1
|
Liang SJ, Wang K, Mao DB, Xie LW, Zhu DJ. Inhibition of the Wnt/β‑catenin signaling pathway and SOX9 by XAV939 did not alleviate inflammation in a dextran sulfate sodium‑induced ulcerative colitis model. Exp Ther Med 2025; 29:24. [PMID: 39650775 PMCID: PMC11619566 DOI: 10.3892/etm.2024.12774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024] Open
Abstract
The Wnt/β-catenin signaling pathway has been reported to be hyperactivated during the pathogenesis of ulcerative colitis (UC). The present study aimed to explore the therapeutic efficacy of the Wnt/β-catenin signaling inhibitor XAV939 in mitigating UC symptoms. Utilizing a dextran sulfate sodium (DSS)-induced UC mouse model, the present study aimed to evaluate the impact of XAV939 on intestinal morphology through hematoxylin and eosin staining and to measure the expression levels of critical proteins in the Wnt/β-catenin signaling cascade. XAV939 did not exert a significant influence on the morphological features and inflammatory status of the intestinal epithelium. However, XAV939 was found to effectively suppress the Wnt/β-catenin signaling pathway and its downstream target SOX9. This suppression implied a reduction in the differentiation of intestinal stem cells into secretory cell progenitor cells. Additionally, XAV939 was ineffective at reversing the DSS-induced decrease in expression levels of Villin and peroxisome proliferator-activated receptor γ, which suggested that it did not facilitate the differentiation of intestinal absorptive cells. The present findings indicated that the Wnt/β-catenin signaling pathway may not be the predominant mechanism in the pathogenesis of DSS-induced UC.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Da-Bin Mao
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510075, P.R. China
| | - Da-Jian Zhu
- Maternal and Children's Health Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, Guangdong 528300, P.R. China
| |
Collapse
|
2
|
Liang S, Wang K, Mao D, Ouyang Q, Lv X, Xie L, Zhu D. Curcumin alleviated dextran sulfate sodium-induced ulcerative colitis via inhibition of the Wnt/β-catenin signaling pathway and regulation of the differentiation of intestinal stem cells. Toxicol Appl Pharmacol 2025; 494:117175. [PMID: 39608729 DOI: 10.1016/j.taap.2024.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
In this study, we investigated the regulatory role of curcumin in the differentiation of intestinal stem cells (ISCs) in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) model mice and explored whether this effect was mediated by the Wnt/β-catenin signaling pathway. We conducted experiments in DSS-induced UC model mice to observe changes in intestinal morphology through HE staining and detect the expression of key proteins in the Wnt/β-catenin signaling pathway. According to these findings, curcumin was found to have a significant impact on the differentiation of ISCs. These results indicated that curcumin inhibited the Wnt/β-catenin signaling pathway and restored ISC differentiation. The effects of curcumin on the Wnt/β-catenin signaling pathway were further confirmed using Wnt/β-catenin agonists. These findings provide a new perspective for understanding the behavior of ISCs in the context of inflammation and offer new insights into the development of novel therapeutic strategies and drugs for UC.
Collapse
Affiliation(s)
- Shaojie Liang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Kun Wang
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Dabin Mao
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510075, China.
| | - Dajian Zhu
- Maternal and Children's Health Research Institute, Shunde Maternal and Children's Hospital, Guangdong Medical University, Foshan 528300, China.
