1
|
Daniels DE, Ferrer-Vicens I, Hawksworth J, Andrienko TN, Finnie EM, Bretherton NS, Ferguson DCJ, Oliveira ASF, Szeto JYA, Wilson MC, Brewin JN, Frayne J. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat Commun 2023; 14:6260. [PMID: 37803026 PMCID: PMC10558456 DOI: 10.1038/s41467-023-41961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
β-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for β-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in β-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - John N Brewin
- Haematology Department, King's college Hospital NHS Foundation, London, SE5 9RS, UK
- Red Cell Biology Group, Kings College London, London, SE5 9NU, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Ali Z, Ismail M, Rehman IU, Rani GF, Ali M, Khan MTM. Long-term clinical efficacy and safety of thalidomide in patients with transfusion-dependent β-thalassemia: results from Thal-Thalido study. Sci Rep 2023; 13:13592. [PMID: 37604857 PMCID: PMC10442319 DOI: 10.1038/s41598-023-40849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Regular blood transfusion is the mainstay of treatment in transfusion-dependent β-thalassemia (TDT); however, transfusions culminate in an array of serious complications. Therefore, a single-arm, non-randomized clinical trial was conducted in hydroxyurea refractory TDT patients to explore the long-term safety and efficacy of thalidomide. The primary outcomes for efficacy were rise in hemoglobin (Hb) level and changes in transfusion frequency. Whereas, several clinical and laboratory parameters were assessed for safety of thalidomide. Secondary outcomes included changes in serum ferritin, serum lactate dehydrogenase (LDH), serum uric acid, red blood cell indices, and size of liver and spleen. A total of 532 patients were followed for a period of 30 months. Significant increase in mean Hb level was identified at 6 months (1.4 g/dL, p ≤ 0.001) and 30 months (2 g/dL, p ≤ 0.001) in comparison with baseline. A total of 408 (76.7%) patients responded to thalidomide therapy (excellent responders 25.8%, good responders 31%, and partial responders 19.9%) and attained transfusion independence within 6 months of therapy. A significant decline in mean ferritin, LDH level, liver size, and spleen size was observed. No unfavorable effects were observed on kidney and liver functions. Mild adverse events were reported in 48 (9%) patients and serious adverse events, including cerebral vascular accident and portal vein thrombosis were reported in two patients each. This study concludes that thalidomide is an effective and well-tolerated drug that can improve Hb levels and reduce transfusion burden in hydroxyurea refractory TDT patients.Trial registration: This trial is registered at http://www.clinicaltrial.gov as # NCT03651102.
Collapse
Affiliation(s)
- Zahid Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ismail
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Inayat Ur Rehman
- Department of Pharmacology, Northwest School of Medicine, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Gulab Fatima Rani
- Department of Pathology, Institute of Pathology and Diagnostic Medicine, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Muhammad Ali
- Department of Hematology, Pak International Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Tariq Masood Khan
- Department of Hematology, Pak International Medical College, Peshawar, Khyber Pakhtunkhwa, Pakistan.
- Blood Disease Clinic, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
3
|
A Phase 2 Randomized Controlled Trial of Single-Agent Hydroxyurea Versus Thalidomide Among Adult Transfusion Dependent β Thalassemia Patients. Indian J Hematol Blood Transfus 2023; 39:266-275. [PMID: 36620489 PMCID: PMC9809516 DOI: 10.1007/s12288-022-01620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Hydroxyurea and low dose thalidomide are low-cost, easily accessible Hb F inducing agents that have been found to decrease transfusion dependency among transfusion-dependent thalassemia patients. However, these drugs have not much been explored in a randomized controlled setting. The objective of this study was to determine the efficacy and safety of hydroxyurea and low dose thalidomide in adult transfusion dependent β thalassemia. A total of 39 transfusion dependent β thalassemia patients were randomized into three arms: Arm A (Hydroxyurea 500 mg/day), Arm B (thalidomide 50 mg/day), and Control Arm. The primary outcome was rise in haemoglobin at 24-weeks from the baseline levels. The mean age of the cohort was 26.9 ± 4.7 years. Total 13 patients (33.3%) were splenectomised. The mean rise of haemoglobin at the end of 24 weeks was 0.18 ± 0.645 g/dl, 0.56 ± 1.343 g/dl, and - 0.31 ± 0.942 g/dl in Arm A, Arm B and control arm, respectively, p = 0.127. The mean volume of blood transfused per unit body weight in 24 weeks was significantly less in the thalidomide arm compared with the control arm (p = 0.035). Abdominal pain (Grade 1-2, 23.1%) and pruritus (Grade 1, 15.4%) were the main adverse events in hydroxyurea arm, whereas somnolence was the main side effect noted in the thalidomide arm (Grade 1-2, 78.3%). Single agent hydroxyurea or thalidomide is ineffective in increasing haemoglobin and decreasing transfusion burden among majority of the adult transfusion dependent thalassemia patients. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-022-01620-3.
