression, stability, and function as new strategies for molecular therapy of human disease are evaluated. Finally, some specific issues related to future directions of the research on miRNAs relevant to cardiovascular disease are pinpointed and speculated.
Collapse
|
18
|
Cutler MJ, Rosenbaum DS, Dunlap ME. Structural and electrical remodeling as therapeutic targets in heart failure. J Electrocardiol 2008; 40:S1-7. [PMID: 17993305 DOI: 10.1016/j.jelectrocard.2007.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/30/2007] [Indexed: 10/22/2022]
Abstract
Heart failure is a progressive clinical syndrome that is characterized by remodeling of the myocardium in response to various stress signals. The past several years has seen remarkable progress in unraveling the molecular and cellular mechanisms of structural and electrical remodeling in HF. Improved understanding of the molecular mechanism of myocardial remodeling has resulted in improved HF therapies and revealed potentially novel therapeutic targets. This review discusses the mechanisms of myocardial remodeling in HF and their clinical manifestations. Current and investigational HF therapies targeting these mechanisms also will be discussed.
Collapse
Affiliation(s)
- Michael J Cutler
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109-1998, USA
| | | | | |
Collapse
|
19
|
Regulation of ion channels and arrhythmias in the ischemic heart. J Electrocardiol 2007; 40:S37-41. [DOI: 10.1016/j.jelectrocard.2007.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 05/14/2007] [Indexed: 02/06/2023]
|
20
|
Luo X, Xiao J, Lin H, Li B, Lu Y, Yang B, Wang Z. Transcriptional activation by stimulating protein 1 and post-transcriptional repression by muscle-specific microRNAs of IKs-encoding genes and potential implications in regional heterogeneity of their expressions. J Cell Physiol 2007; 212:358-67. [PMID: 17443681 DOI: 10.1002/jcp.21030] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In cardiac cells, KCNQ1 assembles with KCNE1 and forms a channel complex constituting the slow delayed rectifier current I(Ks). Expression of KCNQ1 and KCNE1 are regionally heterogeneous and changes with pathological states of the heart. The aims of this study were to decipher the molecular mechanisms for transcriptional and post-transcriptional regulation expression of KCNQ1 and KCNE1 genes and to shed light on the molecular mechanisms for their spatial heterogeneity of distribution. We cloned the 5'-flanking region and identified the transcription start sites of the KCNQ1 gene. We characterized the core promoters of KCNQ1 and KCNE1 and revealed the stimulating protein (Sp1) as a common transactivator of KCNQ1 and KCNE1 by interacting with the Sp1 cis-acting elements in the core promoter regions of these genes. We also characterized the 3' untranslated regions (3'UTRs) of the genes and experimentally established KCNQ1 and KCNE1 as targets for repression by the muscle-specific microRNAs miR-133 and miR-1, respectively. We demonstrated spatial heterogeneity of KCNQ1 and KCNE1 distributions at three axes (interventricular, transmural and apical-basal) and disparity between mRNA and protein expressions of these genes. We also found characteristic regional differences of expressions of Sp1 and miR-1/miR-133 in the heart. Our study unraveled a novel aspect of the cellular function of miRNAs and suggests that the I(Ks)-encoding genes KCNQ1 and KCNE1 expressions are dynamically balanced by transcription factor regulation and miRNA repression. The heterogeneities of Sp1 and miR-1/miR-133 offer an explanation for the well-recognized regional differences and disparity between mRNA and protein expressions of KCNQ1 and KCNE1.
Collapse
Affiliation(s)
- Xiaobin Luo
- Research Center, Montreal Heart Institute, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Beharier O, Etzion Y, Katz A, Friedman H, Tenbosh N, Zacharish S, Bereza S, Goshen U, Moran A. Crosstalk between L-type calcium channels and ZnT-1, a new player in rate-dependent cardiac electrical remodeling. Cell Calcium 2007; 42:71-82. [PMID: 17196651 DOI: 10.1016/j.ceca.2006.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 11/19/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
Crosstalk between two membrane transport systems is an established mechanism underlying regulation. In this study, we investigated the interaction between ZnT-1, a putative plasma membrane zinc transporter, and L-type voltage-dependent calcium channels (LTCC). In the atrium of the myocardium decreased activity of the LTCC is a dominant feature of patients with atrial fibrillation. The trigger for this inhibition has been attributed to the rapid firing rates and consequent calcium overload in the atrial cardiomyocytes. However, the underlying mechanism of LTCC inhibition is still to be elucidated. Here, we showed that the expression of ZnT-1 inhibits the activity of L-type channels during electrical remodeling induced by rapid pacing. (i) Direct manipulations of ZnT-1 expression in cultured cardiomyocytes either by ZnT-1 overexpression or by ZnT-1 silencing with siRNA, decreased or enhanced, respectively, the barium influx through the LTCC. (ii) Co-expression of ZnT-1 with LTCC in Xenopus oocytes decreased whole cell barium current through LTCC. (iii) Rapid pacing of cultured cardiomyocytes (4 h, 100 ms cycle) increased ZnT-1 protein expression and inhibited the voltage-dependent divalent cation influx through the LTCC. Moreover, silencing ZnT-1 with siRNA prevented the rapid pacing induced inhibition of the LTCC (iv) Atrial pacing of anesthetized adult rats (4 h, 50 ms cycle) led to a significant increase in atrial ZnT-1 protein expression in parallel with the typical decrease of the refractory period in the atria. Taken together, these findings demonstrate that crosstalk between ZnT-1 and the L-type calcium channels may underlie atrial response to rapid pacing, suggesting that ZnT-1 is a significant participant in rate-dependent cardiac electrical remodeling.