| |
Collapse
|
3
|
Hu XX, Yin YC, Xu P, Wei M, Zhang W. Network toxicology and cell experiments reveal the mechanism of DEHP-induced diabetic nephropathy via Wnt signaling pathway. Toxicol Appl Pharmacol 2024; 493:117144. [PMID: 39515621 DOI: 10.1016/j.taap.2024.117144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widely recognized endocrine disruptor, has been linked to the pathogenesis of diabetic nephropathy (DN) through its interference with hormonal and metabolic homeostasis. This study integrates network toxicology with cell-based assays to elucidate the molecular mechanisms of DEHP-induced DN, seeking to identify novel targets for toxicity assessment and therapeutic intervention. Through comprehensive screening across multiple toxicology and disease-related databases, six core genes (CTNNB1, EGFR, TNF, CCND1, BCL2, CASP3) were identified as shared mediators of DEHP exposure and DN. These genes are predominantly associated with the Wnt signaling pathway, a pivotal regulator of podocyte function, including cellular adhesion, differentiation, apoptosis, and inflammatory response. Mouse glomerular podocytes (MPC-5) exposed to graded concentrations of DEHP, with or without the Wnt pathway inhibitor XAV-939, displayed significant DEHP-induced disruptions: reduced cell adhesion, proliferation, and differentiation; increased autophagy, apoptosis, and migratory activity; elevated inflammatory mediator release; and pronounced activation of the Wnt signaling pathway, evidenced by upregulation of β-catenin, EGFR, TNF, CCND1, BCL2 and downregulation of CASP3. DEHP exposure further altered transcriptional activity and chromatin structure at key loci (CTNNB1, EGFR, and TNF). XAV-939 effectively mitigated these effects, underscoring the Wnt pathway's central role in DN progression under DEHP influence. These findings highlight the complex multi-target, multi-pathway interactions of DEHP in DN pathophysiology, offering deeper mechanistic insights and potential targets for therapeutic intervention against DEHP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin-Xin Hu
- Department of Science & Education, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Ying-Chuan Yin
- Department of Endocrinology, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Peng Xu
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Min Wei
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Wang Zhang
- Department of Endocrinology, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China; Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
4
|
Zhang Y, Gu F, Liu Y, Sun Y, Zhang L, Lu D. ZEB2 reduction contributes to pre-eclampsia via Wnt/β-Catenin pathway. Cell Div 2024; 19:34. [PMID: 39614362 DOI: 10.1186/s13008-024-00137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Pre-eclampsia (PE) is a pregnancy specific disease characterized by hypertension and proteinuria. The aim of this study was to investigate the effects of Zinc finger E-box binding homologous box 2 (ZEB2) on PE mice and on placental trophoblast cells, as well as to elucidate its role in Wnt/β-Catenin pathway. METHODS The PE mice models were established through L-NAME administration. RT-qPCR and western blot assay were used to detect the expression of ZEB2 in human serum, placental tissues, HTR8/Sveno cells, and mice models. Edu assay, flow cytometry, and Transwell analysis were applied for determining HTR8/Sveno cells proliferation, apoptosis, migration, and invasion ability, respectively. The expression levels of related proteins in the Wnt/β-Catenin pathway were detected by western blot analysis. The systolic blood pressure (SBP) of mice was analyzed by the noninvasive tail cuff method. Proteinuria was detected using CBB kits and TUNEL method was used to measure apoptosis of placental tissue cells in PE mice. RESULTS The significant increase SBP and urinary protein in L-NAME treated mice indicated the successful construction of the PE mice model. We found that ZEB2 was down-regulated in the serum and placental tissues of PE patients. Further in vitro experiments showed that ZEB2-plasmid enhanced cell proliferation, migration, and invasion, as well as reduced cell apoptosis, compared with the control-plasmid group. In addition, up-regulation of ZEB2 promoted the protein level of Bcl-2 in HTR-8/SVneo cells and inhibited Bax expression. We also found that ZEB2-plasmid activated Wnt/β-Catenin signaling pathway, as confirmed by enhanced Wnt3a, β-Catenin, p-GSK3β, C-Myc, and Cyclin D1 expression. Importantly, the Wnt/β-Catenin signaling inhibitor (XAV939) partially reversed the effects of ZEB2-plasmid on HTR-8/SVneo cells. We also observed similar findings in in vivo mice models as in vitro cell experiments. CONCLUSION ZEB2 was involved in the pathological and physiological processes of PE through Wnt/β-Catenin pathway, which may provide a useful perspective for exploring new therapies for PE.
Collapse
Affiliation(s)
- Yanxin Zhang
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Fangle Gu
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Yujie Sun
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China
| | - Liying Zhang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, China.
