1
|
Jiang K, Wang S, Sun H, Peng C, Li N, Li S, Gao R, Zhang J. Novel mutation in the NDP gene associated with Norrie disease in a Chinese pedigree. Mol Genet Genomic Med 2024; 12:e2345. [PMID: 38146894 PMCID: PMC10767683 DOI: 10.1002/mgg3.2345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/08/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
PURPOSE Norrie disease (ND) is a rare X-linked recessive disorder characteristic of early childhood blindness. While several mutations in the NDP gene have been reported as causative for ND, the genetic etiology remains unknown for many patients. This study aims to describe a novel mutation and explore the clinical manifestations in a Chinese family with two affected males. METHODS Exome sequencing (ES) was employed to identify the causative gene in a four-generation pedigree. Sanger sequencing was subsequently utilized to validate the mutation detected by ES in additional family members. Ophthalmologic examination and diagnostic imaging relevant to ND were conducted. RESULTS The proband (IV:2), an 8-month-old male infant, presented with binocular retinal detachment. DNA sequencing revealed a novel heterozygous missense mutation (c.174G>C) within the NDP gene in the proband. This mutation affected highly conserved residues and was predicted to disrupt the normal protein structure. Furthermore, the variant co-segregated with the disease phenotypes within the family. CONCLUSIONS Our findings identified a novel missense mutation in the NDP gene associated with Norrie disease in China, expanding the mutation spectrum associated with ND. This discovery holds diagnostic, prognostic, and genetic counseling implications for affected individuals.
Collapse
Affiliation(s)
- Keke Jiang
- Department of Ophthalmology, Zhengda Guangming Ophthalmology GroupWeifang Eye HospitalWeifangChina
| | - Shuying Wang
- Department of OphthalmologyGaomi People's HospitalWeifangChina
| | - Huixin Sun
- Department of OphthalmologyWeifang Medical UniversityWeifangChina
| | - Chuanzhi Peng
- Department of OphthalmologyWeifang Medical UniversityWeifangChina
| | - Nan Li
- Department of Ophthalmology, Zhengda Guangming Ophthalmology GroupWeifang Eye HospitalWeifangChina
| | - Shuchan Li
- Department of Ophthalmology, Zhengda Guangming Ophthalmology GroupWeifang Eye HospitalWeifangChina
| | - Rongyu Gao
- Department of Ophthalmology, Zhengda Guangming Ophthalmology GroupWeifang Eye HospitalWeifangChina
| | - Jie Zhang
- Department of Ophthalmology, Zhengda Guangming Ophthalmology GroupWeifang Eye HospitalWeifangChina
| |
Collapse
|
2
|
Kiely C, Douglas KAA, Douglas VP, Miller JB, Lizano P. Overlap between ophthalmology and psychiatry - A narrative review focused on congenital and inherited conditions. Psychiatry Res 2024; 331:115629. [PMID: 38029629 PMCID: PMC10842794 DOI: 10.1016/j.psychres.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
A number of congenital and inherited diseases present with both ocular and psychiatric features. The genetic inheritance and phenotypic variants play a key role in disease severity. Early recognition of the signs and symptoms of those disorders is critical to earlier intervention and improved prognosis. Typically, the associations between these two medical subspecialties of ophthalmology and psychiatry are poorly understood by most practitioners so we hope to provide a narrative review to improve the identification and management of these disorders. We conducted a comprehensive review of the literature detailing the diseases with ophthalmic and psychiatric overlap that were more widely represented in the literature. Herein, we describe the clinical features, pathophysiology, molecular biology, diagnostic tests, and the most recent approaches for the treatment of these diseases. Recent studies have combined technologies for ocular and brain imaging such as optical coherence tomography (OCT) and functional imaging with genetic testing to identify the genetic basis for eye-brain connections. Additional work is needed to further explore these potential biomarkers. Overall, accurate, efficient, widely distributed and non-invasive tests that can help with early recognition of these diseases will improve the management of these patients using a multidisciplinary approach.
Collapse
Affiliation(s)
- Chelsea Kiely
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States
| | - Konstantinos A A Douglas
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States; Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, United States
| | | | - John B Miller
- Harvard Retinal Imaging Lab, Massachusetts Eye and Ear, Boston, MA, United States; Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, 75 Fenwood Rd, 612, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, United States.
| |
Collapse
|
3
|
Zhao X, Gao C, Li L, Jiang L, Wei Y, Che F, Liu Q. Clinical Exome Sequencing Identifies NDP Gene Variants in Two Chinese Families with X-Linked Norrie Disease. Genet Test Mol Biomarkers 2022; 26:589-594. [PMID: 36577125 DOI: 10.1089/gtmb.2022.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose: To explore the genetic defects in two Chinese families with X-linked Norrie disease (ND). Methods: We analyzed two Chinese families with ND at molecular level through clinical exome sequencing and the variations were identified by Sanger sequencing. Results: Two genetic variations were found in the NDP gene by clinical exome sequencing, a partial deletion of 801 bp contained the whole exon 2 and a missense variant (164G>A) within codon 55 that resulted in the interchange of cysteine by phenylalanine. Clinical findings were more severe in the patients who presented the missense variant. Conclusion: We report two genetic variations in the NDP gene in Chinese that extend the mutational and phenotypic spectra of NDP gene, and also demonstrate the feasibility of clinical exome sequencing in application of molecular diagnosis.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Laboratory Medicine, Linyi People's Hospital, Shandong University, Linyi, China.,Key Laboratory for Laboratory Medicine of Linyi City, Linyi, China
| | - Chunhai Gao
- Department of Laboratory Medicine, Linyi People's Hospital, Shandong University, Linyi, China.,Key Laboratory for Laboratory Medicine of Linyi City, Linyi, China
| | - Lin Li
- Department of Laboratory Medicine, Linyi People's Hospital, Shandong University, Linyi, China.,Key Laboratory for Laboratory Medicine of Linyi City, Linyi, China
| | - Liangqian Jiang
- Department of Laboratory Medicine, Linyi People's Hospital, Shandong University, Linyi, China.,Key Laboratory for Laboratory Medicine of Linyi City, Linyi, China
| | - Yuda Wei
- Department of Laboratory Medicine, Linyi People's Hospital, Shandong University, Linyi, China.,Key Laboratory for Laboratory Medicine of Linyi City, Linyi, China
| | - Fengyuan Che
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Liu M, Luo J, Feng H, Li J, Zhang X, Zhao P, Fei P. Decrease of FZD4 exon 1 methylation in probands from FZD4-associated FEVR family of phenotypic heterogeneity. Front Med (Lausanne) 2022; 9:976520. [PMID: 36353221 PMCID: PMC9638120 DOI: 10.3389/fmed.2022.976520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an important cause of childhood blindness and is clinically characterized by phenotypic heterogeneity. FEVR patients harboring the same genetic mutation vary widely in disease severity. The purpose of this study was to explore non-genetic factors that regulate FEVR phenotypic heterogeneity. We detected methylation levels of 21 CpG sites located at the FZD4 exon 1 region of 11 probands, 12 asymptomatic/paucisymptomatic carriers and 11 non-carriers from 10 unrelated FZD4-associated FEVR families using bisulfite amplicon sequencing (BSAS). Our results showed reduced methylation level of FZD4 exon 1 in probands, suggesting that FZD4 exon 1 methylation level may be negatively linked with FEVR disease severity. It provided a new research direction for follow-up research, helping us better understand the complexity of the FEVR-causing mechanism.
Collapse
|
5
|
Wai YZ, Chong YY, Lim LT, Hamzah N, Rahmat J. Familial exudative vitreoretinopathy in a 4 generations family of South-East Asian Descendent with FZD4 mutation (c.1501_1502del). Int J Retina Vitreous 2022; 8:30. [PMID: 35578317 PMCID: PMC9112478 DOI: 10.1186/s40942-022-00384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Familial Exudative Vitreoretinopathy (FEVR) is a hereditary disorder characterized by peripheral avascular retina with neovascularization. Although FEVR has been thoroughly described in multiple literature publications from different countries, there are currently limited articles describing the phenotypes of FEVR among South-East Asian Descendent. This paper describes the clinical phenotype of the FZD4 gene with c.1501_1502 deletion in a 4-generation case series of a South East Asian family. METHODS We reviewed a 4-generation case series of a South-East Asian descendent family consisting of 27 family members with 10 members diagnosed with FEVR. We observed the clinical phenotype of these series of patients, including some of the family members who underwent whole-exome sequencing, PCR amplification and DNA sequencing techniques to identify the mutated gene. RESULTS Frameshift mutation (c.1501_1502del) were found in FZD4 gene in this series of patients with the age ranging from 1 month old to 69 years old. There was a 100% (4/4) of our paediatric patients being diagnosed within 21 days of life. It was also found that 75% of patients (6/8) less than 40 years old exhibited disease asymmetry of 2 stages or more and 80% (8/10) had a history of vitreoretinal surgery or diode laser photocoagulation, with a further 50% of the adult patients identified as legally blind; the mean age of blindness was 18-years-old. CONCLUSIONS Phenotypic manifestation of FZD4 gene with c.1501_1502del mutation can be identified within the neonatal period. They have relatively greater clinical asymmetry of 2 stages or more compared to other mutations. Without treatment, most of them will have bilateral severe visual impairment around the adolescent age group.
