1
|
Bahar R, Chegeni MJ, Tahvildari A, Sani M, Khakpour Y, Hashemabady M, Sagharichi M, Balaghirad N, Taghizadeh M, Mehranpour M, Bayat AH, Fathi M, Vakili K, Roustaee S, Nourirad SN, Babaei MR, Aliaghaei A, Eskandari N, Lahiji H. Bromelain decreases oxidative stress and Neuroinflammation and improves motor function in adult male rats with cerebellar Ataxia induced by 3-acetylpyridine. Neuropeptides 2024; 107:102455. [PMID: 39094391 DOI: 10.1016/j.npep.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Bromelain is a plant-based molecule with antioxidant, antithrombotic, anticancer, and anti-inflammatory properties. Bromelain has been shown to reduce the release of inflammatory cytokines. This study aimed to determine whether bromelain can prevent ataxia in rats caused by 3-acetylpyridine (3-AP). Thirty-six albino rats were divided into the control, 3-AP, and 3-AP + Brom groups. In the 3-AP + Brom group, bromelain was injected intraperitoneally at 40 mg/kg daily for 30 days. Various techniques such as rotarod, electromyography (EMG), elevated plus maze, IHC, and Sholl analysis were used to evaluate the possible effects of bromelain on cerebellar neurons and glial cells. The results demonstrated significant improvements in most of the 3-AP + Brom, including motor coordination, neuromuscular response, anxiety, oxidative capacity, microgliosis, astrogliosis, cell death, and morphological variables compared to the 3-AP group. The mechanism of action of bromelain in restoring cerebellar ataxia needs further investigation, but it may be a candidate to help restore degeneration in animals with ataxia.
Collapse
Affiliation(s)
- Reza Bahar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Jahani Chegeni
- Medical Radiation Research Center, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azin Tahvildari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Integrative Brain Health and Wellness, Neuroscience, Neuronutrition, Psychology, Rehabilitation and Physiotherapy, Neurocognitive, Cognitive Enhancement, Brain Health Optimization, SNSI-Sanineurosapiens Institute, Hanover, Germany
| | - Yaser Khakpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hashemabady
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - Mastooreh Sagharichi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nika Balaghirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran,Iran
| | - Kimia Vakili
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Roustaee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Naghmeh Nourirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran,Iran.
| | - Hormoz Lahiji
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Smieja J. Mathematical Modeling Support for Lung Cancer Therapy-A Short Review. Int J Mol Sci 2023; 24:14516. [PMID: 37833963 PMCID: PMC10572824 DOI: 10.3390/ijms241914516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
The paper presents a review of models that can be used to describe dynamics of lung cancer growth and its response to treatment at both cell population and intracellular processes levels. To address the latter, models of signaling pathways associated with cellular responses to treatment are overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies are discussed. Following that, models of intracellular processes that are crucial in responses to therapies are presented. The paper is concluded with a discussion of the applicability of the presented approaches in the context of lung cancer.
Collapse
Affiliation(s)
- Jaroslaw Smieja
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Li Y, Huang H, Zhu Z, Chen S, Liang Y, Shu L. TSC22D3 as an immune-related prognostic biomarker for acute myeloid leukemia. iScience 2023; 26:107451. [PMID: 37575189 PMCID: PMC10415931 DOI: 10.1016/j.isci.2023.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is the type of hematologic neoplasm most common in adults. Glucocorticoid-induced gene TSC22D3 regulates cell proliferation through its function as a transcription factor. However, there is no consensus on the prognostic and immunoregulatory significance of TSC22D3 in AML. In the present study, we evaluated the correlation between TSC22D3 expression, immunoinfiltration, and prognostic significance in AML. Knockdown of TSC22D3 significantly attenuated the proliferation of Hel cells and increased sensitivity to cytarabine (Ara-c) drugs. Furthermore, TSC22D3 reduced the release of interleukin-1β (IL-1β) by inhibiting the NF-κB/NLRP3 signaling pathway, thereby inhibiting macrophage polarization to M1 subtype, and attenuating the pro-inflammatory tumor microenvironment. In conclusion, this study identified TSC22D3 as an immune-related prognostic biomarker for AML patients and suggested that therapeutic targeting of TSC22D3 may be a potential treatment option for AML through tumor immune escape.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Hanying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Ziang Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shuzhao Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong 999077, P.R. China
| |
Collapse
|
4
|
Karpf L, Trichot C, Faucheux L, Legbre I, Grandclaudon M, Lahoute C, Mattoo H, Pasquier B, Soumelis V. A multivariate modeling framework to quantify immune checkpoint context-dependent stimulation on T cells. Cell Discov 2022; 8:1. [PMID: 34983927 PMCID: PMC8727669 DOI: 10.1038/s41421-021-00352-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Cells receive, and adjust to, various stimuli, which function as part of complex microenvironments forming their "context". The possibility that a given context impacts the response to a given stimulus defines "context-dependency" and it explains large parts of the functional variability of physiopathological and pharmacological stimuli. Currently, there is no framework to analyze and quantify context-dependency over multiple contexts and cellular response outputs. We established an experimental system including a stimulus of interest, applied to an immune cell type in several contexts. We studied the function of OX40 ligand (OX40L) on T helper (Th) cell differentiation, in 4 molecular (Th0, Th1, Th2, and Th17) and 11 dendritic cell (DC) contexts (monocyte-derived DC and cDC2 conditions). We measured 17 Th output cytokines in 302 observations, and developed a statistical modeling strategy to quantify OX40L context-dependency. This revealed highly variable context-dependency, depending on the output cytokine and context type itself. Among molecular contexts, Th2 was the most influential on OX40L function. Among DC contexts, the DC type rather than the activating stimuli was dominant in controlling OX40L context-dependency. This work mathematically formalizes the complex determinants of OX40L functionality, and provides a unique framework to decipher and quantify the context-dependent variability of any biomolecule or drug function.