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Chi J, Bi W, Lou K, Ma J, Wu J, Cui Y. Research advances in Peyronie's disease: a comprehensive review on genomics, pathways, phenotypic manifestation, and therapeutic targets. Sex Med Rev 2024; 12:477-490. [PMID: 38456235 DOI: 10.1093/sxmrev/qeae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Penile induration disease, commonly known as Peyronie's disease (PD), is a connective tissue disorder that affects the penis, leading to the development of fibrous plaques, penile curvature, and erectile dysfunction. PD is a common male reproductive system disease with a complex etiology involving multiple genes, signaling pathways, and different phenotypes. OBJECTIVES The etiology and pathogenesis of PD remain poorly understood, hindering the development of effective treatment strategies. By understanding the underlying mechanisms of PD, we can pave the way for targeted therapies and improved patient outcomes. METHODS We reviewed the epidemiology and pathophysiology of PD. We performed database searches on Google Scholar, PubMed, Medline, and Web of Science from inception to September 2023. The literature reviewed included priapism guidelines, review articles, current trial studies, and various literature related to PD. RESULTS This article provides a comprehensive overview of the current research progress on the disease, focusing on its genetic factors, signaling pathways, cellular mechanisms, phenotypic manifestations, and therapeutic targets. It can help identify individuals at higher risk, aid in early detection and intervention, and provide insights into fibrosis and tissue remodeling. It can also reveal potential therapeutic targets, guide accurate diagnoses and treatment strategies, and address the impact of the disease on patients' quality of life. CONCLUSION By integrating insights from genomics, molecular pathways, clinical phenotypes, and therapeutic potentials, our research aims to achieve a deeper and more comprehensive understanding of PD, propelling the field toward innovative strategies that enhance the lives of those affected by PD. The complex manifestations and pathogenesis of PD necessitate the use of multiple treatment methods for personalized care.
Collapse
Affiliation(s)
- Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Wenhua Bi
- Department of Urology, Weifang Hospital of Traditional Chinese Medicine, Weifang, 265400, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| |
Collapse
|
6
|
Wu J, Li W, Su J, Zheng J, Liang Y, Lin J, Xu B, Liu Y. Integration of single-cell sequencing and bulk RNA-seq to identify and develop a prognostic signature related to colorectal cancer stem cells. Sci Rep 2024; 14:12270. [PMID: 38806611 PMCID: PMC11133358 DOI: 10.1038/s41598-024-62913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
The prognosis for patients with colorectal cancer (CRC) remains worse than expected due to metastasis, recurrence, and resistance to chemotherapy. Colorectal cancer stem cells (CRCSCs) play a vital role in tumor metastasis, recurrence, and chemotherapy resistance. However, there are currently no prognostic markers based on CRCSCs-related genes available for clinical use. In this study, single-cell transcriptome sequencing was employed to distinguish cancer stem cells (CSCs) in the CRC microenvironment and analyze their properties at the single-cell level. Subsequently, data from TCGA and GEO databases were utilized to develop a prognostic risk model for CRCSCs-related genes and validate its diagnostic performance. Additionally, functional enrichment, immune response, and chemotherapeutic drug sensitivity of the relevant genes in the risk model were investigated. Lastly, the key gene RPS17 in the risk model was identified as a potential prognostic marker and therapeutic target for further comprehensive studies. Our findings provide new insights into the prognostic treatment of CRC and offer novel perspectives for a systematic and comprehensive understanding of CRC development.
Collapse
Affiliation(s)
- Jiale Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Wanyu Li
- Well Lead Medical Co., Ltd., Guangzhou, 511434, Guangdong, China
| | - Junyu Su
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiamin Zheng
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yanwen Liang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Jiansuo Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Bilian Xu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| | - Yi Liu
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
7
|
Zhang Z, Qi J, Fan X, Pan M. XAV939 Improves the Prognosis of Myocardial Infarction by Blocking the Wnt/β-Catenin Signalling Pathway. Appl Biochem Biotechnol 2024; 196:605-615. [PMID: 37166649 DOI: 10.1007/s12010-023-04485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Myocardial infarction (MI) is closely related to the Wnt signalling pathway, but the role of XAV939 (a Wnt/β-catenin signalling pathway blocker) in MI has not been elucidated. The purpose of this study was to explore the role of XAV939 in mouse hearts and to provide a new and feasible treatment for improving the prognosis of MI. C57BL/6 (male, 8 weeks old, 20-25 g) mice were selected for our study. The MI model was made by ligating the left anterior descending coronary artery. On day 28 after the operation, cardiac function was examined by echocardiography. Infarct size, fibrosis, and angiogenesis were individually measured by TTC assays, Masson's trichrome staining, and CD31 analysis, respectively. Apoptosis was examined by TdT-mediated dUTP nick-end labelling (TUNEL) staining. The expression of Wnt, β-catenin, caspase 3, Bax, and Bcl-2 was determined by western blotting. XAV939 successfully blocked Wnt/β-catenin signalling pathway activation in cardiomyocytes after MI by promoting the degradation of β-catenin. XAV939 suppressed fibrosis and apoptosis, promoted angiogenesis, reduced myocardial infarct size and improved cardiac function after MI. XAV939 can reduce myocardial infarct size and improve cardiac function by blocking the Wnt/β-catenin signalling pathway, which may provide a new strategy for improving the prognosis of MI.