Collapse
Affiliation(s)
- Yong Zheng Wai
- Ophthalmology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia.
| | | | - Lik Thai Lim
- Ophthalmology Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan, Malaysia
| | - Norhafizah Hamzah
- Paediatric Ophthalmology Department, Hospital Tunku Azizah, Kuala Lumpur, Malaysia
| | - Jamalia Rahmat
- Ophthalmology Department, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Ubels JL, Lin CM, Antonetti DA, Diaz-Coranguez M, Diegel CR, Williams BO. Structure and function of the retina of low-density lipoprotein receptor-related protein 5 (Lrp5)-deficient rats. Exp Eye Res 2022; 217:108977. [PMID: 35139333 PMCID: PMC9295635 DOI: 10.1016/j.exer.2022.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/21/2022]
Abstract
Loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), result in familial exudative vitreoretinopathy (FEVR), osteoporosis-pseudoglioma syndrome (OPPG), and Norrie disease. CRISPR/Cas9 gene editing was used to produce rat strains deficient in Lrp5. The purpose of this study was to validate this rat model for studies of hypovascular, exudative retinopathies. The retinal vasculature of wildtype and Lrp5 knockout rats was stained with Giffonia simplifolia isolectin B4 and imaged by fluorescence microscopy. Effects on retinal structure were investigated by histology. The integrity of the blood-retina barrier was analyzed by measurement of permeability to Evans blue dye and staining for claudin-5. Retinas were imaged by fundus photography and SD-OCT, and electroretinograms were recorded. Lrp5 gene deletion led to sparse superficial retinal capillaries and loss of the deep and intermediate plexuses. Autofluorescent exudates were observed and are correlated with increased Evans blue permeability and absence of claudin-5 expression in superficial vessels. OCT images show pathology similar to OCT of humans with FEVR, and retinal thickness is reduced by 50% compared to wild-type rats. Histology and OCT reveal that photoreceptor and outer plexiform layers are absent. The retina failed to demonstrate an ERG response. CRISPR/Cas9 gene-editing produced a predictable rat Lrp5 knockout model with extensive defects in the retinal vascular and neural structure and function. This rat model should be useful for studies of exudative retinal vascular diseases involving the Wnt and norrin pathways.
Collapse
Affiliation(s)
- John L Ubels
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA; Department of Biology, Calvin University, 3201 Burton St., SE, Grand Rapids, MI, 49546, USA.
| | - Cheng-Mao Lin
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - David A Antonetti
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Monica Diaz-Coranguez
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, 1000 Wall St, Ann Arbor, MI, 48105, USA
| | - Cassandra R Diegel
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
7
|
Wang H, Liu Z, Zhou Y, Ma Y, Tao D. A novel frameshift c.22_25dupGCAT mutation of the NDP gene in a Chinese infant with Norrie disease: A case report. Medicine (Baltimore) 2022; 101:e28523. [PMID: 35029917 PMCID: PMC8735801 DOI: 10.1097/md.0000000000028523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
RATIONALE Norrie disease (ND) is a rare X-linked recessive disease characterized by bilateral congenital blindness and auditory impairments. According to the previous studies, Norrin cystine knot growth factor (NDP) gene have been found to be responsible for ND. Herein, we report a case of ND with a novel mutation in NDP and elucidate the clinical and molecular characteristics of this patient. PATIENT CONCERNS A 2-month-old Chinese male infant presented with gray-white opacification in the bilateral cornea. Vitreous opacity and retinal detachment were observed on ocular ultrasound. Furthermore, a novel de novo hemizygous mutation (c.22_25dupGCAT, p.S9Cfs∗18) in exon 2 of the NDP gene was identified by next-generation sequencing. SWISS-MODEL predicted that the c.22_25dupGCAT mutation truncated the NDP protein. DIAGNOSIS Based on the above clinical and genetic evidence, this patient was eventually diagnosed with ND. INTERVENTIONS Currently, no clinical therapy is available for ND. OUTCOMES In addition to the typical ocular symptoms, no other abnormalities were observed. The patient's vital signs remained stable and normal. LESSON A novel causative mutation of NDP was identified using next-generation sequencing. Our report expands the pathogenic mutation spectrum of NDP and facilitates genetic counseling and prenatal diagnosis. Additionally, we emphasize the importance of molecular genetic testing in the diagnosis of ND.
Collapse
Affiliation(s)
- He Wang
- Department of Ophthalmology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Zeyuan Liu
- Department of Ophthalmology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yuantao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yuanyuan Ma
- Department of Ophthalmology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Dan Tao
- Department of Ophthalmology, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
8
|
Ubels JL, Diegel CR, Foxa GE, Ethen NJ, Lensing JN, Madaj ZB, Williams BO. Low-Density Lipoprotein Receptor-Related Protein 5-Deficient Rats Have Reduced Bone Mass and Abnormal Development of the Retinal Vasculature. CRISPR J 2021; 3:284-298. [PMID: 32833527 DOI: 10.1089/crispr.2020.0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Humans carrying homozygous loss-of-function mutations in the Wnt co-receptor, low-density lipoprotein receptor-related protein 5 (LRP5), develop osteoporosis and a defective retinal vasculature known as familial exudative vitreoretinopathy (FEVR) due to disruption of the Wnt signaling pathway. The purpose of this study was to use CRISPR-Cas9-mediated gene editing to create strains of Lrp5-deficient rats and to determine whether knockout of Lrp5 resulted in phenotypes that model the bone and retina pathology in LRP5-deficient humans. Knockout of Lrp5 in rats produced low bone mass, decreased bone mineral density, and decreased bone size. The superficial retinal vasculature of Lrp5-deficient rats was sparse and disorganized, with extensive exudates and decreases in vascularized area, vessel length, and branch point density. This study showed that Lrp5 could be predictably knocked out in rats using CRISPR-Cas9, causing the expression of bone and retinal phenotypes that will be useful for studying the role of Wnt signaling in bone and retina development and for research on the treatment of osteoporosis and FEVR.
Collapse
Affiliation(s)
- John L Ubels
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA.,Department of Biology, Calvin University, Grand Rapids, Michigan, USA
| | - Cassandra R Diegel
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Gabrielle E Foxa
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Nicole J Ethen
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Jonathan N Lensing
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| | - Zachary B Madaj
- Core Technologies and Services, Van Andel Institute, Grand Rapids, Michigan, USA; Calvin University, Grand Rapids, Michigan, USA
| | - Bart O Williams
- Program for Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, and Calvin University, Grand Rapids, Michigan, USA
| |
Collapse
|
9
|
Chidiac R, Abedin M, Macleod G, Yang A, Thibeault PE, Blazer LL, Adams JJ, Zhang L, Roehrich H, Jo H, Seshagiri S, Sidhu SS, Junge HJ, Angers S. A Norrin/Wnt surrogate antibody stimulates endothelial cell barrier function and rescues retinopathy. EMBO Mol Med 2021; 13:e13977. [PMID: 34105895 PMCID: PMC8261507 DOI: 10.15252/emmm.202113977] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The FZD4:LRP5:TSPAN12 receptor complex is activated by the secreted protein Norrin in retinal endothelial cells and leads to βcatenin-dependent formation of the blood-retina-barrier during development and its homeostasis in adults. Mutations disrupting Norrin signaling have been identified in several congenital diseases leading to hypovascularization of the retina and blindness. Here, we developed F4L5.13, a tetravalent antibody designed to induce FZD4 and LRP5 proximity in such a way as to trigger βcatenin signaling. Treatment of cultured endothelial cells with F4L5.13 rescued permeability induced by VEGF in part by promoting surface expression of junction proteins. Treatment of Tspan12-/- mice with F4L5.13 restored retinal angiogenesis and barrier function. F4L5.13 treatment also significantly normalized neovascularization in an oxygen-induced retinopathy model revealing a novel therapeutic strategy for diseases characterized by abnormal angiogenesis and/or barrier dysfunction.