Collapse
|
4
|
Macharia AW, Mochamah G, Makale J, Howard T, Mturi N, Olupot-Olupot P, Färnert A, Ware RE, Williams TN. Case Report: β-thalassemia major on the East African coast. Wellcome Open Res 2022; 7:188. [PMID: 37811313 PMCID: PMC10551670 DOI: 10.12688/wellcomeopenres.17907.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 10/10/2023] Open
Abstract
Background: β-thalassemia is rare in sub-Saharan Africa and to our knowledge there has been no case of homozygous β-thalassemia major reported from this region. In a recent cohort study, we identified four β-thalassemia mutations among 83 heterozygous carriers in Kilifi, Kenya. One of the mutations identified was a rare β-globin gene initiation codon mutation (ATG➝ACG) (rs33941849). Here we present a patient with β-thalassemia major resulting from this mutation, only the second homozygous patient to have been reported. Methods: The female patient presented to Kilifi County Hospital aged two years with a one week left sided abdominal swelling. Clinical, hematological and genetic information were collected at admission and follow-up. Results: Admission bloods revealed marked anemia, with a hemoglobin (Hb) value of 6.6 g/dL and a low mean corpuscular volume of 64 fL. High performance liquid chromatography (HPLC) revealed the absence of HbA0 and elevated levels of HbF, suggesting a diagnosis of β-thalassemia major. Sequencing revealed that the child was homozygous for the rs33941849 initiation codon mutation. Conclusions: We hope that this study will create awareness regarding the presence of β-thalassemia as a potential public health problem in the East Africa region and will prompt the development of local guidelines regarding the diagnosis and management of this condition.
Collapse
Affiliation(s)
- Alexander W. Macharia
- Epidemiology and Demography Department, KEMRI/Wellcome Trust Kilifi, Kilifi, 254, Kenya
| | - George Mochamah
- Epidemiology and Demography Department, KEMRI/Wellcome Trust Kilifi, Kilifi, 254, Kenya
| | - Johnstone Makale
- Epidemiology and Demography Department, KEMRI/Wellcome Trust Kilifi, Kilifi, 254, Kenya
| | - Thad Howard
- Division of Hematology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Neema Mturi
- Epidemiology and Demography Department, KEMRI/Wellcome Trust Kilifi, Kilifi, 254, Kenya
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute, Mbale, Uganda
- Busitema University Faculty of Health Sciences, Mbale, Uganda
| | | | - Russell E. Ware
- Division of Hematology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Thomas N. Williams
- Epidemiology and Demography Department, KEMRI/Wellcome Trust Kilifi, Kilifi, 254, Kenya
- Institute for Global Health Innovation, Imperial College, London, UK
| |
Collapse
|
5
|
Zuccato C, Cosenza LC, Zurlo M, Gasparello J, Papi C, D’Aversa E, Breveglieri G, Lampronti I, Finotti A, Borgatti M, Scapoli C, Stievano A, Fortini M, Ramazzotti E, Marchetti N, Prosdocimi M, Gamberini MR, Gambari R. Expression of γ-globin genes in β-thalassemia patients treated with sirolimus: results from a pilot clinical trial (Sirthalaclin). Ther Adv Hematol 2022; 13:20406207221100648. [PMID: 35755297 PMCID: PMC9218916 DOI: 10.1177/20406207221100648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction β-thalassemia is caused by autosomal mutations in the β-globin gene, which induce the absence or low-level synthesis of β-globin in erythroid cells. It is widely accepted that a high production of fetal hemoglobin (HbF) is beneficial for patients with β-thalassemia. Sirolimus, also known as rapamycin, is a lipophilic macrolide isolated from a strain of Streptomyces hygroscopicus that serves as a strong HbF inducer in vitro and in vivo. In this study, we report biochemical, molecular, and clinical results of a sirolimus-based NCT03877809 clinical trial (a personalized medicine approach for β-thalassemia transfusion-dependent patients: testing sirolimus in a first pilot clinical trial, Sirthalaclin). Methods Accumulation of γ-globin mRNA was analyzed using reverse-transcription quantitative polymerase chain reaction (PCR), while the hemoglobin pattern was analyzed using high-performance liquid chromatography (HPLC). The immunophenotype was analyzed using a fluorescence-activated cell sorter (FACS), with antibodies against CD3, CD4, CD8, CD14, CD19, CD25 (for analysis of peripheral blood mononuclear cells), or CD71 and CD235a (for analysis of in vitro cultured erythroid precursors). Results The results were obtained in eight patients with the β+/β+ and β+/β0 genotypes, who were treated with a starting dosage of 1 mg/day sirolimus for 24-48 weeks. The first finding of this study was that the expression of γ-globin mRNA increased in the blood and erythroid precursor cells isolated from β-thalassemia patients treated with low-dose sirolimus. This trial also led to the important finding that sirolimus influences erythropoiesis and reduces biochemical markers associated with ineffective erythropoiesis (excess free α-globin chains, bilirubin, soluble transferrin receptor, and ferritin). A decrease in the transfusion demand index was observed in most (7/8) of the patients. The drug was well tolerated, with minor effects on the immunophenotype, and an only side effect of frequently occurring stomatitis. Conclusion The data obtained indicate that low doses of sirolimus modify hematopoiesis and induce increased expression of γ-globin genes in a subset of patients with β-thalassemia. Further clinical trials are warranted, possibly including testing of the drug in patients with less severe forms of the disease and exploring combination therapies.