Collapse
Affiliation(s)
- Zhu Zhang
- Department of Cardiology, Jianhu Clinical College, Jiangsu Vocational College of Medicine, 224700, Yancheng, China
| | - Jiancheng Qi
- Department of Cardiology, Jianhu Clinical College, Jiangsu Vocational College of Medicine, 224700, Yancheng, China
| | - Xiucai Fan
- Department of Cardiology, Jianhu Clinical College, Jiangsu Vocational College of Medicine, 224700, Yancheng, China
| | - Min Pan
- Department of Cardiology, West China (Sanya) Hospital, Sichuan University, No. 228 Jiefang Road, Sanya, 572022, Hainan, China.
| |
Collapse
|
8
|
Li Z, Shan X, Yang G, Dong L. LGK974 suppresses the formation of deep vein thrombosis in mice with sepsis. Int Immunopharmacol 2024; 127:111458. [PMID: 38160565 DOI: 10.1016/j.intimp.2023.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Sepsis is a disorder characterized by host inflammation and is caused by systemic infection. The inflammatory cytokine storm results in platelet overactivation, leading to coagulation dysfunction and thrombosis, but the underlying mechanism remains poorly understood. Recent evidence has shown that the Wnt/β-catenin signaling pathway is related to sepsis, but its role and mechanism in sepsis complicated with deep vein thrombosis (DVT) are unclear. METHODS In this study, a cecal ligation and puncture (CLP)-induced sepsis model and DVT mouse model were constructed by inferior vena cava ligation. The levels of serum inflammatory factors and adhesion molecules were measured in each group, and the thrombus weight and size, hematoxylin-eosin staining, collagen fiber tissue, and transcriptome of the venous wall were analyzed. The activation of the Wnt/β-catenin signal was evaluated by quantitative real-time polymerase chain reaction, Western blotting, ELISA, and immunohistochemical and immunofluorescence methods. RESULTS Sepsis significantly promoted the formation of venous wall collagen fibers and DVT. In addition, Porcn significantly upregulated and activated the Wnt/β-catenin signaling pathway in sepsis mouse models with DVT. In contrast, the Wnt signaling inhibitor LGK974 was found to improve the survival rate, decrease thrombosis, and inhibit the expression of inflammation and adhesion molecules in sepsis mice with DVT. Therefore, activation of the Wnt/β-catenin signal may promote the formation of DVT in sepsis mice. CONCLUSIONS LGK974 protects against DVT formation in sepsis mice by inhibiting the activation of the Wnt/β-catenin signal and down-regulating the production of proinflammatory cytokines, PAI-1, and adhesion molecules. LGK974 may be a new candidate for the treatment of sepsis complicated with DVT.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China; Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan 628000, China
| | - Xiaoxi Shan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China
| | - Guolin Yang
- Laboratory Animal Centre, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300000, China.
| |
Collapse
|
9
|
Yu B, Geng C, Wu Z, Zhang Z, Zhang A, Yang Z, Huang J, Xiong Y, Yang H, Chen Z. A CIC-related-epigenetic factors-based model associated with prediction, the tumor microenvironment and drug sensitivity in osteosarcoma. Sci Rep 2024; 14:1308. [PMID: 38225273 PMCID: PMC10789798 DOI: 10.1038/s41598-023-49770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Osteosarcoma is generally considered a cold tumor and is characterized by epigenetic alterations. Although tumor cells are surrounded by many immune cells such as macrophages, T cells may be suppressed, be inactivated, or not be presented due to various mechanisms, which usually results in poor prognosis and insensitivity to immunotherapy. Immunotherapy is considered a promising anti-cancer therapy in osteosarcoma but requires more research, but osteosarcoma does not currently respond well to this therapy. The cancer immunity cycle (CIC) is essential for anti-tumor immunity, and is epigenetically regulated. Therefore, it is possible to modulate the immune microenvironment of osteosarcoma by targeting epigenetic factors. In this study, we explored the correlation between epigenetic modulation and CIC in osteosarcoma through bioinformatic methods. Based on the RNA data from TARGET and GSE21257 cohorts, we identified epigenetic related subtypes by NMF clustering and constructed a clinical prognostic model by the LASSO algorithm. ESTIMATE, Cibersort, and xCell algorithms were applied to analyze the tumor microenvironment. Based on eight epigenetic biomarkers (SFMBT2, SP140, CBX5, HMGN2, SMARCA4, PSIP1, ACTR6, and CHD2), two subtypes were identified, and they are mainly distinguished by immune response and cell cycle regulation. After excluding ACTR6 by LASSO regression, the prognostic model was established and it exhibited good predictive efficacy. The risk score showed a strong correlation with the tumor microenvironment, drug sensitivity and many immune checkpoints. In summary, our study sheds a new light on the CIC-related epigenetic modulation mechanism of osteosarcoma and helps search for potential drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chengkui Geng
