1
|
Foster AR, Haas CN, Gerba CP, Pepper IL. Effectiveness of monochloramine for inactivation of coronavirus in reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167634. [PMID: 37806580 DOI: 10.1016/j.scitotenv.2023.167634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Fecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by infected persons into wastewater was documented early during the COVID-19 pandemic, thereby stimulating inquiries into the effectiveness of municipal wastewater treatment processes for the reduction of infectious viruses. In wastewater treatment plants, free chlorine has traditionally been the disinfectant utilized due to its low cost and high efficacy. However, regulations limiting disinfection by-products have prompted a shift to chloramination in many areas of the United States. While studies regarding the effectiveness of free chlorine against many viral agents are abundant, the efficacy of monochloramine (NH2Cl) has been less well researched. This study aimed to determine the effectiveness of pre-formed monochloramine for disinfection of human coronavirus 229E (HCoV-229E) in both phosphate-buffered saline (PBS) and reclaimed water from a water reclamation plant in Tucson, Arizona. Reclaimed water was sampled over the course of six months (August 2020 to November 2020), and dosed with monochloramine at 3 mg/L. An additional 1 mg/L free ammonia was added to simulate the operational conditions of the treatment plant. Viability was determined using MRC-5 host cell monolayers, using the TCID50 assay method. An average Ct99.9 (concentration of disinfectant multiplied by the contact time to achieve a 99.9 % reduction of the target organism) of 176 mg*min/L monochloramine was determined. No significant difference in inactivation rate was observed between the dosed reclaimed water and phosphate buffered saline (PBS). These data indicate that monochloramine is an effective disinfectant for coronaviruses. They also indicate that the water matrix type did not significantly impact the disinfection efficacy of monochloramine against HCoV-229E in reclaimed wastewater compared to PBS.
Collapse
Affiliation(s)
- Aidan R Foster
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
| | - Charles N Haas
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA.
| | - Charles P Gerba
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Sakcham B, Goel A, Zhang W, Cao B. Laboratory preparation of monochloramine for environmental research: A comparison of four commonly used protocols. ENVIRONMENTAL RESEARCH 2021; 197:111009. [PMID: 33716030 DOI: 10.1016/j.envres.2021.111009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Monochloramine (MCA) is often used as a secondary disinfectant in drinking water distribution systems (DWDS) for controlling the regrowth of microorganisms. Laboratory experiments to study the efficacy of MCA and formation of disinfection byproducts in DWDS all require the preparation of MCA. Different protocols for the preparation of MCA have been used in the literature. In this study, we compared four published protocols that are frequently used to prepare MCA in the environmental research community. Our results showed that the choice of protocol could result in substantial differences in decay kinetics and disinfection efficacy of the prepared MCA. The discrepancies highlight an immediate need for the standardization of MCA preparation protocols for laboratory-scale drinking water research.
Collapse
Affiliation(s)
- Bairoliya Sakcham
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Apoorva Goel
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Wen Zhang
- Department of Civil Engineering, University of Arkansas, AR, USA
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
3
|
Lytle DA, Pfaller S, Muhlen C, Struewing I, Triantafyllidou S, White C, Hayes S, King D, Lu J. A comprehensive evaluation of monochloramine disinfection on water quality, Legionella and other important microorganisms in a hospital. WATER RESEARCH 2021; 189:116656. [PMID: 33249307 PMCID: PMC8133025 DOI: 10.1016/j.watres.2020.116656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 05/22/2023]
Abstract
Opportunistic pathogens such as Legionella are of significant public health concern in hospitals. Microbiological and water chemistry parameters in hot water throughout an Ohio hospital were monitored monthly before and after the installation of a monochloramine disinfection system over 16 months. Water samples from fifteen hot water sampling sites as well as the municipal water supply entering the hospital were analyzed using both culture and qPCR assays for specific microbial pathogens including Legionella, Pseudomonas spp., nontuberculous Mycobacteria [NTM], as well as for heterotrophic bacteria. Legionella culture assays decreased from 68% of all sites being positive prior to monochloramine addition to 6% positive after monochloramine addition, and these trends were parallel to qPCR results. Considering all samples, NTMs by culture were significantly reduced from 61% to 14% positivity (p<0.001) after monochloramine treatment. Mycobacterium genus-specific qPCR positivity was reduced from 92% to 65%, but the change was not significant. Heterotrophic bacteria (heterotrophic bacteria plate counts [HPCs]) exhibited large variability which skewed statistical results on a per room basis. However, when all samples were considered, a significant decrease in HPCs was observed after monochloramine addition. Lastly, Pseudomonas aeruginosa and Vermamoeba vermiformis demonstrated large and significant decrease of qPCR signals post-chloramination. General water chemistry parameters including monochloramine residual, nitrate, nitrite, pH, temperature, metals and total trihalomethanes (TTHMs) were also measured. Significant monochloramine residuals were consistently observed at all sampling sites with very little free ammonia present and no water quality indications of nitrification (e.g., pH decrease, elevated nitrite or nitrate). The addition of monochloramine had no obvious impact on metals (lead, copper and iron) and disinfection by-products.