Collapse
Affiliation(s)
- Léa Karpf
- grid.418596.70000 0004 0639 6384Institut Curie, PSL University, INSERM U932, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | - Coline Trichot
- grid.418596.70000 0004 0639 6384Institut Curie, PSL University, INSERM U932, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France ,grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Lilith Faucheux
- grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France ,grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM UMR-1153, ECSTRRA Team, Paris, France
| | - Iris Legbre
- grid.508487.60000 0004 7885 7602Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France
| | | | - Charlotte Lahoute
- grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Hamid Mattoo
- grid.417555.70000 0000 8814 392XImmunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA USA
| | - Benoit Pasquier
- grid.417924.dImmunology and Inflammation Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | - Vassili Soumelis
- Institut Curie, PSL University, INSERM U932, Paris, France. .,Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, Laboratoire d'Immunologie, Paris, France.
| |
Collapse
|
5
|
Collignon E, Canale A, Al Wardi C, Bizet M, Calonne E, Dedeurwaerder S, Garaud S, Naveaux C, Barham W, Wilson A, Bouchat S, Hubert P, Van Lint C, Yull F, Sotiriou C, Willard-Gallo K, Noel A, Fuks F. Immunity drives TET1 regulation in cancer through NF-κB. SCIENCE ADVANCES 2018; 4:eaap7309. [PMID: 29938218 PMCID: PMC6010319 DOI: 10.1126/sciadv.aap7309] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/09/2018] [Indexed: 05/27/2023]
Abstract
Ten-eleven translocation enzymes (TET1, TET2, and TET3), which induce DNA demethylation and gene regulation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), are often down-regulated in cancer. We uncover, in basal-like breast cancer (BLBC), genome-wide 5hmC changes related to TET1 regulation. We further demonstrate that TET1 repression is associated with high expression of immune markers and high infiltration by immune cells. We identify in BLBC tissues an anticorrelation between TET1 expression and the major immunoregulator family nuclear factor κB (NF-κB). In vitro and in mice, TET1 is down-regulated in breast cancer cells upon NF-κB activation through binding of p65 to its consensus sequence in the TET1 promoter. We lastly show that these findings extend to other cancer types, including melanoma, lung, and thyroid cancers. Together, our data suggest a novel mode of regulation for TET1 in cancer and highlight a new paradigm in which the immune system can influence cancer cell epigenetics.
Collapse
Affiliation(s)
- Evelyne Collignon
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Annalisa Canale
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)–Cancer, University of Liège, Liège, Belgium
| | - Clémence Al Wardi
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| | - Soizic Garaud
- Molecular Immunology Unit, Institut Jules Bordet, ULB, Brussels, Belgium
| | - Céline Naveaux
- Molecular Immunology Unit, Institut Jules Bordet, ULB, Brussels, Belgium
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Andrew Wilson
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Sophie Bouchat
- Service of Molecular Virology, Department of Molecular Biology, U-CRC, ULB, Gosselies, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology, U-CRC, ULB, Gosselies, Belgium
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Jules Bordet Institute, ULB, Brussels, Belgium
| | | | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)–Cancer, University of Liège, Liège, Belgium
| | - François Fuks
- Laboratory of Cancer Epigenetics, Faculty of Medicine, ULB (Université libre de Bruxelles)–Cancer Research Center (U-CRC), ULB, Brussels, Belgium
| |
Collapse
|
6
|
Does NEMO/IKKγ protein have a role in determining prognostic significance in uveal melanoma? Clin Transl Oncol 2018; 20:1592-1603. [PMID: 29796997 DOI: 10.1007/s12094-018-1895-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Uveal melanoma, although a rare form of cancer, is the most common primary malignancy of the eye in adults. Nuclear factor-κB (NF-κB) is a transcription factor that transactivates genes involved in the regulation of cell growth, apoptosis, angiogenesis, and metastasis, but the molecular mechanisms that negatively regulate NF-κB activation are not fully understood. NF-κB can also be activated by DNA damage pathway through NEMO protein. Therefore, the objective of this study is to elucidate the role of NEMO/IKKγ protein in uveal melanoma patients. METHODS Seventy-five formalin-fixed paraffin-embedded prospective tissues of uveal melanoma were included in the present study. These cases were reviewed and investigated for the expression of NEMO/IKKγ protein by immunohistochemistry and validated by western blotting along with the qRT-PCR for mRNA expression. Expression levels were correlated with the clinicopathological parameters and patients' outcome. RESULTS Immunohistochemistry showed cytoplasmic expression of NEMO/IKKγ expression in only 22 out of 75 (29.33%) cases. This result was confirmed by western blotting, and correlated well with the immunohistochemical expression of NEMO/IKKγ protein (48 kDa). In addition, downregulation of this gene was found in 87.93% of the cases when compared with the normal tissues. On statistical analysis, loss of NEMO/IKKγ protein was correlated with neovascularization, high mitotic count, and presence of vascular loop (p < 0.05). There was less overall survival rate with low expression of NEMO/IKKγ protein in patients with uveal melanoma. CONCLUSION This was the first study suggesting the relevant role of NEMO/IKKγ protein, and highlights the prognostic significance with outcome in uveal melanoma patients. This protein might be used as a screening biomarker in these patients after large-scale validation and translational studies.
Collapse
|
7
|
Rathnavelu V, Alitheen NB, Sohila S, Kanagesan S, Ramesh R. Potential role of bromelain in clinical and therapeutic applications. Biomed Rep 2016; 5:283-288. [PMID: 27602208 PMCID: PMC4998156 DOI: 10.3892/br.2016.720] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 01/19/2023] Open
Abstract
Pineapple has been used as part of traditional folk medicine since ancient times and it continues to be present in various herbal preparations. Bromelain is a complex mixture of protease extracted from the fruit or stem of the pineapple plant. Although the complete molecular mechanism of action of bromelain has not been completely identified, bromelain gained universal acceptability as a phytotherapeutic agent due to its history of safe use and lack of side effects. Bromelain is widely administered for its well-recognized properties, such as its anti-inflammatory, antithrombotic and fibrinolytic affects, anticancer activity and immunomodulatory effects, in addition to being a wound healing and circulatory improvement agent. The current review describes the promising clinical applications and therapeutic properties of bromelain.