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongxiong Wu
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongzi Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Aili Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ze Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiazheng Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ying Xiong
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Huiqin Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Zhuoyuan Chen
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
10
|
Liu S, Li Y, Wu C. Paeoniflorin suppresses the apoptosis and inflammation of human coronary artery endothelial cells induced by oxidized low-density lipoprotein by regulating the Wnt/β-catenin pathway. PHARMACEUTICAL BIOLOGY 2023; 61:1454-1461. [PMID: 37674320 PMCID: PMC10486282 DOI: 10.1080/13880209.2023.2220360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 04/24/2023] [Accepted: 05/27/2023] [Indexed: 09/08/2023]
Abstract
CONTEXT Paeoniflorin (PF) contributes to improving coronary artery disease (CAD). OBJECTIVE This study clarified the efficiency of PF in CAD and the molecular mechanism. MATERIALS AND METHODS Human coronary artery endothelial cells (HCAECs) were treated with oxidized low-density lipoprotein (ox-LDL; 20, 40, 80 and 160 μg/mL) and PF (0.05, 0.1 0.2 and 0.4 mM). To study cell phenotypes, HCAECs were treated with 80 μg/mL ox-LDL with or without 0.1 mM PF for 24 h, and cell viability and apoptosis were evaluated using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry, respectively. In addition, inflammatory cytokines levels were measured by enzyme-linked immunosorbent assay (ELISA). Western blot evaluated the Wnt/β-catenin pathway-related factors. RESULTS ox-LDL and PF (0.2 and 0.4 mM) suppressed cell viability in a dose-dependent manner. The IC50 value of PF was 722.9 nM. PF facilitated cell viability (115.76%), inhibited apoptosis (46.28%), reduced IL-6 (63.43%) and IL-8 (66.70%) levels and increased IL-10 levels (181.15%) of ox-LDL-treated HCAECs. Additionally, PF inactivated the Wnt/β-catenin pathway, and XAV939 treatment further promoted cell viability (120.54%), suppressed apoptosis (56.92%), reduced the levels of IL-6 (76.16%) and IL-8 (86.82%) and increased the IL-10 levels (120.22%) of ox-LDL-induced HCAECs after PF treatment. Moreover, PF alleviated plaque lesions of the aorta and aorta root and serum lipid of ApoE-/- mice with a high-fat diet. DISCUSSION AND CONCLUSIONS This study first revealed that PF inhibited ox-LDL-induced HCAECs apoptosis and inflammation via the Wnt/β-catenin pathway and alleviated CAD, suggesting the potential of PF as a drug for CAD treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Department of Geriatrics, Sichuan People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ying Li
- Department of Geriatrics, Sichuan People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Caojie Wu
- Department of Geriatrics, Sichuan People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Chen J, Chen Z, Yu D, Yan Y, Hao X, Zhang M, Zhu T. Neuroprotective Effect of Hydrogen Sulfide Subchronic Treatment Against TBI-Induced Ferroptosis and Cognitive Deficits Mediated Through Wnt Signaling Pathway. Cell Mol Neurobiol 2023; 43:4117-4140. [PMID: 37624470 PMCID: PMC10661805 DOI: 10.1007/s10571-023-01399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Emerging evidence shows that targeting ferroptosis may be a potential therapeutic strategy for treating traumatic brain injury (TBI). Hydrogen sulfide (H2S) has been proven to play a neuroprotective role in TBI, but little is known about the effects of H2S on TBI-induced ferroptosis. In addition, it is reported that the Wnt signaling pathway can also actively regulate ferroptosis. However, whether H2S inhibits ferroptosis via the Wnt signaling pathway after TBI remains unclear. In this study, we first found that in addition to alleviating neuronal damage and cognitive impairments, H2S remarkably attenuated abnormal iron accumulation, decreased lipid peroxidation, and improved the expression of glutathione peroxidase 4, demonstrating