1
|
Rodríguez CL, Strub C, Fontana A, Verheecke-Vaessen C, Durand N, Beugré C, Guehi T, Medina A, Schorr-Galindo S. Biocontrol activities of yeasts or lactic acid bacteria isolated from Robusta coffee against Aspergillus carbonarius growth and ochratoxin A production in vitro. Int J Food Microbiol 2024; 415:110638. [PMID: 38430685 DOI: 10.1016/j.ijfoodmicro.2024.110638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.
Collapse
Affiliation(s)
- Claudia López Rodríguez
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Caroline Strub
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France.
| | - Angélique Fontana
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| | | | - Noël Durand
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France; CIRAD, UMR Qualisud, F-34398 Montpellier, France
| | - Corinne Beugré
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Tagro Guehi
- Laboratory of Microbiology and Molecular Biology, Department of Food Science and Technology, University of Nangui Abrogoua, Abidjan, Cote d'Ivoire
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, Cranfield, UK
| | - Sabine Schorr-Galindo
- Qualisud, Univ Montpellier, CIRAD, Institut Agro, IRD, Avignon Univ, Univ de La Réunion, Montpellier, France
| |
Collapse
|
2
|
Janne Carvalho Ferreira L, de Souza Gomes M, Maciel de Oliveira L, Diniz Santos L. Coffee fermentation process: A review. Food Res Int 2023; 169:112793. [PMID: 37254380 DOI: 10.1016/j.foodres.2023.112793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the importance of controlling coffee fermentation in the final quality of the beverage has been recognized. The literature review was conducted in the Science Direct and Springer databases, considering studies published in the last ten years, 74 references were selected. Several studies have been developed to evaluate and propose fermentation conditions that result in sensory improvements in coffee. So, this review aims to describe detailed the different protocols for conducting the coffee fermentation step and how they could influence the sensory quality of coffee based on the Specialty Coffee Association protocol. We propose a new way to identify coffee post-harvest processing not based on the already known wet, dry and semi-dry processing. The new identification is focused on considering fermentation as a step influenced by the coffee fruit treatment, availability of oxygen, water addition, and starter culture utilization. The findings of this survey showed that each type of coffee fermentation protocol can influence the microbiota development and consequently the coffee beverage. There is a migration from the use of processes in open environments to closed environments with controlled anaerobic conditions. However, it is not possible yet to define a single process capable of increasing coffee quality or developing a specific sensory pattern in any environmental condition. The use of starter cultures plays an important role in the sensory differentiation of coffee and can be influenced by the fermentation protocol applied. The application of fermentation protocols well defined is essential in order to have a good product also in terms of food safety. More research is needed to develop and implement environmental control conditions, such as temperature and aeration, to guarantee the reproducibility of the results.
Collapse
Affiliation(s)
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| | - Liliane Maciel de Oliveira
- Department of Food Engineering, Federal University of São João del-Rei, Sete Lagoas, Minas Gerais, Brazil.
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Braga AVU, Miranda MA, Aoyama H, Schmidt FL. Study on coffee quality improvement by self-induced anaerobic fermentation: Microbial diversity and enzymatic activity. Food Res Int 2023; 165:112528. [PMID: 36869528 DOI: 10.1016/j.foodres.2023.112528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The postharvest fermentation process of coffee has rapidly advanced in the last few years due to the search for quality and diversity of sensorial profiles. A new type of fermentation, named self-induced-anaerobic fermentation (SIAF), is a promising process that has been increasingly used. This study aims to evaluate the sensorial improvement of coffee beverages during SIAF and the influence of microorganism's community and enzymatic activity. The SIAF process was conducted in Brazilian farms for up to 8 days. The sensorial quality of coffee was evaluated by Q-graders; the microbial community was identified by the high-throughput sequencing of 16S rRNA and ITS regions; and the enzymatic activity (invertase, polygalacturonase, and endo-β-mannanase) was also investigated. SIAF increased up to 3.8 points in the total score of sensorial evaluation (compared to the non-fermented sample), in addition to presenting more flavor diversity (especially within the fruity and sweetness descriptors). The high-throughput sequencing identified 655 bacterial and 296 fungal species during the three processes. The bacteria Enterobacter sp., Lactobacillus sp., Pantoea sp., and the fungi Cladosporium sp. and Candida sp. were the predominant genera. Fungi that are potential producers of mycotoxin were identified throughout the process, which indicates a risk of contamination since some of them are not degraded in the roasting process. Thirty-one species of microorganisms were described for the first time in coffee fermentation. The microbial community was influenced by the place where the process was carried out, mainly in relation to the diversity of fungi. Washing the coffee fruits before fermenting led to a fast reduction of pH; a fast development of Lactobacillus sp. and a fast dominance of Candida sp.; a reduction of the fermentation time necessary to achieve the best sensorial score; an increase in the invertase activity in the seed; a more expressive invertase activity in the husk; and a decreasing trend in polygalacturonase activity in the coffee husk. The increase in endo-β-mannanase activity suggests that coffee starts germinating during the process. SIAF has a huge potential to increase the quality and add value to coffee, but further studies must be conducted to access its safety. The study allowed a better knowledge of the spontaneous microbial community and the enzymes that were present in the fermentation process.