Collapse
Affiliation(s)
- Vidhya Rathnavelu
- Department of Oral Pathology and Microbiology, Faculty of Dental Science, Sri Ramachandra University, Chennai, Tamilnadu 600116, India
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Subramaniam Sohila
- Department of Physics, K. S. Rangasamy College of Technology, Tiruchengode, Tamilnadu 637215, India
| | - Samikannu Kanagesan
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Rajendran Ramesh
- Department of Physics, Periyar University, Salem, Tamilnadu 636011, India
| |
Collapse
|
8
|
|
9
|
Bai X, Wang J, Guo Y, Pan J, Yang Q, Zhang M, Li H, Zhang L, Ma J, Shi F, Shu W, Wang Y, Leng J. Prostaglandin E2 stimulates β1-integrin expression in hepatocellular carcinoma through the EP1 receptor/PKC/NF-κB pathway. Sci Rep 2014; 4:6538. [PMID: 25289898 PMCID: PMC5377465 DOI: 10.1038/srep06538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
Prostaglandin E2 (PGE2) has been implicated in cell invasion in hepatocellular carcinoma (HCC), via increased β1-integrin expression and cell migration; however, the mechanism remains unclear. PGE2 exerts its effects via four subtypes of the E prostanoid receptor (EP receptor 1–4). The present study investigated the effect of EP1 receptor activation on β1-integrin expression and cell migration in HCC. Cell migration increased by 60% in cells treated with 17-PT-PGE2 (EP1 agonist), which was suppressed by pretreatment with a β1-integrin polyclonal antibody. PGE2 increased β1-integrin expression by approximately 2-fold. EP1 receptor transfection or treatment with 17-PT-PGE2 mimicked the effect of PGE2 treatment. EP1 siRNA blocked PGE2-mediated β1-integrin expression. 17-PT-PGE2 treatment induced PKC and NF-κB activation; PKC and NF-κB inhibitors suppressed 17-PT-PGE2-mediated β1-integrin expression. FoxC2, a β1-integrin transcription factor, was also upregulated by 17-PT-PGE2. NF-κB inhibitor suppressed 17-PT-PGE2-mediated FoxC2 upregulation. Immunohistochemistry showed p65, FoxC2, EP1 receptor and β1-integrin were all highly expressed in the HCC cases. This study suggested that PGE2 upregulates β1-integrin expression and cell migration in HCC cells by activating the PKC/NF-κB signaling pathway. Targeting PGE2/EP1/PKC/NF-κB/FoxC2/β1-integrin pathway may represent a new therapeutic strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jie Wang
- Department of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, P. R. China
| | - Yan Guo
- Institute of Pediatrics, Fourth Clinical Medical College, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jinshun Pan
- The Center of Metabolic Disease Research, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qinyi Yang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Min Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Hai Li
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Li Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Feng Shi
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Wei Shu
- Department of Periodontal, Institute of Stomatology, The Stomatological Hospital Affiliated to Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yipin Wang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing 210029, P. R. China
| |
Collapse
|
10
|
Bai X, Yang Q, Shu W, Wang J, Zhang L, Ma J, Xia S, Zhang M, Cheng S, Wang Y, Leng J. Prostaglandin E2 upregulates β1 integrin expression via the E prostanoid 1 receptor/nuclear factor κ-light-chain-enhancer of activated B cells pathway in non-small-cell lung cancer cells. Mol Med Rep 2014; 9:1729-36. [PMID: 24584670 DOI: 10.3892/mmr.2014.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/13/2014] [Indexed: 11/06/2022] Open
Abstract
The prostaglandin E2 (PGE2) E prostanoid (EP)1 receptor shown to be associated with lung cancer cell invasion. However, the mechanism of EP1 receptor-mediated cell migration remains to be elucidated. β1 integrin is an essential regulator of the tumorigenic properties of non-small-cell lung carcinoma (NSCLC) cells. To date, little is known regarding the association between the EP1 receptor and β1 integrin expression. The present study investigated the effect of EP1 receptor activation on β1 integrin expression and cell migration in NSCLC cells. A total of 34 patients with clinical diagnosis of NSCLC and 10 patients with benign disease were recruited for the present study. The expression levels of the EP1 receptor and β1 integrin expression were studied in resected lung tissue using immunohistochemistry. A statistical analysis was performed using Stata se12.0 software. The effects of PGE2, EP1 agonist 17-phenyl trinor-PGE2 (17-PT-PGE2) and the nuclear factor κ-B (NF-κB) inhibitor on β1 integrin expression were investigated on A549 cells. The expression of β1 integrin and the phosphorylation of NF-κB‑p65 Ser536 was investigated by western blot analysis. Cell migration was assessed by a transwell assay. The results demonstrated that β1 integrin and EP1 receptor expression exhibited a positive correlation of evident significance in the 44 samples. The in vitro migration assay revealed that cell migration was increased by 30% when the cells were treated with 5 µM 17-PT-PGE2 and that the pre-treatment of β1 integrin monoclonal antibody inhibited 17-PT-PGE2‑mediated cell migration completely. PGE2 and 17-PT-PGE2 treatment increased β1 integrin expression. RNA interference against the EP1 receptor blocked the PGE2-mediated β1 integrin expression in A549 cells. Treatment with 17-PT-PGE2 induced NF-κB activation, and the selective NF-κB inhibitor pyrrolidinedithiocarbamate inhibited 17-PT-PGE2-mediated β1 integrin expression. In conclusion, the present study indicated that the PGE2 EP1 receptor regulates β1 integrin expression and cell migration in NSCLC cells by activating the NF-κB signaling pathway. Targeting the PGE2/EP1/β1 integrin signaling pathway may aid in the development of new therapeutic strategies for the prevention and treatment of this type of cancer.