Collapse
Affiliation(s)
- Darren A Lytle
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States.
| | - Stacy Pfaller
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Christy Muhlen
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Ian Struewing
- U.S. Environmental Protection Agency, ORD, Center for Environmental Measurement and Modelling (CEMM), 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Simoni Triantafyllidou
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Colin White
- Ohio Environmental Protection Agency, Emerging Contaminants Section, Division of Drinking and Ground Waters, 50 West Town Street, Suite 700 Columbus, OH 43215, United States
| | - Sam Hayes
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Dawn King
- U.S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response (CESER), 26 W. Martin Luther King Drive, Cincinnati, OH, 45268, United States
| | - Jingrang Lu
- U.S. Environmental Protection Agency, ORD, Center for Environmental Measurement and Modelling (CEMM), 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States
| |
Collapse
|
4
|
Vatansever C, Turetgen I. Investigation of the effects of various stress factors on biofilms and planktonic bacteria in cooling tower model system. Arch Microbiol 2021; 203:1411-1425. [PMID: 33388788 DOI: 10.1007/s00203-020-02116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/09/2020] [Accepted: 11/08/2020] [Indexed: 11/27/2022]
Abstract
Biofilm is a microbial population which live in a self-produced extracellular polymeric matrix by attaching to surfaces. Biofilms consist of different different types of organisms such as bacteria, fungi, protozoa, etc. Many biofilms that develop in nature consist of more than one type of organism. Biofilms protect bacteria from adverse conditions such as temperature fluctuation and disinfectants. The aim of this study was to determine the effective elimination strategies for combating biofilm and planktonic bacteria in cooling tower model system using different decontamination / disinfection techniques. In this study, 14 week-old biofilms were treated with temperatures of 4 °C, 65 °C; pH of 3, 11; 2 and 10 mg/l chlorine, 2 and 10 mg/l monochloramine; hypotonic salt (0.01% NaCl) and hypertonic salt (3% NaCl) solution. For enumeration, number of aerobic heterotrophic bacteria was determined by conventional culture method, number of live bacteria was determined by LIVE/DEAD viability kit, CTC-DAPI and Alamar blue staining methods. Temperature of 65 °C, pH of 3, 10 mg/l monochloramine and hypertonic salt solution were the most effective parameters for decontamination of biofilm and planktonic bacteria. Biofilm bacteria in the circulating water system were significantly more resistant than planktonic bacteria against stress factors. When the numbers of epifluorescence microscopy and conventional culture technique were compared, significantly higher number of live bacteria were detected using epifluorescence microscopy. Bacteria enter the viable but non-culturable phase by loosing their culturability under stress conditions. For this reason, the conventional culture method should be supported by different techniques to get more realistic numbers.