Collapse
Affiliation(s)
- Rony Chidiac
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | - Md. Abedin
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Graham Macleod
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | - Andy Yang
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
| | | | | | | | - Lingling Zhang
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Ha‐Neul Jo
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | | | - Sachdev S Sidhu
- AntlerA TherapeuticsFoster CityCAUSA
- Donnelly CentreUniversity of TorontoTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Harald J Junge
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMNUSA
| | - Stephane Angers
- Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoONCanada
- AntlerA TherapeuticsFoster CityCAUSA
- Department of BiochemistryUniversity of TorontoTorontoONCanada
| |
Collapse
|
10
|
Amorelli GM, Barresi C, Ji MH, Orazi L, Molle F, Lepore D. Familial Exudative Vitreoretinopathy With Neurodevelopmental Delay and Hypoplasia of the Corpus Callosum. Ophthalmic Surg Lasers Imaging Retina 2020; 51:588-591. [DOI: 10.3928/23258160-20201005-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022]
|
11
|
Jo DH, Kim JH. Toward the Clinical Application of Therapeutic Angiogenesis Against Pediatric Ischemic Retinopathy. J Lipid Atheroscler 2020; 9:268-282. [PMID: 32821736 PMCID: PMC7379088 DOI: 10.12997/jla.2020.9.2.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Abstract
Therapeutic angiogenesis refers to strategies of inducing angiogenesis to treat diseases involving ischemic conditions. Historically, most attempts and achievements have been related to coronary and peripheral artery diseases. In this review, we propose the clinical application of therapeutic angiogenesis for the treatment of pediatric ischemic retinopathy, including retinopathy of prematurity, familial exudative retinopathy, and NDP-related retinopathy. These diseases are all characterized by the reduction of physiological angiogenesis and the following induction of pathological angiogenesis. Therapeutic angiogenesis, which supplements insufficient physiological angiogenesis, may be a therapeutic approach for ischemic conditions. Various molecules and modalities can be utilized to apply therapeutic angiogenesis for the treatment of ischemic retinopathy, as in coronary and peripheral artery diseases. Experiences with cardiovascular diseases provide a useful reference for the further clinical application of therapeutic angiogenesis in pediatric ischemic retinopathy. Recombinant proteins and gene therapy are powerful tools to deliver angiogenic factors to retinal tissues directly. Furthermore, endothelial progenitor or bone marrow-derived cells can be injected into the vitreous cavity of the eye for therapeutic angiogenesis. Intraocular injections are highly promising for the delivery of therapeutics for therapeutic angiogenesis. We expect that therapeutic angiogenesis will be a breakthrough in the treatment of pediatric ischemic retinopathy.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Moinuddin O, Sathrasala S, Jayasundera KT, Branham KH, Chang EY, Qian CX, Recchia FM, Fahim AT, Besirli CG. Coats-like Exudative Vitreoretinopathy in Retinitis Pigmentosa: Ocular Manifestations and Treatment Outcomes. Ophthalmol Retina 2020; 5:86-96. [PMID: 32507488 DOI: 10.1016/j.oret.2020.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE To provide a comprehensive review of the ocular manifestations, outcomes, and genetic findings in patients with Coats-like retinitis pigmentosa (RP). DESIGN Multicenter, retrospective, nonconsecutive case series. PARTICIPANTS Patients with a diagnosis of RP demonstrating Coats-like exudative vitreoretinopathy between January 1, 2008, and October 1, 2019. METHODS Evaluation of ocular findings at RP diagnosis and at time of presentation of Coats-like exudative vitreoretinopathy, pedigree analysis, genetic testing, retinal imaging, and anatomic outcomes after treatment. MAIN OUTCOME MEASURES Visual acuity, ophthalmoscopy results, OCT results, fluorescein angiography results, and identification of genetic mutations. RESULTS Nine patients diagnosed with RP and demonstrating Coats-like exudative vitreoretinopathy were included. Median age at time of RP diagnosis was 8 years (range, 1-22 years), and median age at presentation of Coats-like exudative vitreoretinopathy was 18 years (range, 1-41 years). Seven patients were female, and 2 were male. The genetic cause of disease was identified in 6 patients. Three patients demonstrated Coats-like fundus findings at the time of RP diagnosis. Exudative retinal detachment (ERD) localized to the infratemporal periphery was present in all patients, with bilateral disease observed in 7 patients. In all treated patients, focal laser photocoagulation was used to treat leaking telangiectasias and to limit further ERD expansion. Cystoid macular edema refractory to carbonic anhydrase inhibitor therapy and ultimately amenable to treatment with intravitreal anti-vascular endothelial growth factor injection was observed in 4 patients. CONCLUSIONS Coats-like vitreoretinopathy is present in up to 5% of all RP patients. The term Coats-like RP is used colloquially to describe this disease state, which can present at the time of RP diagnosis or, more commonly, develops late during the clinical course of patients with longstanding RP. Coats-like RP is distinct from Coats disease in that exudative pathologic features occur exclusively in the setting of a coexisting RP diagnosis, is restricted to the infratemporal retina, can affect both eyes, and does not demonstrate a male gender bias. Given the risk of added vision loss posed by exudative vitreoretinopathy in patients with RP, a heightened awareness of this condition is critical in facilitating timely intervention.
Collapse
Affiliation(s)
- Omar Moinuddin
- W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Sanjana Sathrasala
- W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - K Thiran Jayasundera
- W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Kari H Branham
- W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | | | - Cynthia X Qian
- Retina Service, Department of Ophthalmology, University of Montreal, Montreal, Canada
| | | | - Abigail T Fahim
- W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Cagri G Besirli
- W. K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
13
|
Coussa RG, Zhao Y, DeBenedictis MJ, Babiuch A, Sears J, Traboulsi EI. Novel mutation in CTNNB1 causes familial exudative vitreoretinopathy (FEVR) and microcephaly: case report and review of the literature. Ophthalmic Genet 2020; 41:63-68. [PMID: 32039639 DOI: 10.1080/13816810.2020.1723118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Neonatal retinal folds and/or vitreoretinal traction can be signs of isolated ocular or syndromic disorders. Etiologies include retinopathy of prematurity, perinatal infections or inherited vitreoretinal disorders such as familial exudative vitreoretinopathy (FEVR) or Norrie disease. We present the clinical and genetic findings of a two-month-old infant with microcephaly, mild motor developmental delay, and FEVR, who required urgent surgical interventions.Methods: The patient underwent an initial examination under anesthesia (EUA) with fluorescein angiography (FA) and subsequent medical and surgical treatments. Genetic testing was undertaken to identify the etiology.Results: Examination at 2 months of age demonstrated microcephaly with a head circumference smaller than the 1st percentile. Family history was negative for microcephaly or retinal disease. Anterior segment eye exam was normal OU. There were bilateral macular folds involving the fovea and extending from the disc to the temporal periphery. FA demonstrated bilateral incomplete vascularization of the retina most notable nasally. Indirect laser was applied to ischemic retina OU. Scleral buckling procedures were performed OU as well as a vitrectomy in the left eye. Follow-up examinations demonstrated the stable appearance of the folds and attached retinas OU. Genetic testing identified a novel dominant heterozygous c.2046_2047del [p.Phe683Glnfs*9] mutation in CTNNB1, predicted to result in a frameshift causing a truncated protein.Conclusions: CTNNB1 mutations are an uncommon cause of FEVR with microcephaly.
Collapse
Affiliation(s)
- Razek Georges Coussa
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Yue Zhao
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Jonathan Sears
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Elias I Traboulsi
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
14
|
Staropoli PC, Yannuzzi NA, Patel NA, Negron CI, Prakhunhungsit S, Berrocal AM. Novel Frizzled-4 Mutation Is Associated With Familial Exudative Vitreoretinopathy Mimicking Persistent Fetal Vasculature. J Pediatr Ophthalmol Strabismus 2020; 57:e4-e7. [PMID: 31978232 DOI: 10.3928/01913913-20191230-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 11/20/2022]
Abstract
This is a report of a 13-month-old boy who presented with a large unilateral fibrovascular stalk and bilateral peripheral retinal avascularity. Although consistent with both persistent fetal vasculature and familial exudative vitreoretinopathy, genetic testing disclosed a novel pathogenic mutation in the frizzled class receptor 4 gene (FZD4, c.427_428delCT). [J Pediatr Ophthalmol Strabismus. 2020;57:e4-e7.].