the potent anti-ferroptosis action of H2S after TBI. Moreover, Wnt3a or liproxstatin-1 treatment obtained similar results, suggesting that activation of the Wnt signaling pathway can render the cells less susceptible to ferroptosis post-TBI. More importantly, XAV939, an inhibitor of the Wnt signaling pathway, almost inversed ferroptosis inactivation and reduction of neuronal loss caused by H2S treatment, substantiating the involvement of the Wnt signaling pathway in anti-ferroptosis effects of H2S. In conclusion, the Wnt signaling pathway might be the critical mechanism in realizing the anti-ferroptosis effects of H2S against TBI. TBI induces ferroptosis-related changes characterized by iron overload, impaired antioxidant system, and lipid peroxidation at the chronic phase after TBI. However, NaHS subchronic treatment reduces the susceptibility to TBI-induced ferroptosis, at least partly by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Zhennan Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Dongyu Yu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yufei Yan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Xiuli Hao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Mingxia Zhang
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China
| | - Tong Zhu
- Clinical Experimental Center, Xi'an Engineering Technology Research Center for Cardiovascular Active Pep-Tides, The Affiliated Xi'an International Medical Center Hospital, Northwest University, No.777 Xitai Road, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
12
|
Zhao X, Zhang Z, Zhu Q, Luo Y, Ye Q, Shi S, He X, Zhu J, Zhang D, Xia W, Zhang Y, Jiang L, Cui L, Ye Y, Xiang Y, Hu J, Zhang J, Lin CP. Modeling human ectopic pregnancies with trophoblast and vascular organoids. Cell Rep 2023; 42:112546. [PMID: 37224015 DOI: 10.1016/j.celrep.2023.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Ruptured ectopic pregnancy (REP), a pregnancy complication caused by aberrant implantation, deep invasion, and overgrowth of embryos in fallopian tubes, could lead to rupture of fallopian tubes and accounts for 4%-10% of pregnancy-related deaths. The lack of ectopic pregnancy phenotypes in rodents hampers our understanding of its pathological mechanisms. Here, we employed cell culture and organoid models to investigate the crosstalk between human trophoblast development and intravillous vascularization in the REP condition. Compared with abortive ectopic pregnancy (AEP), the size of REP placental villi and the depth of trophoblast invasion are correlated with the extent of intravillous vascularization. We identified a key pro-angiogenic factor secreted by trophoblasts, WNT2B, that promotes villous vasculogenesis, angiogenesis, and vascular network expansion in the REP condition. Our results reveal the important role of WNT-mediated angiogenesis and an organoid co-culture model for investigating intricate communications between trophoblasts and endothelial/endothelial progenitor cells.
Collapse
Affiliation(s)
- Xiaoya Zhao
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Zhu
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yurui Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuxiang Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Duo Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yiqin Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jian Zhang
- Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, No. 910, Hengshan Road, Shanghai 200030, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
13
|
Shi Q, Huang L, Duan J, Kuang G, Lu M, Tan X. The effects of Jiawei Duhuo Jisheng mixture on Wnt/β-catenin signaling pathway in the synovium inflamed by knee osteoarthritis: An in vitro and in vivo experiment. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115363. [PMID: 35551975 DOI: 10.1016/j.jep.2022.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is one of the common age-degenerative diseases. Recent studies have demonstrated that the pathogenesis of KOA is closely related to synovial lesions. Jiawei Duhuo Jisheng mixture (JDJM) has shown great potential in the treatment of KOA. However, the effect and mechanism of JDJM on synovial lesions of KOA remain unclear. AIM OF THE STUDY The regulatory effect of JDJM on the Wnt/β-catenin signaling pathway in KOA inflamed synovium was studied via in vitro and in vivo experiments, respectively. MATERIALS AND METHODS For the in vitro experiment, fibroblasts were isolated from the rabbit synovium with KOA. The fibroblasts were grouped as follows: the vehicle group was given 0.5% FBS; the inhibitor group was treated with 0.5% volume