Collapse
Affiliation(s)
- Xiaoming Bai
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinyi Yang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Shu
- Department of Periodontal, Institute of Stomatology, The Stomatological Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Wang
- Department of Pathology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Li Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Juan Ma
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shukai Xia
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Zhang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shanyu Cheng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yipin Wang
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
11
|
Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics 2013; 14:583. [PMID: 23984903 PMCID: PMC3846681 DOI: 10.1186/1471-2164-14-583] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022] Open
Abstract
Background The aneurysm clip impact-compression model of spinal cord injury (SCI) is a standard injury model in animals that closely mimics the primary mechanism of most human injuries: acute impact and persisting compression. Its histo-pathological and behavioural outcomes are extensively similar to human SCI. To understand the distinct molecular events underlying this injury model we analyzed global mRNA abundance changes during the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord. Results Time-series expression analyses resulted in clustering of the majority of deregulated transcripts into eight statistically significant expression profiles. Systematic application of Gene Ontology (GO) enrichment pathway analysis allowed inference of biological processes participating in SCI pathology. Temporal analysis identified events specific to and common between acute, subacute and chronic time-points. Processes common to all phases of injury include blood coagulation, cellular extravasation, leukocyte cell-cell adhesion, the integrin-mediated signaling pathway, cytokine production and secretion, neutrophil chemotaxis, phagocytosis, response to hypoxia and reactive oxygen species, angiogenesis, apoptosis, inflammatory processes and ossification. Importantly, various elements of adaptive and induced innate immune responses span, not only the acute and subacute phases, but also persist throughout the chronic phase of SCI. Induced innate responses, such as Toll-like receptor signaling, are more active during the acute phase but persist throughout the chronic phase. However, adaptive immune response processes such as B and T cell activation, proliferation, and migration, T cell differentiation, B and T cell receptor-mediated signaling, and B cell- and immunoglobulin-mediated immune response become more significant during the chronic phase. Conclusions This analysis showed that, surprisingly, the diverse series of molecular events that occur in the acute and subacute stages persist into the chronic stage of SCI. The strong agreement between our results and previous findings suggest that our analytical approach will be useful in revealing other biological processes and genes contributing to SCI pathology.
Collapse
|
12
|
Hu Z, Xing Y, Qian Y, Chen X, Tu J, Ren L, Wang K, Chen Z. Anti-radiation damage effect of polyethylenimine as a toll-like receptor 5 targeted agonist. JOURNAL OF RADIATION RESEARCH 2013; 54:243-250. [PMID: 23104900 PMCID: PMC3589936 DOI: 10.1093/jrr/rrs098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 05/29/2023]
Abstract
A number of agents are now available for use in protecting against ionizing radiation. These radiation-protective agents, however, have many adverse effects. Efforts have been made to develop new radiation-protective agents for medical application. Here, we investigated whether a compound, polyethylenimine (PEI), which activates Toll-like receptor 5 (TLR5)-mediated NF-kB signaling pathways, could have an anti-radiation effect on a mouse model. First, a cell-based screening model for an agonist of TLR5-mediated NF-kB pathway was established and then validated by activation of TLR5-mediated NF-kB luciferase reporter activity with a known TLR5 agonist, flagellin. We found that PEI induced dose-dependent activation of the TLR5-mediated NF-kB pathway, indicating that PEI is indeed a TLR5 agonist. Furthermore, the anti-radiation effect of polyethylenimine was assessed using a γ-ray total body irradiation (TBI) mouse model. Compared with the irradiation control, both survival time and survival rate were significantly improved in mice that received either a low dose of polyethylenimine (P= 0.019) or a high dose of polyethylenimine (P< 0.001). We also observed a positive correlation between animal body weight and survival time in mice that received a low dose of polyethylenimine, a high dose of polyethylenimine and amifostine, over a period of 30 days, r= 0.42 (P< 0.02), 0.72 (P< 0.0001) and 0.95 (P< 0.0001), respectively, while a negative correlation between animal body weight and survival time was observed in the irradiation control (r= -0.89; P< 0.0001). These results indicate that polyethylenimine is a new TLR5 agonist with potential application in offering protection for patients receiving radiotherapy or in radiation-related accidents.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Neurosurgery, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Yaling Xing
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanyu Qian
- Emergency Department, Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Chen
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jian Tu
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | - Lening Ren
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Neurosurgery, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Kai Wang
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhongbin Chen
- Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
13
|
Sung MH, Hager GL. Nonlinear dependencies of biochemical reactions for context-specific signaling dynamics. Sci Rep 2012; 2:616. [PMID: 22943002 PMCID: PMC3431543 DOI: 10.1038/srep00616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/14/2012] [Indexed: 02/05/2023] Open
Abstract
Mathematical modeling can provide unique insights and predictions about a signaling pathway. Parameter variations allow identification of key reactions that govern signaling features such as the response time that may have a direct impact on the functional outcome. The effect of varying one parameter, however, may depend on values of another. To address the issue, we performed multi-parameter variations of an experimentally validated mathematical model of NF-κB regulatory network, and analyzed the inter-relationships of the parameters in shaping key dynamic features. We find that nonlinear dependencies are ubiquitous among parameters. Such phenomena may underlie the emergence of cell type-specific behaviors from essentially the same molecular network. Our results from a multivariate ensemble of models highlight the hypothesis that cell type specificity in signaling phenotype can arise from quantitatively altered strength of reactions in the pathway, in the absence of tissue-specific factors that re-wire the network for a new topology.