Collapse
|
15
|
Familial Exudative Vitreoretinopathy: An Update on Genetics and Imaging. Clin Ophthalmol 2020; 60:169-177. [DOI: 10.1097/iio.0000000000000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nat Commun 2019; 10:5243. [PMID: 31748531 PMCID: PMC6868140 DOI: 10.1038/s41467-019-13220-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR. Integrin-linked kinase (ILK) is an important mediator of integrin signaling. Here Park et al. show that mice with endothelial-specific deletion of Ilk develop vascular defects that resemble familial exudative vitreoretinopathy, and identify mutations in ILK in patients with exudative vitreoretinopathy suggesting a potential role in human pathogenesis.
Collapse
|
17
|
Chen C, Liu C, Wang Z, Sun L, Zhao X, Li S, Luo X, Zhang A, Chong V, Lu L, Ding X. Optical Coherence Tomography Angiography in Familial Exudative Vitreoretinopathy: Clinical Features and Phenotype-Genotype Correlation. Invest Ophthalmol Vis Sci 2019; 59:5726-5734. [PMID: 30513533 DOI: 10.1167/iovs.18-25377] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate the microstructure of the fovea in patients with familial exudative vitreoretinopathy (FEVR) compared to healthy controls using optical coherence tomography angiography (OCTA). Methods In this consecutive, cross-sectional, observational case series, 41 eyes of 41 patients diagnosed as FEVR and 37 eyes in 37 control subjects were studied. OCTA was utilized to automatically measure the foveal avascular zone (FAZ) and the vessel density (VD). Inner retinal thicknesses (IRT) and central retinal thickness (CRT) were measured with the instrument caliper. Targeted next-generation sequencing was performed, and phenotype-genotype association was analyzed. Results Small FAZ was found in 31.70% (13/41) FEVR eyes but not in controls. Greater CRT and lower superficial foveal VD were noted in FEVR patients. FAZ is negatively correlated with IRT. Persistence of the inner retinal layer (IRL) in fovea was present in 48.78% (20/41) FEVR eyes but not found in controls. Zero percent (0/10) of patients with the low-density lipoprotein receptor-related protein 5 (LRP5) mutation, 50% (1/2) with the frizzled-4 (FZD4) mutation, and 66.67% (3/4) with the tetraspanin-12 (TSPAN12) mutation had preserved foveal IRL and small FAZ. Conclusions Our data indicate FEVR status is associated with a significantly smaller FAZ, decreased vascular density in both the superficial and deep layers of parafoveal area, a thicker fovea, and an abnormally preserved IRL in fovea. In addition, patients with the LRP5 mutation had a milder phenotype than those with the FDZ4 or TSPAN12 mutations. These novel findings could provide insight into the understanding of the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Chonglin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Chengxi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Zhirong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Xiujuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Songshan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Xiaoling Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Aiyuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Victor Chong
- Oxford Eye Hospital, Oxford University Hospitals, Oxford, United Kingdom
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Liu Q, Zhang X, Cheng R, Ma JX, Yi J, Li J. Salutary effect of fenofibrate on type 1 diabetic retinopathy via inhibiting oxidative stress-mediated Wnt/β-catenin pathway activation. Cell Tissue Res 2019; 376:165-177. [PMID: 30610453 DOI: 10.1007/s00441-018-2974-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/26/2018] [Indexed: 12/20/2022]
Abstract
Fenofibrate has been shown to have therapeutic effects on diabetic retinopathy (DR). Our previous studies demonstrated that the oxidative stress-activated Wnt/β-catenin pathway plays a pathogenic role in diabetic complications. In the present study, we evaluate the effect and mechanism of fenofibrate on regulating the oxidative stress-activated Wnt/β-catenin pathway by using the genetic type 1 diabetes model of C57BL/6J-Ins2Akita mice and high glucose (HG)-treated ARPE-19. Our results demonstrated that retinal phosphorylation of LRP6 and nuclear β-catenin were increased in C57BL/6J-Ins2Akita mice suggesting activation of Wnt/β-catenin signaling. Meanwhile, C57BL/6J-Ins2Akita showed upregulation of oxidant enzyme Nox4 and Nox2 and downregulation of antioxidant enzyme SOD1 and SOD2. All these alterations were reversed in C57BL/6J-Ins2Akita mice with fenofibrate treatment. Moreover, fenofibrate significantly ameliorated diabetes-induced retinal vascular leakage in C57BL/6J-Ins2Akita mice. In cultured ARPE-19, fenofibrate decreased HG-induced Nox2 and Nox4 upregulation, attenuated SOD1 and SOD2 downregulation and inhibited LRP6 phosphorylation. Moreover, activation of Wnt/β-catenin by Wnt3a conditional medium (WCM) reduced SOD1 and SOD2 and did not affect Nox2 and Nox4. Fenofibrate suppressed WCM-induced LRP6 phosphorylation and reversed SOD downregulation. Importantly, Nox4 overexpression directly phosphorylated LPR6 in ARPE19; conversely, Nox4 knockdown suppressed HG-induced LPR6 phosphorylation. Taken together, Nox-mediated oxidative stress contributes to Wnt/β-catenin activation in DR. Fenofibrate ameliorated DR through coordinate attenuation of oxidative stress and blockade of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Qiuping Liu
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Xian Zhang
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Rui Cheng
- Department of Physiology, Health Sciences Center, University of Oklahoma, 941 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA
| | - Jian-Xing Ma
- Department of Physiology, Health Sciences Center, University of Oklahoma, 941 Stanton L. Young Blvd, Oklahoma City, OK, 73104, USA
| | - Jinglin Yi
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China.
| | - Jingming Li
- Department of Ophthalmology, Affiliated Eye Hospital of Nanchang University, 463 Bayi Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
19
|
Comparison of clinical outcomes of intravitreal ranibizumab and aflibercept treatment for retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 2018; 257:49-55. [DOI: 10.1007/s00417-018-4168-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/08/2018] [Accepted: 10/16/2018] [Indexed: 01/19/2023] Open
|
20
|
Nagiel A, Lalane RA, Jen JC, Kreiger AE. SUPERFICIAL AND DEEP CAPILLARY ISCHEMIA AS A PRESENTING SIGN OF RETINAL VASCULOPATHY WITH CEREBRAL LEUKOENCEPHALOPATHY AND SYSTEMIC MANIFESTATIONS. Retin Cases Brief Rep 2018; 12 Suppl 1:S87-S91. [PMID: 29028736 DOI: 10.1097/icb.0000000000000641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE The aim of this study was to investigate the presenting sign of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations, a rare autosomal dominant condition caused by mutations in the TREX1 gene, and to explore the potential efficacy of bevacizumab in preventing capillary occlusions. METHODS Observational case report with the use of ultra-widefield fluorescein angiography, optical coherence tomography, and optical coherence tomography angiography. RESULTS A 31-year-old man with a family history of retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations presented with a scotoma in his left eye. The visual acuity was 20/20 in both eyes, and his examination was notable for scattered cotton wool spots in the retina of both eyes as well as an area of paracentral acute middle maculopathy in the left eye. Ultra-widefield fluorescein angiography revealed peripheral capillary nonperfusion and vascular leakage corresponding to the cotton wool spots. Spectral domain optical coherence tomography and optical coherence tomography angiography confirmed the presence and distribution of superficial capillary plexus and deep capillary plexus ischemia. Neurologic examination and imaging were normal. A trial of monthly intravitreal bevacizumab injections to the left eye over 6 months resulted in diminished capillary leakage. CONCLUSION Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations is a rare genetic condition manifested most commonly by cerebral and retinal ischemia. This retinal vasculopathy leads to occlusions of small-caliber retinal vessels in the superficial plexus and deep plexus with resulting cotton wool spots and paracentral acute middle maculopathy, respectively. Recognition of the retinal findings by ophthalmologists and neurologists may avoid unnecessary brain biopsies in diagnosing this rare disorder.