Collapse
Affiliation(s)
- Cristina Zuccato
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Matteo Zurlo
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Jessica Gasparello
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Papi
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Elisabetta D’Aversa
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, Ferrara, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biologia ed Evoluzione, Università degli Studi di Ferrara, Ferrara, Italy
| | - Alice Stievano
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, Ferrara, Italy
| | - Monica Fortini
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, Ferrara, Italy
| | - Eric Ramazzotti
- Laboratorio Unico Metropolitano, Ospedale Maggiore, Azienda USL di Bologna, Bologna, Italy
| | - Nicola Marchetti
- Dipartimento di Scienze Chimiche, Farmaceutiche e Agrarie, Università degli Studi di Ferrara, Ferrara, Italy
| | | | - Maria Rita Gamberini
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, via Aldo Moro, 8, Ferrara 44124, Italy
| | - Roberto Gambari
- Dipartimento di Scienze della Vita e Biotecnologie, Sezione di Biochimica e Biologia Molecolare, Università degli Studi di Ferrara, via Fossato di Mortara, 74, Ferrara 44121, Italy
- Thal-LAB, Laboratorio di Ricerca Elio Zago sulla Terapia Farmacologica e Farmacogenomica della Talassemia, Università degli Studi di Ferrara, Ferrara, Italy
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Università degli Studi di Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Michel CP, Messonnier LA, Giannesini B, Chatel B, Vilmen C, Le Fur Y, Bendahan D. Effects of Hydroxyurea on Skeletal Muscle Energetics and Function in a Mildly Anemic Mouse Model. Front Physiol 2022; 13:915640. [PMID: 35784862 PMCID: PMC9240423 DOI: 10.3389/fphys.2022.915640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hydroxyurea (HU) is a ribonucleotide reductase inhibitor most commonly used as a therapeutic agent in sickle cell disease (SCD) with the aim of reducing the risk of vaso-occlusion and improving oxygen transport to tissues. Previous studies suggest that HU may be even beneficial in mild anemia. However, the corresponding effects on skeletal muscle energetics and function have never been reported in such a mild anemia model. Seventeen mildly anemic HbAA Townes mice were subjected to a standardized rest-stimulation (transcutaneous stimulation)-protocol while muscle energetics using 31Phosphorus magnetic resonance spectroscopy and muscle force production were assessed and recorded. Eight mice were supplemented with hydroxyurea (HU) for 6 weeks while 9 were not (CON). HU mice displayed a higher specific total force production compared to the CON, with 501.35 ± 54.12 N/mm3 and 437.43 ± 57.10 N/mm3 respectively (+14.6%, p < 0.05). Neither the total rate of energy consumption nor the oxidative metabolic rate were significantly different between groups. The present results illustrated a positive effect of a HU chronic supplementation on skeletal muscle function in mice with mild anemia.