Collapse
Affiliation(s)
- Ana Valéria Ulhano Braga
- Laboratory of Fruits and Vegetables, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°80 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil.
| | - Márcio André Miranda
- Laboratory of Enzymology, Institute of Biology, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°255 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil; Instituto Federal de Educação, Ciência e Tecnologia de São Paulo. Rua Heitor Lacerda Guedes, n °1000 - ZIP Code 13059-581. Cidade Satélite Íris, Campinas, São Paulo, Brazil
| | - Hiroshi Aoyama
- Laboratory of Enzymology, Institute of Biology, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°255 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| | - Flavio Luís Schmidt
- Laboratory of Fruits and Vegetables, Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas, Rua Monteiro Lobato, n°80 - ZIP Code 13083-862. Cidade Universitária "Zeferino Vaz", Barão Geraldo, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Understanding the Effects of Self-Induced Anaerobic Fermentation on Coffee Beans Quality: Microbiological, Metabolic, and Sensory Studies. Foods 2022; 12:foods12010037. [PMID: 36613253 PMCID: PMC9818356 DOI: 10.3390/foods12010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, an investigation of the microbial community structure and chemical changes in different layers of a static coffee beans fermentation tank (named self-induced anaerobic fermentation-SIAF) was conducted at different times (24, 48, and 72 h). The microbial taxonomic composition comprised a high prevalence of Enterobacteriaceae and Nectriaceae and low prevalence of lactic acid bacteria and yeast, which greatly differs from the traditional process performed in open tanks. No major variation in bacterial and fungal diversity was observed between the bottom, middle, and top layers of the fermentation tank. On the other hand, the metabolism of these microorganisms varied significantly, showing a higher consumption of pulp sugar and production of metabolites in the bottom and middle layers compared to the top part of the fermentation tank. Extended processes (48 and 72 h) allowed a higher production of key-metabolites during fermentation (e.g., 3-octanol, ethyl acetate, and amyl acetate), accumulation in roasted coffee beans (acetic acid, pyrazine, methyl, 2-propanone, 1-hydroxy), and diversification of sensory profiles of coffee beverages compared to 24 h of fermentation process. In summary, this study demonstrated that SIAF harbored radically different dominant microbial groups compared to traditional coffee processing, and diversification of fermentation time could be an important tool to provide coffee beverages with novel and desirable flavor profiles.
Collapse
|
5
|
Pinillos-Miñano RM, Rodriguez-Portilla LMI, Hatta-Sakoda BA, Estela-Escalante WD. Isolation of Lactic Acid Bacteria from the Feces of Ring-tailed Coati (Nasua nasua), Biochemical and Fermentative Aspects Related to Coffee Fermentation. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
6
|
What Is Candida Doing in My Food? A Review and Safety Alert on Its Use as Starter Cultures in Fermented Foods. Microorganisms 2022; 10:microorganisms10091855. [PMID: 36144457 PMCID: PMC9502980 DOI: 10.3390/microorganisms10091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
The use of yeasts as starter cultures was boosted with the emergence of large-scale fermentations in the 20th century. Since then, Saccharomyces cerevisiae has been the most common and widely used microorganism in the food industry. However, Candida species have also been used as an adjuvant in cheese production or as starters for coffee, cocoa, vegetable, meat, beer, and wine fermentations. A thorough screening of candidate Candida is sometimes performed to obtain the best performing strains to enhance specific features. Some commonly selected species include C. pulcherrima (teleomorph Metschnikowia pulcherrima) (wine), C. parapsilosis (teleomorph Monilia parapsilosis) (coffee), C. famata (teleomorph Debaryomyces hansenii) (cheese), and C. zeylanoides (teleomorph Kurtzmaniella zeylanoides) and C. norvegensis (teleomorph Pichia norvegensis) (cocoa). These species are associated with the production of key metabolites (food aroma formation) and different enzymes. However, safety-associated selection criteria are often neglected. It is widely known that some Candida species are opportunistic human pathogens, with important clinical relevance. Here, the physiology and metabolism of Candida species are addressed, initially emphasizing their clinical aspects and potential pathogenicity. Then, Candida species used in food fermentations and their functional roles are reported. We recommended that Candida not be used as food cultures if safety assessments are not performed. Some safety features are highlighted to help researchers choose methods and selection criteria.
Collapse
|