Collapse
Affiliation(s)
- Aaron Nagiel
- Retina Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Robert A Lalane
- Retina Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Joanna C Jen
- Departments of Neurology, and
- Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Allan E Kreiger
- Retina Division, Stein Eye Institute, University of California Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
21
|
Callaway NF, Berrocal AM. Wnt-Spectrum Vitreoretinopathy Masquerading as Congenital Toxoplasmosis. Ophthalmic Surg Lasers Imaging Retina 2018; 49:446-450. [PMID: 29927473 DOI: 10.3928/23258160-20180601-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/22/2018] [Indexed: 11/20/2022]
Abstract
Wnt-spectrum vitreoretinopathies are a group of rare inherited disorders of retinal angiogenesis that include familial exudative vitreoretinopathy/Norrie disease and are most commonly autosomal dominant; however, they can rarely present with other inheritance patterns that are more difficult to diagnose. The authors describe a case of an uncle misdiagnosed as congenital toxoplasmosis for decades and his 2-month-old nephew presenting with bilateral retinal detachments. Genetic analysis revealed an NDP gene mutation in the child and the uncle, as well as heterozygosity of the mother confirming a Wnt-spectrum vitreoretinopathy. This report describes the evaluation, diagnosis, and importance of early laser stabilization of this disorder. [Ophthalmic Surg Lasers Imaging Retina. 2018;49:446-450.].
Collapse
|
22
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
23
|
Bucher F, Zhang D, Aguilar E, Sakimoto S, Diaz-Aguilar S, Rosenfeld M, Zha Z, Zhang H, Friedlander M, Yea K. Antibody-Mediated Inhibition of Tspan12 Ameliorates Vasoproliferative Retinopathy Through Suppression of β-Catenin Signaling. Circulation 2017; 136:180-195. [DOI: 10.1161/circulationaha.116.025604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/22/2017] [Indexed: 12/31/2022]
Abstract
Background:
Anti-angiogenic biologicals represent an important concept for the treatment of vasoproliferative diseases. However, the need for continued treatment, the presence of nonresponders, and the risk of long-term side effects limit the success of existing therapeutic agents. Although Tspan12 has been shown to regulate retinal vascular development, nothing is known about its involvement in neovascular disease and its potential as a novel therapeutic target for the treatment of vasoproliferative diseases.
Methods:
Rodent models of retinal neovascular disease, including the mouse model of oxygen-induced retinopathy and the very low density lipoprotein receptor knockout mouse model were analyzed for Tspan/β-catenin regulation. Screening of a phage display of a human combinatorial antibody (Ab) library was used for the development of a high-affinity Ab against Tspan12. Therapeutic effects of the newly developed Ab on vascular endothelial cells were tested in vitro and in vivo in the oxygen-induced retinopathy and very low density lipoprotein receptor knockout mouse model.
Results:
The newly developed anti-Tspan12 Ab exhibited potent inhibitory effects on endothelial cell migration and tube formation. Mechanistic studies confirmed that the Ab inhibited the interaction between Tspan12 and Frizzled-4 and effectively modulates β-catenin levels and target genes in vascular endothelial cells. Tspan12/β-catenin signaling was activated in response to acute and chronic stress in the oxygen-induced retinopathy and very low density lipoprotein receptor mouse model of proliferative retinopathy. Intravitreal application of the Ab showed significant therapeutic effects in both models without inducing negative side effects on retina function. Moreover, combined intravitreal injection of the Ab with a known vascular endothelial growth factor inhibitor, Aflibercept, resulted in significant enhancement of the therapeutic efficacy of each monotherapy. Combination therapy with the Tspan12 blocking antibody can be used to reduce anti-vascular endothelial growth factor doses, thus decreasing the risk of long-term off-target effects.
Conclusions:
Tspan12/β-catenin signaling is critical for the progression of vasoproliferative disease. The newly developed anti-Tspan12 antibody has therapeutic effects in vasoproliferative retinopathy and can enhance the potency of existing anti- vascular endothelial growth factor agents.
Collapse
Affiliation(s)
- Felicitas Bucher
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Ding Zhang
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Edith Aguilar
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Susumu Sakimoto
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Sophia Diaz-Aguilar
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Mauricio Rosenfeld
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Zhao Zha
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Hongkai Zhang
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Martin Friedlander
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| | - Kyungmoo Yea
- From Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA (F.B., E.A., S.S., S.D.-A., M.R., Z.Z., H.Z., M.F., K.Y.); and Shanghai Institute for Advanced Immunological Studies, ShanghaiTech University, China (D.Z., K.Y.)
| |
Collapse
|
24
|
Keser V, Khan A, Siddiqui S, Lopez I, Ren H, Qamar R, Nadaf J, Majewski J, Chen R, Koenekoop RK. The Genetic Causes of Nonsyndromic Congenital Retinal Detachment: A Genetic and Phenotypic Study of Pakistani Families. Invest Ophthalmol Vis Sci 2017; 58:1028-1036. [PMID: 28192794 PMCID: PMC5308768 DOI: 10.1167/iovs.16-20281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To evaluate consanguineous pedigrees from Pakistan with a clinical diagnosis of nonsyndromic congenital retinal nonattachment (NCRNA) and identify genes responsible for the disease as currently only one NCRNA gene is known (atonal basic helix-loop-helix transcription factor 7: ATOH7). Methods We implemented a three-step genotyping platform: single nucleotide polymorphism genotyping to identify loss of heterozygosity regions in patients, Retinal Information Network panel screening for mutations in currently known retinal genes. Negative patients were then subjected to whole exome sequencing. Results We evaluated 21 consanguineous NCRNA pedigrees and identified the causal mutations in known retinal genes in 13 out of our 21 families. We found mutations in ATOH7 in three families. Surprisingly, we then found mutations in familial exudative vitreoretinopathy (FEVR) genes; low-density lipoprotein receptor-related protein 5 mutations (six families), tetraspanin 12 mutations (two families), and NDP mutations (two families). Thus, 62% of the patients were successfully genotyped in our study with seven novel and six previously reported mutations in known retinal genes. Conclusions Although the clinical diagnosis of all children was NCRNA with severe congenital fibrotic retinal detachments, the molecular diagnosis determined that the disease process was in fact a very severe form of FEVR in 10 families. Because severe congenital retinal detachment has not been previously associated with all the FEVR genes, we have thus expanded the phenotypic spectrum of FEVR, a highly variable retinal detachment phenotype that has clinical overlap with NCRNA. We identified seven novel mutations. We also established for the first time genetic overlap between the Iranian and Pakistani populations. We identified eight NCRNA families that do not harbor mutations in any known retinal genes, suggesting novel causal genes in these families.
Collapse
Affiliation(s)
- Vafa Keser
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ayesha Khan
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sorath Siddiqui
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Huanan Ren
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| | - Raheel Qamar
- Department of Pediatric Ophthalmology, Al Shifa Trust Eye Hospital, Rawalpindi, Pakistan
| | - Javad Nadaf
- Quebec Genome Centre, Montreal, Quebec, Canada
| | - Jacek Majewski
- Quebec Genome Centre, Montreal, Quebec, Canada 4Faculty of Medicine, Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Rui Chen
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Hua HUT, Tran KD, Medina CA, Fallas B, Negron C, Berrocal AM. Avascular Retinal Findings in a Child With Achondroplasia. Ophthalmic Surg Lasers Imaging Retina 2017; 48:272-274. [PMID: 28297043 DOI: 10.3928/23258160-20170301-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/29/2016] [Indexed: 11/20/2022]
Abstract
The authors present clinical and angiographic findings in a 12-year-old girl with achondroplasia who presented with bilateral retinal peripheral nonperfusion and unilateral rhegmatogenous retinal detachment, which has not been previously described in achondroplasia. This report contributes incremental knowledge regarding aberrant retinal vascular phenomena observed in pediatric disease states and implicates the possible role of mutations in the FGFR3 gene in peripheral vascular abnormalities. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:272-274.].
Collapse
|
26
|
Pharmacologic Activation of Wnt Signaling by Lithium Normalizes Retinal Vasculature in a Murine Model of Familial Exudative Vitreoretinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2588-600. [PMID: 27524797 DOI: 10.1016/j.ajpath.2016.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases.