Collapse
Affiliation(s)
- Constance P. Michel
- CRMBM, CNRS, Aix Marseille University, Marseille, France
- *Correspondence: Constance P. Michel,
| | - Laurent A. Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| | | | - Benjamin Chatel
- CRMBM, CNRS, Aix Marseille University, Marseille, France
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| | | | - Yann Le Fur
- CRMBM, CNRS, Aix Marseille University, Marseille, France
| | - David Bendahan
- CRMBM, CNRS, Aix Marseille University, Marseille, France
| |
Collapse
|
7
|
Evaluation of the combination therapy of hydroxyurea and thalidomide in β-thalassemia. Blood Adv 2022; 6:6162-6168. [PMID: 35477175 PMCID: PMC9772794 DOI: 10.1182/bloodadvances.2022007031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/19/2023] Open
Abstract
Transfusion-related complications and lack of resources in low-to-middle-income countries have led to a search for novel therapies to reduce the need for blood transfusions in patients with β-thalassemia. Hydroxyurea (HU) has demonstrated promising outcomes; additionally, thalidomide has also shown improvement in hemoglobin (Hb) levels for patients with β-thalassemia in some studies. This study presents the findings of a single-arm nonrandomized trial to evaluate the efficacy of combination therapy of HU and thalidomide in children with β-thalassemia. A total of 135 patients (median age, 6 [interquartile range, 3-10] years), 77 (57%) males and 58 (43%) females, were followed first using HU alone, for 6 months, and then using the combination of HU and thalidomide for another 6 months. The primary outcome was a response to therapy, as measured by the number of transfusions required and Hb levels, for patients while receiving HU alone and then while using the combination therapy. Study findings showed a significant decline in blood transfusion volume (P < .001) and a significant increase in median Hb levels within 3 and 6 months of the combination therapy (P < .001). Eighty-nine (65.93%) participants were good responders, 16 (11.85%) were responders, and 30 (22.22%) were nonresponders, whereas the responders had variable genetic mutations. A total of 38 adverse events were reported that resolved on supportive treatment or temporary hold of the intervention. The combination therapy demonstrated promising results and could be considered for a diverse patient population with β-thalassemia. This trial was registered at www.clinicaltrials.gov as #NCT05132270.
Collapse
|
8
|
A randomised double-blind placebo-controlled clinical trial of oral hydroxyurea for transfusion-dependent β-thalassaemia. Sci Rep 2022; 12:2752. [PMID: 35177777 PMCID: PMC8854735 DOI: 10.1038/s41598-022-06774-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 01/19/2023] Open
Abstract
Hydroxyurea is an antimetabolite drug that induces fetal haemoglobin in sickle cell disease. However, its clinical usefulness in β-thalassaemia is unproven. We conducted a randomised, double-blind, placebo-controlled clinical trial to evaluate the efficacy and safety of hydroxyurea in transfusion-dependent β-thalassaemia. Sixty patients were assigned 1:1 to oral hydroxyurea 10–20 mg/kg/day or placebo for 6 months by stratified block randomisation. Hydroxyurea treatment did not alter the blood transfusion volume overall. However, a significantly higher proportion of patients on hydroxyurea showed increases in fetal haemoglobin percentage (89% vs. 59%; p < 0.05) and reductions in erythropoietic stress as measured by soluble transferrin receptor concentration (79% vs. 40%; p < 0.05). Based on fetal haemoglobin induction (> 1.5%), 44% of patients were identified as hydroxyurea-responders. Hydroxyurea-responders, required significantly lower blood volume (77 ± SD27ml/kg) compared to hydroxyurea-non-responders (108 ± SD24ml/kg; p < 0.01) and placebo-receivers (102 ± 28ml/kg; p < 0.05). Response to hydroxyurea was significantly higher in patients with HbE β-thalassaemia genotype (50% vs. 0%; p < 0.01) and Xmn1 polymorphism of the γ-globin gene (67% vs. 27%; p < 0.05). We conclude that oral hydroxyurea increased fetal haemoglobin percentage and reduced erythropoietic stress of ineffective erythropoiesis in patients with transfusion-dependent β-thalassaemia. Hydroxyurea reduced the transfusion burden in approximately 40% of patients. Response to hydroxyurea was higher in patients with HbE β-thalassaemia genotype and Xmn1 polymorphism of the γ-globin gene.