fraction of XAV939; the normal serum groups and JDJM serum groups were treated with 5%, 10%, and 20% volume fractions of normal serum and JDJM-containing serum. The expression levels of Wnt3a, β-catenin, Cyclin D1, metalloproteinase-7(MMP-7) and cyclooxygenase-2(COX-2) were detected by different assays 48 and 72 h after the intervention. For the in vivo experiment, the rabbit KOA model was prepared using the improved Hulth modeling method, whereby all rabbits were randomly divided into normal control, model control, positive control, and traditional Chinese medicine (TCM) groups. The expression levels of Wnt3a, β-catenin, Cyclin D1, MMP-7 and COX-2 were detected by different assays in the 2, 4, and 8 weeks of treatment. RESULTS In the two test results of in vitro experiments, the normal serum group was compared with the JDJM-containing serum group with the same volume fraction, demonstrating that mRNA transcription and protein expression levels of Wnt3a, β-catenin, Cyclin D1, MMP-7, and COX-2 in the latter decreased (P < 0.05), with more pronounced effects observed in the group treated with 20% volume fraction of JDJM serum. Compared with the inhibitor group, there was no significant difference (P > 0.05) in the mRNA transcription and protein expression levels, i.e., Wnt3a, β-catenin, Cyclin D1, and MMP-7 were observed in the JDJM serum groups, except for a significant decrease (P < 0.05) in the level of mRNA transcription and protein expression of COX-2. Based on the in vivo experiment, compared to the model control group, articular cartilage, synovial hyperplasia, and the inflammatory reaction of the TCM group at different treatment times were significantly improved. The mRNA transcription level of Wnt3a, β-catenin, Cyclin D1, MMP-7 and COX-2 detected by RT-qPCR and the protein expression level of Wnt3a, β-catenin, Cyclin D1, MMP-7 and COX-2 detected by Western blot were significantly reduced (P < 0.05), and the effect was more evident at the eighth week. CONCLUSION JDJM can regulate the synovial Wnt/β-catenin signaling pathway in KOA models, reduce the mRNA transcription and protein expression levels of Wnt3a, β-catenin, Cyclin D1, MMP-7, and COX-2 in the synovium, thus inhibiting synovial inflammation and protecting articular cartilage, which could be the key mechanism of action in treating this disease.
Collapse
Affiliation(s)
- Qiyun Shi
- Hunan University of TCM, Changsha, Hunan, 410208, China; Luoyang Orthopedic-Traumatological Hospital of Henan Province/Orthopedic Hospital of Henan Province, Luoyang, Henan, 471000, China.
| | - Lu Huang
- Affiliated First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Jiahao Duan
- Hunan University of TCM, Changsha, Hunan, 410208, China.
| | - Gaoyan Kuang
- Affiliated First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Min Lu
- Affiliated First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410007, China.
| | - Xuyi Tan
- Hunan University of TCM, Changsha, Hunan, 410208, China; Department of Orthopedic Surgery, Affiliated Hospital of Hunan Academy of Chinese Medical Science, Changsha, Hunan, 410006, China.
| |
Collapse
|
14
|
Zhong Y, Wang K, Zhang Y, Yin Q, Li S, Wang J, Zhang X, Han H, Yao K. Ocular Wnt/β-Catenin Pathway Inhibitor XAV939-Loaded Liposomes for Treating Alkali-Burned Corneal Wound and Neovascularization. Front Bioeng Biotechnol 2021; 9:753879. [PMID: 34765592 PMCID: PMC8576519 DOI: 10.3389/fbioe.2021.753879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Corneal wound involves a series of complex and coordinated physiological processes, leading to persistent epithelial defects and opacification. An obstacle in the treatment of ocular diseases is poor drug delivery and maintenance. In this study, we constructed a Wnt/β-catenin pathway inhibitor, XAV939-loaded liposome (XAV939 NPs), and revealed its anti-inflammatory and antiangiogenic effects. The XAV939 NPs possessed excellent biocompatibility in corneal epithelial cells and mouse corneas. In vitro corneal wound healing assays demonstrated their antiangiogenic effect, and LPS-induced expressions of pro-inflammatory genes of IL-1β, IL-6, and IL-17α were significantly suppressed by XAV939 NPs. In addition, the XAV939 NPs significantly ameliorated alkali-burned corneas with slight corneal opacity, reduced neovascularization, and faster recovery, which were attributed to the decreased gene expressions of angiogenic and inflammatory cytokines. The findings supported the potential of XAV939 NPs in ameliorating corneal wound and suppressing neovascularization, providing evidence for their clinical application in ocular vascular diseases.