Collapse
|
27
|
Arthofer E, Hot B, Petersen J, Strakova K, Jäger S, Grundmann M, Kostenis E, Gutkind JS, Schulte G. WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with Gα12/13. Mol Pharmacol 2016; 90:447-59. [PMID: 27458145 DOI: 10.1124/mol.116.104919] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/20/2016] [Indexed: 12/29/2022] Open
Abstract
Frizzleds (FZDs) are unconventional G protein-coupled receptors that belong to the class Frizzled. They are bound and activated by the Wingless/Int-1 lipoglycoprotein (WNT) family of secreted lipoglycoproteins. To date, mechanisms of signal initiation and FZD-G protein coupling remain poorly understood. Previously, we showed that FZD6 assembles with Gαi1/Gαq (but not with Gαs, Gαo and Ga12/13), and that these inactive-state complexes are dissociated by WNTs and regulated by the phosphoprotein Dishevelled (DVL). Here, we investigated the inactive-state assembly of heterotrimeric G proteins with FZD4, a receptor important in retinal vascular development and frequently mutated in Norrie disease or familial exudative vitreoretinopathy. Live-cell imaging experiments using fluorescence recovery after photobleaching show that human FZD4 assembles-in a DVL-independent manner-with Gα12/13 but not representatives of other heterotrimeric G protein subfamilies, such as Gαi1, Gαo, Gαs, and Gαq The FZD4-G protein complex dissociates upon stimulation with WNT-3A, WNT-5A, WNT-7A, and WNT-10B. In addition, WNT-induced dynamic mass redistribution changes in untransfected and, even more so, in FZD4 green fluorescent protein-transfected cells depend on Gα12/13 Furthermore, expression of FZD4 and Gα12 or Gα13 in human embryonic kidney 293 cells induces WNT-dependent membrane recruitment of p115-RHOGEF (RHO guanine nucleotide exchange factor, molecular weight 115 kDa), a direct target of Gα12/13 signaling, underlining the functionality of an FZD4-Gα12/13-RHO signaling axis. In summary, Gα12/13-mediated WNT/FZD4 signaling through p115-RHOGEF offers an intriguing and previously unappreciated mechanistic link of FZD4 signaling to cytoskeletal rearrangements and RHO signaling with implications for the regulation of angiogenesis during embryonic and tumor development.
Collapse
Affiliation(s)
- Elisa Arthofer
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Belma Hot
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Julian Petersen
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Katerina Strakova
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Stefan Jäger
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Manuel Grundmann
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Evi Kostenis
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - J Silvio Gutkind
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| | - Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.A., B.H., J.P., K.S., S.J., G.S.); Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland (E.A.); Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic (K.S., G.S.); Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany (M.G., E.K.); Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, California (J.S.G.)
| |
Collapse
|
28
|
Gunay M, Sukgen EA, Celik G, Kocluk Y. Comparison of Bevacizumab, Ranibizumab, and Laser Photocoagulation in the Treatment of Retinopathy of Prematurity in Turkey. Curr Eye Res 2016; 42:462-469. [PMID: 27420302 DOI: 10.1080/02713683.2016.1196709] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the efficacies and treatment outcomes following intravitreal bevacizumab (IVB), intravitreal ranibizumab (IVR), and laser photocoagulation (LPC) in retinopathy of prematurity (ROP). METHODS This was a retrospective interventional case series study including the data of 134 infants (264 eyes) who were treated with IVB, IVR, or LPC for ROP. The data were collected from two major ROP treatment centers in Turkey without any randomization or masking. Regression of ROP, recurrence profile, complications after each treatment modality, and indications for retreatment were evaluated. The main outcome measures included the total inactivation of ROP with anatomic and refractive outcomes at 1.5 years of adjusted age. RESULTS There were 55 infants (41.1%) in the IVB group, 22 infants (16.4%) in the IVR group, and 57 infants (42.5%) in the LPC group. All but 3 infants (5.5%) in the IVB group and 11 infants (50%) in the IVR group showed recurrence to stage 1 and 2 ROP following IVB and IVR (p < 0.001). Retreatment was performed in three infants in both IVB and IVR groups (p = 0.098). At 1.5 years of adjusted age, all infants showed favorable anatomic outcome except one infant in the LPC group. No significant difference of the mean spherical equivalent (SE) was observed between the groups (p = 0.131). In Zone I ROP, laser treated infants had significantly higher rates of myopia and high myopia than IVB and IVR treated infants (p = 0.040 and p = 0.019, respectively). CONCLUSIONS Both IVB and IVR treated infants had significantly better refractive outcomes in Zone I ROP as compared to LPC treated infants at 1.5 years of adjusted age. The higher rate of disease recurrence was associated with IVR. Gestational age (GA) and the zone of ROP were also predictive factors for recurrence of ROP in the study.
Collapse
Affiliation(s)
- Murat Gunay
- a Department of Ophthalmology , Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital , Istanbul , Turkey
| | - Emine Alyamac Sukgen
- b Department of Ophthalmology , Adana Numune Training and Research Hospital , Adana , Turkey
| | - Gokhan Celik
- a Department of Ophthalmology , Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital , Istanbul , Turkey
| | - Yusuf Kocluk
- b Department of Ophthalmology , Adana Numune Training and Research Hospital , Adana , Turkey
| |
Collapse
|
29
|
Dixon MW, Stem MS, Schuette JL, Keegan CE, Besirli CG. CTNNB1 mutation associated with familial exudative vitreoretinopathy (FEVR) phenotype. Ophthalmic Genet 2016; 37:468-470. [PMID: 26967979 DOI: 10.3109/13816810.2015.1120318] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maxwell W Dixon
- a University of Michigan Medical School , Ann Arbor , Michigan , USA
| | - Maxwell S Stem
- b W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , Michigan , USA
| | - Jane L Schuette
- c Department of Pediatrics, Division of Genetics , University of Michigan , Ann Arbor , Michigan , USA.,d Department of Human Genetics , University of Michigan , Ann Arbor , Michigan , USA
| | - Catherine E Keegan
- c Department of Pediatrics, Division of Genetics , University of Michigan , Ann Arbor , Michigan , USA.,d Department of Human Genetics , University of Michigan , Ann Arbor , Michigan , USA
| | - Cagri G Besirli
- b W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , Michigan , USA
| |
Collapse
|
30
|
Kramer GD, Say EAT, Shields CL. Simultaneous Novel Mutations of LRP5 and TSPAN12 in a Case of Familial Exudative Vitreoretinopathy. J Pediatr Ophthalmol Strabismus 2016; 53 Online:e1-5. [PMID: 27007396 DOI: 10.3928/01913913-20151215-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022]
Abstract
Familial exudative vitreoretinopathy and osteoporosis pseudoglioma syndrome are conditions that result from mutations in the LRP5 gene. Persistent fetal vasculature is a rare congenital malformation that can mimic end-stage familial exudative vitreoretinopathy. The authors report a case of familial exudative vitreoretinopathy in the spectrum of osteoporosis pseudoglioma syndrome associated with novel mutations of the LRP5 and TSPAN12 genes that resulted in a phenotype similar to bilateral persistent fetal vasculature. Both conditions can result in bilateral early-onset blindness. A high index of suspicion, dilated fundus examination and angiography of the parents, and genetic testing are necessary to ensure a correct diagnosis.
Collapse
|
31
|
Paulus YM, Alcorn DM, Gaynon M, Moshfeghi DM. Peripheral Avascular Retina in a Term Male Neonate With Microvillus Inclusion Disease and Pancreatic Insufficiency. Ophthalmic Surg Lasers Imaging Retina 2015; 46:589-91. [PMID: 26057766 DOI: 10.3928/23258160-20150521-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 03/17/2015] [Indexed: 11/20/2022]
Abstract
The authors present the first case of peripheral avascular retina in a term male neonate with pancreatic exocrine insufficiency, atypical microvillus inclusion disease, flat tympanograms, and recurrent urinary tract infections. Clinical examination showed avascular peripheral retina to posterior zone II temporally, with a flat stage 1-like demarcation line, and no plus disease. Genetic testing results were normal. The patient developed peripheral neovascularization and underwent panretinal photocoagulation. This case likely represents mild Norrie disease, familial exudative vitreoretinopathy, or incontinentia pigmenti due to a Wnt signaling abnormality. While these conditions are usually more severe, a variable spectrum of Wnt abnormalities exists throughout the body.