Collapse
|
9
|
Lu Y, Wei Z, Yang G, Lai Y, Liu R. Investigating the Efficacy and Safety of Thalidomide for Treating Patients With ß-Thalassemia: A Meta-Analysis. Front Pharmacol 2022; 12:814302. [PMID: 35087410 PMCID: PMC8786914 DOI: 10.3389/fphar.2021.814302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022] Open
Abstract
At present, the main therapies for ß-thalassemia patients include regular blood transfusion and iron chelation, associating with a number of limitations. Thalidomide, a fetal hemoglobin (HbF) inducer that promotes γ-globin gene expression, has been reported to be effective for ß-thalassemia. Thus, this meta-analysis was conducted to assess the efficacy and safety of thalidomide for treating patients with ß-thalassemia. We searched the related studies from eight databases published from inception until December 1, 2021. The R 4.0.5 language programming was used to perform meta-analysis. After screening of retrieved articles, 12 articles were included that enrolled a total of 451 patients. The Cochrane Collaboration risk assessment tool was used to evaluate the quality and the bias risk of the randomized controlled trials (RCTs), and non randomized trials were assessed using Newcastle-Ottawa Scale (NOS). After treatment with thalidomide, the pooled overall response rate (ORR) was 85% (95% confidence interval (CI): 80–90%), and the pooled complete response rate (CRR) was 54% (95% confidence interval: 31–76%). Compared with the placebo group, the thalidomide group had higher odds of overall response rate (odds ratio = 20.4; 95% CI: 6.75–61.64) and complete response rate (odds ratio = 20.4; 95% CI: 6.75–61.64). A statistically significant increase in hemoglobin level and HbF level after treatment, while there was no statistically significant difference in adult hemoglobin (HbA) level, spleen size, and serum ferritin. According to the results of ORR and CRR, transfusion-dependent thalassemia (TDT) patients showed remarkable efficacy of thalidomide, 83 and 52% respectively. So we analyzed 30 transfusion-dependent thalassemia patients from three studies and found that the most frequent ß-globin gene mutations were CD41-42 (-TCTT), while response to thalidomide did not show any statistically significant relationship with XmnI polymorphism or CD41-42 (-TCTT) mutation. About 30% of patients experienced mild adverse effects of thalidomide. Collectively, thalidomide is a relatively safe and effective therapy to reduce the blood transfusion requirements and to increase Hb level in patients with ß-thalassemia.
Collapse
Affiliation(s)
- Yanfei Lu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenbin Wei
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gaohui Yang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongrong Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
10
|
Ansari SH, Hussain Z, Zohaib M, Parveen S, Kaleem B, Qamar H, Adil O, Khan MT, Shamsi TS. A Pragmatic Scoring Tool to Predict Hydroxyurea Response Among β-Thalassemia Major Patients in Pakistan. J Pediatr Hematol Oncol 2022; 44:e77-e83. [PMID: 33710118 DOI: 10.1097/mph.0000000000002136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/02/2021] [Indexed: 11/26/2022]
Abstract
Despite high prevalence and incidence of β-thalassemia in Pakistan, there is very limited work on the use of hydroxyurea (HU) in thalassemia patients in the country. This is the first insight regarding genetic profiling of BCL11A and HU responses in Pakistani β-thalassemia. It correlates single-nucleotide polymorphisms on BCL11A (rs4671393, rs766432) and HBG2 (XmnI), age at first transfusion, and β-globin mutations with HU response in β-thalassemia major (BTM). Of 272 patients treated with HU, 98 were complete responders, 55 partial responders, and 119 nonresponders. Our analysis shows that HU response was significantly associated with patients having IVSI-1 or CD 30 mutation (P<0.001), age at first transfusion >1 year (P<0.001), and with the presence of XmnI polymorphism (P<0.001). The single-nucleotide polymorphisms of BCL11A were more prevalent among responders, but could not show significant association with HU response (P>0.05). Cumulative effect of all 5 predicting factors through simple binary scoring indicates that the likelihood of HU response increases with the number of primary and secondary genetic modifiers (P<0.001). Predictors scoring is a pragmatic tool to foresee HU response in patients with BTM. The authors recommend a score of ≥2 for starting HU therapy in Pakistani patients with BTM.