Collapse
Affiliation(s)
- Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health , Bethesda, MD 20892, USA.
| | | |
Collapse
|
14
|
Chuang-Xin L, Wen-Yu W, Yao C, Xiao-Yan L, Yun Z. Quercetin enhances the effects of 5-fluorouracil-mediated growth inhibition and apoptosis of esophageal cancer cells by inhibiting NF-κB. Oncol Lett 2012; 4:775-778. [PMID: 23226792 DOI: 10.3892/ol.2012.829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/19/2012] [Indexed: 01/01/2023] Open
Abstract
Despite its limited success, 5-fluorouracil (5-FU) remains the primary chemotherapy agent for the treatment of esophageal cancer. Quercetin has been demonstrated to inhibit the growth of transformed cells. The present study was conducted to examine whether quercetin combined with conventional chemotherapeutic agents would improve the therapeutic strategy for esophageal cancer. In this study, an MTT assay was used to determine the effects of quercetin on the proliferation of EC9706 and Eca109 cells. Annexin V-FITC/propidium iodide (PI)-stained fluorescence-activated cell sorter (FACS) analysis was used to detect the apoptotic fraction of treated cells, and western blot analysis was used to examine the protein levels. The results of our study demonstrated that quercetin in combination with 5-FU significantly inhibited growth (P<0.05) and stimulated apoptosis (P<0.005) in EC9706 and Eca109 esophageal cancer cells compared with quercetin or 5-FU alone. These changes were associated with the decreased expression of a phosphorylated inhibitory molecule of NF-κB (pIκBα), which was activated by exposure to 5-FU alone. We suggest that inclusion of quercetin to the conventional chemotherapeutic agent 5-FU may be an effective therapeutic strategy for esophageal cancer.
Collapse
Affiliation(s)
- Lu Chuang-Xin
- Department of Oncology, Henan People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | | | | | | | | |
Collapse
|
15
|
Hong A, Han DD, Wright CJ, Burch T, Piper J, Osiowy C, Gao C, Chiang S, Magill T, Dick K, Booth TF, Li X, He R. The interaction between hepatitis B virus X protein and AIB1 oncogene is required for the activation of NFκB signal transduction. Biochem Biophys Res Commun 2012; 423:6-12. [PMID: 22627138 DOI: 10.1016/j.bbrc.2012.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
We identified the interaction between HBV X (HBx) protein and the oncogene AIB1 (amplified in breast cancer 1). A serine/proline motif (SSPSPS) in HBx was found to be required for the interaction. Two LXD motifs [LLXX(X)L, X means any amino acids], LLRNSL and LLDQLHTLL in AIB1 were also found to be involved in the HBx-AIB1 interaction. The HBx-AIB1 interaction was important for the activation of NFκB signal transduction, the HBx mutant that did not interact with AIB1showed dramatically lower NFκB activation activity than the WT HBx. These findings contribute to the new understanding on signal transduction activation mechanisms of HBx.
Collapse
Affiliation(s)
- Andy Hong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB,Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
NSCLC and the alternative pathway of NF-κB: uncovering an unknown relation. Virchows Arch 2012; 460:515-23. [PMID: 22562129 DOI: 10.1007/s00428-012-1230-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/23/2012] [Indexed: 02/01/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although our knowledge on the pathobiology of the disease has increased in the last decades, the prognosis of lung cancer patients has hardly changed. Many signaling pathways are implicated in lung carcinogenesis, but the role of the alternative pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in lung cancer pathogenesis and progression has not been investigated. The aim of our study was to investigate the role of this pathway in non-small cell lung cancer (NSCLC) patients. NF-κB2 and RelB protein expression was retrospectively assessed by immunohistochemistry in tissue samples from 109 NSCLC patients. RelB and NF-κB2 protein levels differed between tumors and adjacent nonneoplastic lung parenchyma. Cytoplasmic immunoreactivity of NF-κB2 and RelB was correlated with tumor stage (p = 0.03 and p = 0.016, respectively). In addition, cytoplasmic NF-κB2 levels were related to tumor grade (p = 0.046). Expression of RelB in the cytoplasm was tumor histologic type-specific, with squamous cell carcinomas having the highest protein levels. Nuclear expression of RelB and NF-κB2 differed between tumor and nonneoplastic tissues, possibly indicating activation of the alternative pathway of NF-κB in cancer cells. Moreover, lymph node metastasis was related to nuclear NF-κB2 expression in tumor cells. The deregulation of the alternative NF-κB pathway in NSCLC could play a role in the development and progression of the disease.
Collapse
|
17
|
Oktenli C, Celik S. High frequency of inherited variants in the MEFV gene in patients with hematologic neoplasms: a genetic susceptibility? Int J Hematol 2012; 95:380-5. [PMID: 22453916 DOI: 10.1007/s12185-012-1061-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
Abstract
Familial Mediterranean fever is an autosomal recessive disease occurring in populations originating from the Mediterranean basin. This autoinflammatory syndrome is caused by mutations in the Mediterranean FeVer (MEFV) gene. MEFV encodes a 781 amino acid protein known as pyrin. Pyrin is an important modulator of apoptosis, inflammation, and cytokine processing. In more recent pilot studies, inherited variant analysis of the MEFV gene in patients with hematologic neoplasm showed an unexpectedly high frequency of these variants in the gene. Here, we summarize the current state of knowledge of the relationship between inherited variants in the MEFV gene and hematologic neoplasms. Although no single underlying defect could be targeted in all hematologic neoplasms, it will be important to fully exploit the mechanisms underlying the neoplasm promoting role of inherited variants in MEFV. However, it is unclear how inherited variants in the MEFV gene are associated with tumor susceptibility or promotion in hematologic neoplasms. Further investigations are needed to determine the actual role of the MEFV gene in pathogenesis of these neoplasms.