Collapse
|
32
|
Shastry BS. Genetics of familial exudative vitreoretinopathy and its implications for management. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Yan L, Chaqour B. Cysteine-rich protein 61 (CCN1) and connective tissue growth factor (CCN2) at the crosshairs of ocular neovascular and fibrovascular disease therapy. J Cell Commun Signal 2013; 7:253-63. [PMID: 23740088 DOI: 10.1007/s12079-013-0206-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022] Open
Abstract
The vasculature forms a highly branched network investing every organ of vertebrate organisms. The retinal circulation, in particular, is supported by a central retinal artery branching into superficial arteries, which dive into the retina to form a dense network of capillaries in the deeper retinal layers. The function of the retina is highly dependent on the integrity and proper functioning of its vascular network and numerous ocular diseases including diabetic retinopathy, age-related macular degeneration and retinopathy of prematurity are caused by vascular abnormalities culminating in total and sometimes irreversible loss of vision. CCN1 and CCN2 are inducible extracellular matrix (ECM) proteins which play a major role in normal and aberrant formation of blood vessels as their expression is associated with developmental and pathological angiogenesis. Both CCN1 and CCN2 achieve disparate cell-type and context-dependent activities through modulation of the angiogenic and synthetic phenotype of vascular and mesenchymal cells respectively. At the molecular level, CCN1 and CCN2 may control capillary growth and vascular cell differentiation by altering the composition or function of the constitutive ECM proteins, potentiating or interfering with the activity of various ligands and/or their receptors, physically interfering with the ECM-cell surface interconnections, and/or reprogramming gene expression driving cells toward new phenotypes. As such, these proteins emerged as important prognostic markers and potential therapeutic targets in neovascular and fibrovascular diseases of the eye. The purpose of this review is to highlight our current knowledge and understanding of the most recent data linking CCN1 and CCN2 signaling to ocular neovascularization bolstering the potential value of targeting these proteins in a therapeutic context.
Collapse
Affiliation(s)
- Lulu Yan
- Department of Cell Biology and Department of Ophthalmology, State University of New York (SUNY) Eye Institute Downstate Medical Center, 450 Clarkson Avenue, Box 5, Brooklyn, NY, 11203, USA
| | | |
Collapse
|
34
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
35
|
Gandhi JK, Tollefson TT, Telander DG. Falciform macular folds and chromosome 22q11.2: evidence in support of a locus for familial exudative vitreoretinopathy (FEVR). Ophthalmic Genet 2013; 35:112-6. [PMID: 23521024 DOI: 10.3109/13816810.2013.779382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Familial exudative vitreoretinopathy (FEVR) is a genetic disease caused by abnormal retinal vascular development. New additional genetic loci for FEVR have recently been identified. Microduplication of 22q11.2 has been reported with a heterogeneous phenotype and microdeletion of 22q11.2 has been associated with FEVR. We describe a case of a girl with microduplication of 22q11.2 and falciform macular folds. MATERIALS AND METHODS The infant and first-degree relatives were examined. A dilated fundus examination was performed. Genetic screening was done by chromosomal microarray analysis and confirmed by fluorescent in situ hybridization (FISH). RESULTS Bilateral macular folds were found with temporal fibrosis in the proband. A chromosomal microarray revealed a 2.21 Mb microduplication of the 22q11.2 region. CONCLUSION This is the first report to associate microduplication of 22q11.2 with macular folds, supporting the potential for a FEVR locus on chromosome 22q11.2. We encourage full ophthalmological examination for patients with microduplication of 22q11.2 to identify ocular associations.
Collapse
|
36
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
37
|
Eichmann A, Thomas JL. Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 2013; 3:a006551. [PMID: 23024177 DOI: 10.1101/cshperspect.a006551] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human central nervous system (CNS) features a network of ~400 miles of blood vessels that receives >20% of the body's cardiac output and uses most of its blood glucose. Many human diseases, including stroke, retinopathy, and cancer, are associated with the biology of CNS blood vessels. These vessels originate from extrinsic cell populations, including endothelial cells and pericytes that colonize the CNS and interact with glia and neurons to establish the blood-brain barrier and control cerebrovascular exchanges. Neurovascular interactions also play important roles in adult neurogenic niches, which harbor a unique population of neural stem cells that are intimately associated with blood vessels. We here review the cellular and molecular mechanisms required to establish the CNS vascular network, with a special focus on neurovascular interactions and the functions of vascular endothelial growth factors.
Collapse
Affiliation(s)
- Anne Eichmann
- Center for Interdisciplinary Research in Biology, CNRS/UMR 7241-INSERM U1050, Collège de France, 75005 Paris, France.
| | | |
Collapse
|
38
|
Meier P, Wiedemann P. Surgery for Pediatric Vitreoretinal Disorders. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
|
40
|
McNeill B, Mazerolle C, Bassett EA, Mears AJ, Ringuette R, Lagali P, Picketts DJ, Paes K, Rice D, Wallace VA. Hedgehog regulates Norrie disease protein to drive neural progenitor self-renewal. Hum Mol Genet 2012. [PMID: 23201751 DOI: 10.1093/hmg/dds505] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Norrie disease (ND) is a congenital disorder characterized by retinal hypovascularization and cognitive delay. ND has been linked to mutations in 'Norrie Disease Protein' (Ndp), which encodes the secreted protein Norrin. Norrin functions as a secreted angiogenic factor, although its role in neural development has not been assessed. Here, we show that Ndp expression is initiated in retinal progenitors in response to Hedgehog (Hh) signaling, which induces Gli2 binding to the Ndp promoter. Using a combination of genetic epistasis and acute RNAi-knockdown approaches, we show that Ndp is required downstream of Hh activation to induce retinal progenitor proliferation in the retina. Strikingly, Ndp regulates the rate of cell-cycle re-entry and not cell-cycle kinetics, thereby uncoupling the self-renewal and cell-cycle progression functions of Hh. Taken together, we have uncovered a cell autonomous function for Ndp in retinal progenitor proliferation that is independent of its function in the retinal vasculature, which could explain the neural defects associated with ND.
Collapse
Affiliation(s)
- Brian McNeill
- Vision Program, Ottawa Hospital Research Institute, Ottawa, Ont. K1H 8L6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Smith SE, Mullen TE, Graham D, Sims KB, Rehm HL. Norrie disease: Extraocular clinical manifestations in 56 patients. Am J Med Genet A 2012; 158A:1909-17. [DOI: 10.1002/ajmg.a.35469] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/16/2012] [Indexed: 11/06/2022]
|
42
|
Prasov L, Masud T, Khaliq S, Mehdi SQ, Abid A, Oliver ER, Silva ED, Lewanda A, Brodsky MC, Borchert M, Kelberman D, Sowden JC, Dattani MT, Glaser T. ATOH7 mutations cause autosomal recessive persistent hyperplasia of the primary vitreous. Hum Mol Genet 2012; 21:3681-94. [PMID: 22645276 DOI: 10.1093/hmg/dds197] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The vertebrate basic helix-loop-helix (bHLH) transcription factor ATOH7 (Math5) is specifically expressed in the embryonic neural retina and is required for the genesis of retinal ganglion cells (RGCs) and optic nerves. In Atoh7 mutant mice, the absence of trophic factors secreted by RGCs prevents the development of the intrinsic retinal vasculature and the regression of fetal blood vessels, causing persistent hyperplasia of the primary vitreous (PHPV). We therefore screened patients with hereditary PHPV, as well as bilateral optic nerve aplasia (ONA) or hypoplasia (ONH), for mutations in ATOH7. We identified a homozygous ATOH7 mutation (N46H) in a large family with an autosomal recessive PHPV disease trait linked to 10q21, and a heterozygous variant (R65G, p.Arg65Gly) in one of five sporadic ONA patients. High-density single-nucleotide polymorphism analysis also revealed a CNTN4 duplication and an OTX2 deletion in the ONA cohort. Functional analysis of ATOH7 bHLH domain substitutions, by electrophoretic mobility shift and luciferase cotransfection assays, revealed that the N46H variant cannot bind DNA or activate transcription, consistent with structural modeling. The N46H variant also failed to rescue RGC development in mouse Atoh7-/- retinal explants. The R65G variant retains all of these activities, similar to wild-type human ATOH7. Our results strongly suggest that autosomal recessive persistent hyperplastic primary vitreous is caused by N46H and is etiologically related to nonsyndromic congenital retinal nonattachment. The R65G allele, however, cannot explain the ONA phenotype. Our study firmly establishes ATOH7 as a retinal disease gene and provides a functional basis to analyze new coding variants.