Collapse
Affiliation(s)
- Saqib H Ansari
- National Institute of Blood Diseases and Bone Marrow Transplantation
| | - Zeeshan Hussain
- National Institute of Blood Diseases and Bone Marrow Transplantation
- Omair Sana Foundation
| | - Muhammad Zohaib
- Omair Sana Foundation
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Sadia Parveen
- National Institute of Blood Diseases and Bone Marrow Transplantation
| | - Bushra Kaleem
- National Institute of Blood Diseases and Bone Marrow Transplantation
| | - Hina Qamar
- National Institute of Blood Diseases and Bone Marrow Transplantation
| | | | | | - Tahir S Shamsi
- National Institute of Blood Diseases and Bone Marrow Transplantation
| |
Collapse
|
11
|
Zuccato C, Cosenza LC, Zurlo M, Lampronti I, Borgatti M, Scapoli C, Gambari R, Finotti A. Treatment of Erythroid Precursor Cells from β-Thalassemia Patients with Cinchona Alkaloids: Induction of Fetal Hemoglobin Production. Int J Mol Sci 2021; 22:13433. [PMID: 34948226 PMCID: PMC8706579 DOI: 10.3390/ijms222413433] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
β-thalassemias are among the most common inherited hemoglobinopathies worldwide and are the result of autosomal mutations in the gene encoding β-globin, causing an absence or low-level production of adult hemoglobin (HbA). Induction of fetal hemoglobin (HbF) is considered to be of key importance for the development of therapeutic protocols for β-thalassemia and novel HbF inducers need to be proposed for pre-clinical development. The main purpose on this study was to analyze Cinchona alkaloids (cinchonidine, quinidine and cinchonine) as natural HbF-inducing agents in human erythroid cells. The analytical methods employed were Reverse Transcription quantitative real-time PCR (RT-qPCR) (for quantification of γ-globin mRNA) and High Performance Liquid Chromatography (HPLC) (for analysis of the hemoglobin pattern). After an initial analysis using the K562 cell line as an experimental model system, showing induction of hemoglobin and γ-globin mRNA, we verified whether the two more active compounds, cinchonidine and quinidine, were able to induce HbF in erythroid progenitor cells isolated from β-thalassemia patients. The data obtained demonstrate that cinchonidine and quinidine are potent inducers of γ-globin mRNA and HbF in erythroid progenitor cells isolated from nine β-thalassemia patients. In addition, both compounds were found to synergize with the HbF inducer sirolimus for maximal production of HbF. The data obtained strongly indicate that these compounds deserve consideration in the development of pre-clinical approaches for therapeutic protocols of β-thalassemia.
Collapse
Affiliation(s)
- Cristina Zuccato
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
| | - Lucia Carmela Cosenza
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
| | - Matteo Zurlo
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
| | - Ilaria Lampronti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
| | - Monica Borgatti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Scapoli
- Section of Biology and Evolution, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Roberto Gambari
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), 34148 Trieste, Italy
| | - Alessia Finotti
- Section of Biochemistry and Molecular Biology, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.Z.); (L.C.C.); (M.Z.); (I.L.); (M.B.)
- Research Laboratory “Elio Zago” on the Pharmacologic and Pharmacogenomic Therapy of Thalassemia (Thal-LAB), University of Ferrara, 44121 Ferrara, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), 34148 Trieste, Italy
| |
Collapse
|
12
|
Porter J, Taher A, Viprakasit V, Kattamis A, Coates TD, Garbowski M, Dürrenberger F, Manolova V, Richard F, Cappellini MD. Oral ferroportin inhibitor vamifeport for improving iron homeostasis and erythropoiesis in β-thalassemia: current evidence and future clinical development. Expert Rev Hematol 2021; 14:633-644. [PMID: 34324404 DOI: 10.1080/17474086.2021.1935854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION In β-thalassemia, imbalanced globin synthesis causes reduced red blood cell survival and ineffective erythropoiesis. Suppressed hepcidin levels increase ferroportin-mediated iron transport in enterocytes, causing increased iron absorption and potentially iron overload. Low hepcidin also stimulates ferroportin-mediated iron release from macrophages, increasing transferrin saturation (TSAT), potentially forming non-transferrin-bound iron, which can be toxic. Modulating the hepcidin-ferroportin axis is an attractive strategy to improve ineffective erythropoiesis and limit the potential tissue damage resulting from iron overload. There are no oral β-thalassemia treatments that consistently ameliorate anemia and prevent iron overload. AREAS COVERED The preclinical and clinical development of vamifeport (VIT-2763), a novel ferroportin inhibitor, was reviewed. PubMed, EMBASE and ClinicalTrials.gov were searched using the search term 'VIT-2763'. EXPERT OPINION Vamifeport is the first oral ferroportin inhibitor in clinical development. In healthy volunteers, vamifeport had comparable safety to placebo, was well tolerated and rapidly decreased iron levels and reduced TSAT, consistent with observations in preclinical models. Data from ongoing/planned Phase II studies are critical to define its potential in β-thalassemia and other conditions associated with iron overabsorption and/or ineffective erythropoiesis. If vamifeport potentially increases hemoglobin and reduces iron-related parameters, it could be a suitable treatment for non-transfusion-dependent and transfusion-dependent β-thalassemia.