Collapse
Affiliation(s)
- Cagatay Oktenli
- Department of Internal Medicine and Geriatrics, Anadolu Medical Center, 41400 Kocaeli, Turkey.
| | | |
Collapse
|
18
|
Aigelsreiter A, Haybaeck J, Schauer S, Kiesslich T, Bettermann K, Griessbacher A, Stojakovic T, Bauernhofer T, Samonigg H, Kornprat P, Lackner C, Pichler M. NEMO expression in human hepatocellular carcinoma and its association with clinical outcome. Hum Pathol 2011; 43:1012-9. [PMID: 22176836 DOI: 10.1016/j.humpath.2011.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/19/2022]
Abstract
The nuclear factor κ-light-chain enhancer of activated B-cells (NF-κB) signaling pathway is regarded as an important factor in inflammation and carcinogenesis. Recently, a role in hepatocarcinogenesis has been attributed to the NF-κB regulatory subunit IKKγ (NEMO) using knockout mice. However, a detailed investigation of NEMO expression in human hepatocellular carcinomas (HCCs) has not yet been reported. We selected 85 HCC patients who had undergone curative liver resection and analyzed NEMO expression of the respective tumors by immunohistochemistry, Western blotting, and real-time PCR. NEMO expression was correlated with clinicopathological parameters, and the impact on 5-year disease-free survival and 5-year overall survival was calculated using multivariate Cox proportional models. In our study, complete loss of NEMO immunoreactivity was found in 34 (40%) of 85 HCCs compared with their adjacent nonneoplastic tissue (P < .05). NEMO messenger RNA (mRNA) expression was detected in all HCC cases; however, no correlation between NEMO immunoreactivity and mRNA level was found. Five-year overall survival rates for patients with low and high NEMO expression were 22% and 50%, respectively (P = .049). However, high tumor stage, but not level of NEMO expression, was confirmed as an independent poor prognostic factor for 5-year disease-free survival (hazards ratio [HR] = 2.1, 95% confidence interval [CI] = 1.3-3.6, P = .009) and 5-year overall survival (HR = 2.5, CI = 1.4-4.4, P = .002). In conclusion, a loss of NEMO immunoreactivity occurs in a substantial proportion of human HCCs. Although low NEMO expression is correlated with a poor 5-year overall survival in patients with HCC, NEMO cannot be regarded as an independent prognostic marker for predicting the clinical outcome of patients suffering from HCC.
Collapse
|
19
|
FUJITA ANDRÉ, SATO JOÃORICARDO, KOJIMA KANAME, GOMES LUCIANARODRIGUES, NAGASAKI MASAO, SOGAYAR MARICLEIDE, MIYANO SATORU. IDENTIFICATION OF GRANGER CAUSALITY BETWEEN GENE SETS. J Bioinform Comput Biol 2011. [DOI: 10.1142/s0219720010004860] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wiener and Granger have introduced an intuitive concept of causality (Granger causality) between two variables which is based on the idea that an effect never occurs before its cause. Later, Geweke generalized this concept to a multivariate Granger causality, i.e. n variables Granger-cause another variable. Although Granger causality is not "effective causality" in the Aristothelic sense, this concept is useful to infer directionality and information flow in observational data. Granger causality is usually identified by using VAR (Vector Autoregressive) models due to their simplicity. In the last few years, several VAR-based models were presented in order to model gene regulatory networks. Here, we generalize the multivariate Granger causality concept in order to identify Granger causalities between sets of gene expressions, i.e. whether a set of n genes Granger-causes another set of m genes, aiming at identifying the flow of information between gene networks (or pathways). The concept of Granger causality for sets of variables is presented. Moreover, a method for its identification with a bootstrap test is proposed. This method is applied in simulated and also in actual biological gene expression data in order to model regulatory networks. This concept may be useful for the understanding of the complete information flow from one network or pathway to the other, mainly in regulatory networks. Linking this concept to graph theory, sink and source can be generalized to node sets. Moreover, hub and centrality for sets of genes can be defined based on total information flow. Another application is in annotation, when the functionality of a set of genes is unknown, but this set is Granger-caused by another set of genes which is well studied. Therefore, this information may be useful to infer or construct some hypothesis about the unknown set of genes.
Collapse
Affiliation(s)
- ANDRÉ FUJITA
- Computational Science Research Program, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - JOÃO RICARDO SATO
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Rua Santa Adélia, 166 – Santo André, Brazil
| | - KANAME KOJIMA
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - LUCIANA RODRIGUES GOMES
- Chemistry Institute, University of São Paulo, Av. Lineu Prestes, 748 – São Paulo, 05508-900, Brazil
| | - MASAO NAGASAKI
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - MARI CLEIDE SOGAYAR
- Chemistry Institute, University of São Paulo, Av. Lineu Prestes, 748 – São Paulo, 05508-900, Brazil
| | - SATORU MIYANO
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
20
|
Abstract
Acetylation of histone and non-histone proteins alters gene expression and induces a host of cellular effects. The acetylation process is homeostatically balanced by two groups of cellular enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HAT activity relaxes the structure of the human chromatin, rendering it transcriptionally active, thereby increasing gene expression. In contrast, HDAC activity leads to gene silencing. The enzymatic balance can be ‘tipped’ by histone deacetylase inhibitors (HDACi), leading to an accumulation of acetylated proteins, which subsequently modify cellular processes including stem cell differentiation, cell cycle, apoptosis, gene expression, and angiogenesis. There is a variety of natural and synthetic HDACi available, and their pleiotropic effects have contributed to diverse clinical applications, not only in cancer but also in non-cancer areas, such as chronic inflammatory disease, bone engineering, and neurodegenerative disease. Indeed, it appears that HDACi-modulated effects may differ between ‘normal’ and transformed cells, particularly with regard to reactive oxygen species accumulation, apoptosis, proliferation, and cell cycle arrest. The potential beneficial effects of HDACi for health, resulting from their ability to regulate global gene expression by epigenetic modification of DNA-associated proteins, also offer potential for application within restorative dentistry, where they may promote dental tissue regeneration following pulpal damage.