Collapse
Affiliation(s)
- Lev Prasov
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Norrin: molecular and functional properties of an angiogenic and neuroprotective growth factor. Prog Retin Eye Res 2012; 31:243-57. [PMID: 22387751 DOI: 10.1016/j.preteyeres.2012.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/08/2023]
Abstract
Norrin is a secreted signaling molecule with structural and functional characteristics of an autocrine and/or paracrine acting growth factor. In the eye, Norrin is constitutively expressed in Müller cells. Norrin specifically binds to Frizzled-4 receptors and activates the canonical Wnt/β-catenin signaling pathway that is profoundly enhanced when Tspan12 is present at the Norrin/Frizzled-4 receptor complex. In the absence of Norrin or Frizzled-4, intraretinal capillaries are not formed during developmental angiogenesis. As a result there is considerable evidence that Norrin and Frizzled-4 are part of an essential signaling system that controls the formation of the retinal vasculature during eye development. Intriguingly, Norrin promotes vessel regrowth and induces the formation of intraretinal capillaries following oxygen-induced retinopathy in mice, an animal model of retinopathy of prematurity. Moreover, Norrin has pronounced neuroprotective properties on retinal ganglion cells (RGC) with the distinct potential to decrease the damaging effects of excitotoxic NMDA-induced RGC injury. The neuroprotective effects of Norrin similarly involve an activation of Wnt/β-catenin signaling and the subsequent induction of neuroprotective growth factor synthesis in Müller cells, such as that of fibroblast growth factor-2 (FGF2) or ciliary neurotrophic factor (CNTF). Overall, Norrin and the molecules involved in its signaling pathway appear to be promising targets to develop strategies that induce intraretinal vessel formation in patients suffering from ischemic retinopathies, or that increase RGC survival in glaucoma.
Collapse
|
44
|
Shane TS, Berrocal AM, Hodapp EA, Grajewski AL, Hess DJ. Peripheral retinal vascular abnormalities in primary infantile glaucoma. Ophthalmic Surg Lasers Imaging Retina 2011; 42 Online:e144-6. [PMID: 22185639 DOI: 10.3928/15428877-20111215-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/28/2011] [Indexed: 11/20/2022]
Abstract
Two patients with primary infantile glaucoma were imaged with fluorescein angiography during an examination under anesthesia. Both patients were found to have abnormal peripheral retinal vasculature and non-perfusion. These findings may represent a previously unrecognized retinal vascular component of primary infantile glaucoma.
Collapse
|
45
|
Kondo H, Kusaka S, Yoshinaga A, Uchio E, Tawara A, Hayashi K, Tahira T. Mutations in the TSPAN12 gene in Japanese patients with familial exudative vitreoretinopathy. Am J Ophthalmol 2011; 151:1095-1100.e1. [PMID: 21334594 DOI: 10.1016/j.ajo.2010.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/19/2022]
Abstract
PURPOSE To search for mutations in the TSPAN12 gene in 90 Japanese probands with familial exudative vitreoretinopathy (FEVR) and their family members and to determine the types and frequencies of the mutations. DESIGN Laboratory investigation and clinical case analyses. METHODS Direct sequencing after polymerase chain reaction of the coding exons of TSPAN12 was performed for 90 probands with FEVR and some of their family members. The clinical signs and symptoms that were characteristic of individuals with TSPAN12 mutations were determined. RESULTS Three families were found to carry 2 mutations in TSPAN12. One of these mutations was a new missense change, L245P, and the other was an already reported nonsense mutation, L140X, in 2 families. Mutations in TSPAN12 accounted for 3% of Japanese FEVR patients and 8% of the FEVR families who did not have mutations in any of the known FEVR genes, FZD4, LRP5, and NDP. The clinical signs and symptoms varied among the patients, but the retinal findings with TSPAN12 mutations were not different from those with mutations in the known FEVR-causing genes. CONCLUSIONS Mutant TSPAN12 is responsible for approximately 3% of FEVR patients in Japan. The results provide further evidence that mutations in TSPAN12 are FEVR causing and that the gene products most likely play a role in the development of retinal vessels.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health Japan, Kitakyushu, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Fitzsimons RB. Retinal vascular disease and the pathogenesis of facioscapulohumeral muscular dystrophy. A signalling message from Wnt? Neuromuscul Disord 2011; 21:263-71. [PMID: 21377364 DOI: 10.1016/j.nmd.2011.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral retinal vascular abnormality which accompanies FSHD belongs morphologically and clinically to a class of developmental 'retinal hypovasculopathies' caused by abnormalities of 'Wnt' signalling, which controls retinal angiogenesis. Wnt signalling is also fundamental to myogenesis. This paper integrates modern concepts of myogenic cell signalling and of transcription factor expression and control with data from the classic early ophthalmic and myology embryology literature. Together, they support an hypothesis that abnormalities of Wnt signalling, which activates myogenic programs and transcription factors in myoblasts and satellite cells, leads to defective muscle regeneration in FSHD. The selective vulnerability of different FSHD muscles (notably facial muscle, from the second branchial arch) might reflect patterns of transcription factor redundancies. This hypothesis has implications for FSHD research through study of transcription factors patterning in normal human muscles, and for autologous cell transplantation.
Collapse
|
47
|
Wykoff CC, Houston SK, Berrocal AM. Anti-vascular endothelial growth factor agents for pediatric retinal diseases. Int Ophthalmol Clin 2011; 51:185-199. [PMID: 21139484 DOI: 10.1097/iio.0b013e318200df83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
|
48
|
Chow CC, Kiernan DF, Chau FY, Blair MP, Ticho BH, Galasso JM, Shapiro MJ. Laser Photocoagulation at Birth Prevents Blindness in Norrie's Disease Diagnosed Using Amniocentesis. Ophthalmology 2010; 117:2402-6. [DOI: 10.1016/j.ophtha.2010.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/18/2010] [Accepted: 03/25/2010] [Indexed: 12/01/2022] Open
|
49
|
Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Löfqvist C, Hellström A, Smith LEH. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 2010; 51:2813-26. [PMID: 20484600 DOI: 10.1167/iovs.10-5176] [Citation(s) in RCA: 474] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mouse retina has been used extensively over the past decades to study both physiologic and pathologic angiogenesis. Over time, various mouse retina models have evolved into well-characterized and robust tools for in vivo angiogenesis research. This article is a review of the angiogenic development of the mouse retina and a discussion of some of the most widely used vascular disease models. From the multitude of studies performed in the mouse retina, a selection of representative works is discussed in more detail regarding their role in advancing the understanding of both the ocular and general mechanisms of angiogenesis.
Collapse
Affiliation(s)
- Andreas Stahl
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Narumi S, Numakura C, Shiihara T, Seiwa C, Nozaki Y, Yamagata T, Momoi MY, Watanabe Y, Yoshino M, Matsuishi T, Nishi E, Kawame H, Akahane T, Nishimura G, Emi M, Hasegawa T. Various types of LRP5 mutations in four patients with osteoporosis-pseudoglioma syndrome: identification of a 7.2-kb microdeletion using oligonucleotide tiling microarray. Am J Med Genet A 2010; 152A:133-40. [PMID: 20034086 DOI: 10.1002/ajmg.a.33177] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteoporosis-pseudoglioma syndrome (OPS; OMIM 259770) is an autosomal-recessive genetic disorder characterized by severe osteoporosis and visual disturbance from childhood. Biallelic mutations in the low-density lipoprotein receptor-related protein 5 gene (LRP5) have been frequently detected, while a subset of patients had only one or no detectable mutation. We report on the clinical and molecular findings of four unrelated Japanese patients with the syndrome. The four patients had typical skeletal and ocular phenotypes of OPS, namely severe juvenile osteoporosis and early-onset visual disturbance, with or without mental retardation. We undertook standard PCR-based sequencing for LRP5 and found four missense mutations (p.L145F, p.T244M, p.P382L, and p.T552M), one nonsense mutation (p.R1534X), and one splice site mutation (c.1584+1G>A) among four OPS patients. Although three patients had two heterozygous mutations, one had only one heterozygous splice site mutation. In this patient, RT-PCR from lymphocytic RNA demonstrated splice error resulting in 63-bp insertion between exons 7 and 8. Furthermore, the patient was found to have only mutated RT-PCR fragment, implying that a seemingly normal allele did not express LRP5 mRNA. We then conducted custom- designed oligonucleotide tiling microarray analyses targeted to a 600-kb genome region harboring LRP5 and discovered a 7.2-kb microdeletion encompassing exons 22 and 23 of LRP5. We found various types of LRP5 mutations, including an exon-level deletion that is undetectable by standard PCR-based mutation screening. Oligonucleotide tiling microarray seems to be a powerful tool in identifying cryptic structural mutations.
Collapse
Affiliation(s)
- Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|