Collapse
Affiliation(s)
- John Porter
- Professor of Haematology, Department of Haematology, University College London, Consultant in Haematology, University College London Hospitals and Head of Joint UCLH and Whittington Hospital Red Cell Unit, London, UK
| | - Ali Taher
- Professor of Medicine, Hematology and Oncology, Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Vip Viprakasit
- Professor of Pediatrics, Director, Thalassemia Research Program, Director, SiCORE in Advanced Cell & Gene Therapy Center (SiCORE-ACGT), Division of Hematology and Oncology, Department of Pediatrics & Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Antonis Kattamis
- Professor of Pediatric Hematology-Oncology, Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas D Coates
- Section Head, Hematology, Cancer and Blood Disease Institute, Professor of Pediatrics and Pathology, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Maciej Garbowski
- Clinical Research Fellow, Department of Haematology, University College London Cancer Institute, London, UK
| | - Franz Dürrenberger
- Head of Chemical and Preclinical R&D, Vifor (International) AG, Chemical and Preclinical Research and Development, St. Gallen, Switzerland
| | - Vania Manolova
- Head of Biology R&D, Vifor (International) AG, Chemical and Preclinical Research and Development, St. Gallen, Switzerland
| | - Frank Richard
- Clinical Research Director, Vifor Pharma AG, Glattbrugg, Switzerland
| | - M Domenica Cappellini
- Professor of Internal Medicine, Department of Clinical Sciences and Community, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Yasara N, Premawardhena A, Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J Rare Dis 2021; 16:114. [PMID: 33648529 PMCID: PMC7919989 DOI: 10.1186/s13023-021-01757-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hydroxyurea is one of the earliest drugs that showed promise in the management of haemoglobinopathies that include β-thalassaemia and sickle cell disease. Despite this, many aspects of hydroxyurea are either unknown or understudied; specifically, its usefulness in β-thalassaemia major and haemoglobin E β-thalassaemia is unclear. However, during COVID-19 pandemic, it has become a valuable adjunct to transfusion therapy in patients with β-haemoglobinopathies. In this review, we aim to explore the available in vitro and in vivo mechanistic data and the clinical utility of hydroxyurea in β-haemoglobinopathies with a special emphasis on its usefulness during the COVID-19 pandemic. Main body Hydroxyurea is an S-phase-specific drug that reversibly inhibits ribonucleoside diphosphate reductase enzyme which catalyses an essential step in the DNA biosynthesis. In human erythroid cells, it induces the expression of γ-globin, a fetal globin gene that is suppressed after birth. Through several molecular pathways described in this review, hydroxyurea exerts many favourable effects on the haemoglobin content, red blood cell indices, ineffective erythropoiesis, and blood rheology in patients with β-haemoglobinopathies. Currently, it is recommended for sickle cell disease and non-transfusion dependent β-thalassaemia. A number of clinical trials are ongoing to evaluate its usefulness in transfusion dependent β-thalassaemia. During the COVID-19 pandemic, it was widely used as an adjunct to transfusion therapy due to limitations in the availability of blood and logistical disturbances. Thus, it has become clear that hydroxyurea could play a remarkable role in reducing transfusion requirements of patients with haemoglobinopathies, especially when donor blood is a limited resource. Conclusion Hydroxyurea is a well-tolerated oral drug which has been in use for many decades. Through its actions of reversible inhibition of ribonucleoside diphosphate reductase enzyme and fetal haemoglobin induction, it exerts many favourable effects on patients with β-haemoglobinopathies. It is currently approved for the treatment of sickle cell disease and non-transfusion dependent β-thalassaemia. Also, there are various observations to suggest that hydroxyurea is an important adjunct in the treatment of transfusion dependent β-thalassaemia which should be confirmed by randomised clinical trials.
Collapse
Affiliation(s)
- Nirmani Yasara
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka
| | - Anuja Premawardhena
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.,Colombo North Teaching Hospital, Ragama, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka. .,Colombo North Teaching Hospital, Ragama, Sri Lanka.