Collapse
Affiliation(s)
- H.F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - A.J. Smith
- Oral Biology, School of Dentistry, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
| | - G.J.P. Fleming
- Material Science Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - P.R. Cooper
- Oral Biology, School of Dentistry, University of Birmingham, St Chads Queensway, Birmingham, B4 6NN, UK
| |
Collapse
|
21
|
Shukla R, Yue J, Siouda M, Gheit T, Hantz O, Merle P, Zoulim F, Krutovskikh V, Tommasino M, Sylla BS. Proinflammatory cytokine TNF-α increases the stability of hepatitis B virus X protein through NF-κB signaling. Carcinogenesis 2011; 32:978-85. [PMID: 21459755 DOI: 10.1093/carcin/bgr057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a key player in HBV-induced hepatocellular carcinoma (HCC). HBx interacts with several cell signaling molecules, leading to activation of various transcription factors including nuclear factor-kappaB (NF-κB). Activated NF-κB signaling is implicated in many human cancers including HCC. Here, we present evidence that the NF-κB signaling activator, tumor necrosis factor (TNF)-α, induces the accumulation of HBx in cells by increasing protein stability due to reduced proteasomal degradation. The effects of TNF-α on HBx protein stability are mediated via activated NF-κB effector kinases IKKα and IKKβ and p65. The non-IKK-phosphorylable p65-S534A mutant did not induce HBx protein stability; hence, phosphorylation of p65 by IKK is a key step in TNF-α-induced stabilization of HBx. Phospho-p65 showed higher affinity to HBx compared with the non-phosphorylable p65 mutant, suggesting that the interaction of phospho-p65 with HBx might be important for HBx stabilization. We also show that the increased level of HBx in cells cooperates with TNF-α toward activation of NF-κB and expression of NF-κB-regulated genes, indicating a positive feedback loop between HBx and NF-κB signaling. Overall, our study provides evidence for interplay between HBx and NF-κB signaling, which may account for HBV-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Ruchi Shukla
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69372 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin H, Wang Y, Zhang X, Liu B, Zhang W, Cheng J. Prognostic significance of kappaB-Ras1 expression in gliomas. Med Oncol 2011; 29:1272-9. [PMID: 21302000 DOI: 10.1007/s12032-011-9835-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Nuclear factor (NF)-kappa-B is a pleiotropic transcriptional regulator that plays important roles in cell differentiation, growth, tumorigenesis, and apoptosis. Constitutive NF-kappa-B is overexpressed and activated in various tumors, including gliomas. Here, we investigated the expression of NF-kappa-B inhibitor interacting ras-like protein 1 (κB-Ras1), which is one of the most important negative modulators of NF-kappa-B, and a well-known proliferation biomarker survivin protein. We performed immunohistochemistry and western blot analysis on 154 glioma specimens and 3 non-neoplastic brain parenchyma specimens. Immunohistochemistry showed a strong-to-weak range of κB-Ras1 staining with increasing pathologic grade of glioma (P = 0.000). Immunoreactivity scores of κB-Ras1 were 8.15 ± 0.72 in non-neoplastic brain parenchyma, 5.00 ± 0.29 in low-grade gliomas, 3.89 ± 0.30 in anaplasia astrocytomas, and 2.78 ± 0.25 in glioblastomas. In contrast, the immunoreactivity of survivin increased with pathological grade in gliomas. The immunohistochemical data were in line with the results from western blot analysis. Moreover, a non-parametric analysis revealed that the attenuated κB-Ras1 expression was correlated with elevated survivin expression, large tumor diameter, frequent intra-tumor necrosis, and worse overall survival. These results indicated that κB-Ras1 was down-regulated in gliomas compared to non-neoplastic brain parenchyma, and the expression was even lower in glioblastomas. In addition, multivariate analysis showed that κB-Ras1 expression and intra-tumor necrosis were two important prognostic factors identified by the Cox proportional hazards model. Taken together, our study suggests that glioma patients with lower κB-Ras1 expression have a worse prognosis, which is partly due to NF-kappa-B pathway-mediated aberrant proliferation of tumor cells.
Collapse
Affiliation(s)
- Hong Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, No.17 Changle Western Road, 710032 Xi'an, China
| | | | | | | | | | | |
Collapse
|
23
|
Chen QJ, Zhang MZ, Wang LX. Gensenoside Rg3 inhibits hypoxia-induced VEGF expression in human cancer cells. Cell Physiol Biochem 2011; 26:849-58. [PMID: 21220916 DOI: 10.1159/000323994] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 01/30/2023] Open
Abstract
AIMS The ginsenoside Rg3 (Rg3) inhibits xenograft growth and angiogenesis in tumors mainly via down-regulates VEGF expression. This study was designed to investigate the mechanisms by which Rg3 down-regulates VEGF expression. METHODS MTT assay was performed to investigate the effect of Rg3 on the growth of human esophageal carcinoma cell line Eca-109 and 786-0 cells under normoxic and hypoxic conditions. ELISA was used to detect VEGF protein secreted by the cells under normoxic and hypoxic conditions. Real-time quantitative reverse transcriptase polymerase chain reaction and Western blotting were used to detect gene expression and protein synthesis. RESULTS Rg3 inhibited Eca-109 and 786-0 cell proliferation and induced a significant reduction in VEGF mRNA under hypoxia conditions. Rg3 treatment inhibited hypoxia-induced expression HIF-1α, COX-2 and NF-κB under normoxic and hypoxic conditions. Treatment with Rg3 reduced the hypoxia-induced phosphorylation of STAT3 in a dose-dependent manner in the both cell lines. Rg3 treatment also inhibited the phosphorylation of ERK1/2 and JNK induced by hypoxia. CONCLUSIONS Rg3 targets hypoxia-induced multiple signaling pathways to down-regulate VEGF expression in cancer cells. These actions may contribute to the overall efficacy of Rg3 against tumor angiogenesis and growth.