Collapse
Affiliation(s)
- Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yin Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichuan Yin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Su Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, State Key Laboratory of Experimental Hematology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Lab of Ophthalmology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Jridi I, Canté-Barrett K, Pike-Overzet K, Staal FJT. Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Front Cell Dev Biol 2021; 8:615131. [PMID: 33614624 PMCID: PMC7890028 DOI: 10.3389/fcell.2020.615131] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt proteins comprise a large family of highly conserved glycoproteins known for their role in development, cell fate specification, tissue regeneration, and tissue homeostasis. Aberrant Wnt signaling is linked to developmental defects, malignant transformation, and carcinogenesis as well as to inflammation. Mounting evidence from recent research suggests that a dysregulated activation of Wnt signaling is involved in the pathogenesis of chronic inflammatory diseases, such as neuroinflammation, cancer-mediated inflammation, and metabolic inflammatory diseases. Recent findings highlight the role of Wnt in the modulation of inflammatory cytokine production, such as NF-kB signaling and in innate defense mechanisms as well as in the bridging of innate and adaptive immunity. This sparked the development of novel therapeutic treatments against inflammatory diseases based on Wnt modulation. Here, we summarize the role and function of the Wnt pathway in inflammatory diseases and focus on Wnt signaling as underlying master regulator of inflammation that can be therapeutically targeted.
Collapse
Affiliation(s)
- Imen Jridi
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
16
|
Liu XY, Zhang YB, Yang XW, Yang YF, Xu W, Zhao W, Peng KF, Gong Y, Liu NF, Zhang P. Anti-Inflammatory Activity of Some Characteristic Constituents from the Vine Stems of Spatholobus suberectus. Molecules 2019; 24:molecules24203750. [PMID: 31627460 PMCID: PMC6832230 DOI: 10.3390/molecules24203750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The dried vine stems of Spatholobus suberectus are commonly used in traditional Chinese medicine for treating gynecological and cardiovascular diseases. In this study, five new compounds named spasuberol A (2), homovanillyl-4-oxo-nonanoate (5), spasuberol C (6), spasuberoside A (14), and spasuberoside B (15), together with ten known compounds (1, 3, 4, 7–13), were isolated from the dried vine stems of S. suberectus. Their chemical structures were analyzed using spectroscopic assays. This is the first study interpreting the detailed structural information of 4. The anti-inflammatory activity of these compounds was evaluated by reducing nitric oxide overproduction in RAW264.7 macrophages stimulated by lipopolysaccharide. Compounds 1 and 8–10 showed strong inhibitory activity with half maximal inhibitory concentration (IC50) values of 5.69, 16.34, 16.87, and 6.78 μM, respectively, exhibiting higher activity than the positive drug l-N6-(1-iminoethyl)-lysine (l-NIL) with an IC50 value of 19.08 μM. The IC50 values of inhibitory activity of compounds 2 and 4–6 were 46.26, 40.05, 45.87, and 28.29 μM respectively, which were lower than l-NIL, but better than that of positive drug indomethacin with an IC50 value of 55.44 μM. Quantitative real-time polymerase chain reaction analysis revealed that assayed compounds with good anti-inflammatory activity, such as 1, 6, 9, and 10 at different concentrations, can reduce the messenger RNA (mRNA) expression of some pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2). The anti-inflammatory activity and the possible mechanism of the compounds mentioned in this paper were studied preliminarily.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - You-Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Yan-Fang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Wei Zhao
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Kai-Feng Peng
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Yun Gong
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Ni-Fu Liu
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| | - Peng Zhang
- Zhuzhou Qianjin Pharmaceutical Co., Ltd., Zhuzhou 412000, China.
| |
Collapse
|
17
|
Jung WH, Elawad K, Kang SH, Chen Y. Cell-Cell Adhesion and Myosin Activity Regulate Cortical Actin Assembly in Mammary Gland Epithelium on Concaved Surface. Cells 2019; 8:cells8080813. [PMID: 31382444 PMCID: PMC6721614 DOI: 10.3390/cells8080813] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
It has been demonstrated that geometry can affect cell behaviors. Though curvature-sensitive proteins at the nanoscale are studied, it is unclear how cells sense curvature at the cellular and multicellular levels. To characterize and determine the mechanisms of curvature-dependent cell behaviors, we grow cells on open channels of the 60-µm radius. We found that cortical F-actin is 1.2-fold more enriched in epithelial cells grown on the curved surface compared to the flat control. We observed that myosin activity is required to promote cortical F-actin formation. Furthermore, cell–cell contact was shown to be indispensable for curvature-dependent cortical actin assembly. Our results indicate that the actomyosin network coupled with adherens junctions is involved in curvature-sensing at the multi-cellular level.
Collapse
Affiliation(s)
- Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Khalid Elawad
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sung Hoon Kang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|