| |
Collapse
|
14
|
Yasara N, Wickramarathne N, Mettananda C, Manamperi A, Premawardhena A, Mettananda S. Efficacy and safety of oral hydroxyurea in transfusion-dependent β-thalassaemia: a protocol for randomised double-blind controlled clinical trial. BMJ Open 2020; 10:e041958. [PMID: 33109679 PMCID: PMC7592299 DOI: 10.1136/bmjopen-2020-041958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Despite being one of the first diseases to be genetically characterised, β-thalassaemia remains a disorder without a cure in a majority of patients. Most patients with β-thalassaemia receive only supportive treatment and therefore have a poor quality of life and shorter life spans. Hydroxyurea, which has shown to induce fetal haemoglobin synthesis in human erythroid cells, is currently recommended for the treatment of sickle cell disease. However, its clinical usefulness in transfusion-dependent β-thalassaemia is unclear. Here, we present a protocol for a randomised double-blind controlled clinical trial to evaluate the efficacy and safety of oral hydroxyurea in transfusion-dependent β-thalassaemia. METHODS AND ANALYSIS This single-centre randomised double-blind placebo-controlled clinical trial is conducted at the Thalassaemia Centre of Colombo North Teaching Hospital, Ragama, Sri Lanka. Adult and adolescent patients with haematologically and genetically confirmed transfusion-dependent β-thalassaemia are enrolled and randomised into the intervention or control group. The intervention group receives oral hydroxyurea 10-20 mg/kg daily for 6 months, while the control group receives a placebo which is identical in size, shape and colour to hydroxyurea without its active ingredient. Transfused blood volume, pretransfusion haemoglobin level, fetal haemoglobin percentage and adverse effects of treatment are monitored during treatment and 6 months post-treatment. Cessation or reduction of blood transfusions during the treatment period will be the primary outcome measure. The statistical analysis will be based on intention to treat. ETHICS AND DISSEMINATION Ethical approval has been obtained from the Ethics Committee of Faculty of Medicine, University of Kelaniya (P/116/05/2018) and the trial is approved by the National Medicinal Regulatory Authority of Sri Lanka. Results of the trial will be disseminated in scientific publications in reputed journals. TRIAL REGISTRATION NUMBER SLCTR/2018/024; Pre-results.
Collapse
Affiliation(s)
- Nirmani Yasara
- Department of Paediatrics, University of Kelaniya, Ragama, Sri Lanka
| | | | | | - Aresha Manamperi
- Molecular Medicine Unit, University of Kelaniya, Ragama, Sri Lanka
| | - Anuja Premawardhena
- Department of Medicine, University of Kelaniya, Ragama, Sri Lanka
- Colombo North Teaching Hospital, Ragama, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, University of Kelaniya, Ragama, Sri Lanka
- Colombo North Teaching Hospital, Ragama, Sri Lanka
| |
Collapse
|
15
|
Fibach E. Erythropoiesis In Vitro-A Research and Therapeutic Tool in Thalassemia. J Clin Med 2019; 8:jcm8122124. [PMID: 31810354 PMCID: PMC6947291 DOI: 10.3390/jcm8122124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Thalassemia (thal) is a hereditary chronic hemolytic anemia due to a partial or complete deficiency in the production of globin chains, in most cases, α or β, which compose, together with the iron-containing porphyrins (hemes), the hemoglobin molecules in red blood cells (RBC). The major clinical symptom of β-thal is severe chronic anemia—a decrease in RBC number and their hemoglobin content. In spite of the improvement in therapy, thal still severely affects the quality of life of the patients and their families and imposes a substantial financial burden on the community. These considerations position β-thal, among other hemoglobinopathies, as a major health and social problem that deserves increased efforts in research and its clinical application. These efforts are based on clinical studies, experiments in animal models and the use of erythroid cells grown in culture. The latter include immortal cell lines and cultures initiated by erythroid progenitor and stem cells derived from the blood and RBC producing (erythropoietic) sites of normal and thal donors, embryonic stem cells, and recently, "induced pluripotent stem cells" generated by manipulation of differentiated somatic cells. The present review summarizes the use of erythroid cultures, their technological aspects and their contribution to the research and its clinical application in thal. The former includes deciphering of the normal and pathological biology of the erythroid cell development, and the latter—their role in developing innovative therapeutics—drugs and methods of gene therapy, as well as providing an alternative source of RBC that may complement or substitute blood transfusions.
Collapse
Affiliation(s)
- Eitan Fibach
- The Hematology Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
16
|
Khandros E, Kwiatkowski JL. Beta Thalassemia: Monitoring and New Treatment Approaches. Hematol Oncol Clin North Am 2019; 33:339-353. [PMID: 31030806 DOI: 10.1016/j.hoc.2019.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Beta thalassemias are a significant global health problem. Globin chain imbalance leads to a complex physiologic cascade of hemolytic anemia, ineffective erythropoiesis, and iron overload. Management of the broad spectrum of phenotypes requires the careful use of red blood transfusions, supportive care, monitoring, and management of iron overload. In this article, the authors discuss recommendations for monitoring of individuals with thalassemia, as well as ongoing preclinical and clinical trials of therapies targeting different aspects of thalassemia pathophysiology.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Colket Translational Research Building, Room 11024, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Janet L Kwiatkowski
- Division of Hematology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Colket Translational Research Building, Room 11024, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|