Collapse
Affiliation(s)
- Ofer Beharier
- Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kasi VS, Xiao HD, Shang LL, Iravanian S, Langberg J, Witham EA, Jiao Z, Gallego CJ, Bernstein KE, Dudley SC. Cardiac-restricted angiotensin-converting enzyme overexpression causes conduction defects and connexin dysregulation. Am J Physiol Heart Circ Physiol 2007; 293:H182-92. [PMID: 17337599 PMCID: PMC3160110 DOI: 10.1152/ajpheart.00684.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renin-angiotensin (RAS) system activation is associated with an increased risk of sudden death. Previously, we used cardiac-restricted angiotensin-converting enzyme (ACE) overexpression to construct a mouse model of RAS activation. These ACE 8/8 mice die prematurely and abruptly. Here, we have investigated cardiac electrophysiological abnormalities that may contribute to early mortality in this model. In ACE 8/8 mice, surface ECG voltages are reduced. Intracardiac electrograms showed atrial and ventricular potential amplitudes of 11% and 24% compared with matched wild-type (WT) controls. The atrioventricular (AV), atrio-Hisian (AH), and Hisian-ventricular (HV) intervals were prolonged 2.8-, 2.6-, and 3.9-fold, respectively, in ACE 8/8 vs. WT mice. Various degrees of AV nodal block were present only in ACE 8/8 mice. Intracardiac electrophysiology studies demonstrated that WT and heterozygote (HZ) mice were noninducible, whereas 83% of ACE 8/8 mice demonstrated ventricular tachycardia with burst pacing. Atrial connexin 40 (Cx40) and connexin 43 (Cx43) protein levels, ventricular Cx43 protein level, atrial and ventricular Cx40 mRNA abundances, ventricular Cx43 mRNA abundance, and atrial and ventricular cardiac Na(+) channel (Scn5a) mRNA abundances were reduced in ACE 8/8 compared with WT mice. ACE 8/8 mice demonstrated ventricular Cx43 dephosphorylation. Atrial and ventricular L-type Ca(2+) channel, Kv4.2 K(+) channel alpha-subunit, and Cx45 mRNA abundances and the peak ventricular Na(+) current did not differ between the groups. In isolated heart preparations, a connexin blocker, 1-heptanol (0.5 mM), produced an electrophysiological phenotype similar to that seen in ACE 8/8 mice. Therefore, cardiac-specific ACE overexpression resulted in changes in connexins consistent with the phenotype of low-voltage electrical activity, conduction defects, and induced ventricular arrhythmia. These results may help explain the increased risk of arrhythmia in states of RAS activation such as heart failure.
Collapse
Affiliation(s)
- Vijaykumar S Kasi
- Division of Cardiology, Atlanta VA Medical Center, 1670 Clairmont Road, Atlanta, GA 30033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu XS, Jiang M, Zhang M, Tang D, Clemo HF, Higgins RSD, Tseng GN. Electrical remodeling in a canine model of ischemic cardiomyopathy. Am J Physiol Heart Circ Physiol 2007; 292:H560-71. [PMID: 16920806 DOI: 10.1152/ajpheart.00616.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nature of electrical remodeling in a canine model of ischemic cardiomyopathy (ICM; induced by repetitive intracoronary microembolizations) that exhibits spontaneous ventricular tachycardia is not entirely clear. We used the patch-clamp technique to record action potentials and ionic currents of left ventricular myocytes isolated from the region affected by microembolizations. We also used the immunoblot technique to examine channel subunit expression in adjacent affected tissue. Ventricular myocytes and tissue isolated from the corresponding region of normal hearts served as control. ICM myocytes had prolonged action potential duration (APD) and more pronounced APD dispersion. Slow delayed rectifier current ( IKs) was reduced at voltages positive to 0 mV, along with a negative shift in its voltage dependence of activation. Immunoblots showed that there was no change in KCNQ1.1 ( IKs pore-forming or α-subunit), but KCNE1 ( IKs auxiliary or β-subunit) was reduced, and KCNQ1.2 (a truncated KCNQ1 splice variant with a dominant-negative effect on IKs) was increased. Transient outward current ( Ito) was reduced, along with an acceleration of the slow phase of recovery from inactivation. Immunoblots showed that there was no change in Kv4.3 (α-subunit of fast-recovering Ito component), but KChIP2 (β-subunit of fast-recovering component) and Kv1.4 (α-subunit of slow-recovering component) were reduced. Inward rectifier current was reduced. L-type Ca current was unaltered. The immunoblot data provide mechanistic insights into the observed changes in current amplitude and gating kinetics of IKs and Ito. We suggest that these changes, along with the decrease in inward rectifier current, contribute to APD prolongation in ICM hearts.
Collapse
Affiliation(s)
- Xian-Sheng Liu
- Dept. of Physiology, Virginia Commonwealth Univ., Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|