Collapse
Affiliation(s)
- Qing-Jiang Chen
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City
| | | | | |
Collapse
|
24
|
Inhibition of NF-κB activation sensitizes U937 cells to 3'-azido-3'-deoxythymidine induced apoptosis. Cell Death Dis 2010; 1:e81. [PMID: 21368854 PMCID: PMC3035897 DOI: 10.1038/cddis.2010.58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we investigated molecular mechanisms underlying low susceptibility to apoptosis induced by the nucleoside analog azidothymidine (AZT) and the role of nuclear factor-κB (NF-κB) activation in these phenomena. A preliminary screening in different cell lines indicated U937 monocytic cell line as suitable to this purpose. Treatment of U937 cells even with suprapharmacological concentrations of AZT induced only moderate levels of apoptosis. Surprisingly, SuperArray analysis showed that AZT induced the transcriptional activity of both pro- and anti-apoptotic genes. Interestingly, moreover, several genes upregulated by AZT were NF-κB related. In fact, AZT, after an initial inhibition of NF-κB activation with respect to control, induced a transient, but consistent, increase in NF-κB-binding activity. Inhibition of NF-κB activation in U937 cells, stably transfected with a dominant-negative IκBα or by pharmacological treatment, sensitized them to apoptosis induced by AZT and impaired the upregulation of anti-apoptotic genes in response to AZT treatment, with respect to control cells. These results indicate that NF-κB activation by AZT has a role in protecting target cells from apoptotic cell death, improving our understanding of the toxicology and the therapeutic usage of this drug.
Collapse
|
25
|
Celik S, Erikci AA, Tunca Y, Sayan O, Terekeci HM, Umur EE, Torun D, Tangi F, Top C, Oktenli C. The rate of MEFV gene mutations in hematolymphoid neoplasms. Int J Immunogenet 2010; 37:387-91. [DOI: 10.1111/j.1744-313x.2010.00938.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Jakobisiak M, Golab J. Statins can modulate effectiveness of antitumor therapeutic modalities. Med Res Rev 2010; 30:102-35. [PMID: 19526461 DOI: 10.1002/med.20162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Despite significant, frequently very strong, antiproliferative and tumoricidal effects of statins demonstrated in vitro, their antitumor effects in animal models are modest, and their efficacy in clinical trials has not been proven. As such, statins seem unlikely to be ever regarded as antitumor agents. However, statins are regularly taken by many elderly cancer patients for the prevention of cardiovascular events. Owing to their pleiotropic effects in normal and tumor cells, statins interact in various ways with many antitumor treatment modalities, either potentiating or diminishing their effectiveness. Elucidation of these interactions might affect the choice of treatment to be planned in cancer patients as some combinations might be contraindicated, whereas others might elicit potentiated antitumor effects but at a cost of increased general toxicity. Some other combinations might induce either comparable or even stronger antitumor effects, but with a beneficial concomitant reduction of specific side effects. Most of the studies reviewed in this article have been carried in vitro or in experimental tumor models, but clinical relevance of the findings is also discussed.
Collapse
Affiliation(s)
- Marek Jakobisiak
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland.
| | | |
Collapse
|
27
|
Lück SC, Russ AC, Du J, Gaidzik V, Schlenk RF, Pollack JR, Döhner K, Döhner H, Bullinger L. KITmutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol 2010; 148:925-37. [DOI: 10.1111/j.1365-2141.2009.08035.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Chobotova K, Vernallis AB, Majid FAA. Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett 2009; 290:148-56. [PMID: 19700238 DOI: 10.1016/j.canlet.2009.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 01/11/2023]
Abstract
The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.
Collapse
|
29
|
Torabian SZ, de Semir D, Nosrati M, Bagheri S, Dar AA, Fong S, Liu Y, Federman S, Simko J, Haqq C, Debs RJ, Kashani-Sabet M. Ribozyme-mediated targeting of IkappaBgamma inhibits melanoma invasion and metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1009-16. [PMID: 19179607 DOI: 10.2353/ajpath.2009.080207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IkappaBgamma is one member of a family of proteins that can inhibit the nuclear localization of nuclear factor-kappaB. However, the other specific functions of IkappaBgamma are still poorly understood, and its effects on tumor metastasis have not yet been characterized. We examined the consequences of targeting IkappaBgamma in melanoma cells using a hammerhead ribozyme. We developed stable transformant B16-F10 melanoma cell lines that express a ribozyme that targets mouse IkappaBgamma (IkappaBgamma-144-Rz). Tail-vein injection of B16-F10 cells that stably express IkappaBgamma-144-Rz into mice resulted in a significant reduction of the metastatic potential of these cells. IkappaBgamma-144-Rz-expressing B16 cells were shown to have increased transcriptional activity of nuclear factor-kappaB. We then showed that IkappaBgamma-144-Rz-expressing cells demonstrated both reduced invasion and increased apoptosis, suggesting the existence of pathways through which IkappaBgamma promotes melanoma metastasis. Using gene expression profiling, we identified a differentially expressed gene set that is regulated by the stable suppression of IkappaBgamma that may participate in mediating its anti-metastatic effects; we also confirmed the altered expression levels of several of these genes by quantitative real time polymerase chain reaction. Plasmid-mediated expression of IkappaBgamma-144-Rz produced a significant inhibition of the metastatic progression of B16-F10 cells to the lung and resulted in significant anti-invasive and pro-apoptotic effects on murine Lewis lung carcinoma cells. Our results suggest a novel role for IkappaBgamma in promoting the metastatic progression of melanoma.
Collapse
Affiliation(s)
- Sima Z Torabian
- Department of Dermatology, University of California San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|