Collapse
Affiliation(s)
- Cansu Vatansever
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Altinbas University, Istanbul, Turkey.
| | - Irfan Turetgen
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
5
|
Turetgen I. Reduction of Biofilm Formation on Cooling Tower Heat Exchangers using Nano-silica Coating : Environmentally sustainable antifouling coating demonstrated on stainless steel heat exchanger tubes. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15895565390677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cooling towers are industrial cooling units operating to dissipate heat. As with any surface in contact with aqueous systems, biofilm formation appears on the surface of heat exchangers. Although biofilm formation on plastic tower fill in wet cooling towers has been studied widely,
no studies were found regarding biofilm formation on steel heat exchangers in closed-loop systems. In this study, heat exchangers were coated with nano-silica, which is known to reduce the formation of biofilm. Natural biofilm formation was monitored for six months. Biofouling was examined
monthly using epifluorescence microscopy by assessing the numbers of live and dead bacteria. It was observed that the biofilm layer formed on the nano-silica coated heat exchanger surfaces was significantly lower than on the control surfaces. 3 log microbial reduction was recorded on coated
surfaces in the first month. After six months, total biomass on control surfaces reached 1.28 × 1012 cell cm−2, while the biomass on nano-silica coated surfaces was 6.3 × 104 cell cm−2.
Collapse
Affiliation(s)
- Irfan Turetgen
- Basic and Industrial Microbiology Section, Department of Biology, Faculty of Science, Istanbul University 34134 Vezneciler Istanbul, Turkey
| |
Collapse
|
6
|
Sacher F, Gerstner P, Merklinger M, Thoma A, Kinani A, Roumiguières A, Bouchonnet S, Richard-Tanaka B, Layousse S, Ata R, Marolleau F, Kinani S. Determination of monochloramine dissipation kinetics in various surface water qualities under relevant environmental conditions - Consequences regarding environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:542-554. [PMID: 31181531 DOI: 10.1016/j.scitotenv.2019.05.364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
A total 190 experiments were performed to study the dissipation kinetics of monochloramine (NH2Cl, CAS no 10599-90-3) in surface water samples from six rivers (Loire, Rhône, Meuse, Garonne, Seine and Moselle) and an artificial reservoir (Mirgenbach), all located in France. Experiments were conducted in an open reactor, under relevant controlled environmental conditions. The impact of various parameters such as initial NH2Cl concentration, temperature, pH, presence of sediments, sampling site and collection period was investigated. It was found that NH2Cl dissipated rapidly without any lag phase, and that decay follows an apparent first-order kinetics (r2 > 0.99). Presence of sediment greatly accelerated decay. Half-lives were generally <1 h in river water in presence of natural sediment, but of several hours without sediment. The impact of pH was low for the normal river water pH range. However, increase in temperature significantly accelerated decay. The combination of high initial NH2Cl concentrations and elevated temperatures generally gives half-lives similar to those obtained at lower temperatures and lower concentrations. Short half-lives (0.06 to 1.50 h) were found in all the surface waters examined, regardless of geographic location of sampling site or collection period, indicating no temporal or site-specific effects on NH2Cl dissipation. Decay was slightly faster at lower initial concentrations, which supports extrapolation of half-lives measured in this study to a wide range of environmental concentrations. It can thus be assumed that NH2Cl degradation in river and reservoir waters is mainly determined by presence of sediments and temperature.
Collapse
Affiliation(s)
- Frank Sacher
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Strasse 84, 76139 Karlsruhe, Germany.
| | - Pia Gerstner
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Strasse 84, 76139 Karlsruhe, Germany
| | - Michael Merklinger
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Strasse 84, 76139 Karlsruhe, Germany
| | - Astrid Thoma
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Strasse 84, 76139 Karlsruhe, Germany
| | - Aziz Kinani
- LCM, CNRS - École Polytechnique, Université Paris Saclay, Route de Saclay, 91128 Palaiseau, France; EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 Quai Watier, 78401 Chatou Cedex 01, France
| | - Adrien Roumiguières
- LCM, CNRS - École Polytechnique, Université Paris Saclay, Route de Saclay, 91128 Palaiseau, France; EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 Quai Watier, 78401 Chatou Cedex 01, France
| | - Stéphane Bouchonnet
- LCM, CNRS - École Polytechnique, Université Paris Saclay, Route de Saclay, 91128 Palaiseau, France.
| | - Bertille Richard-Tanaka
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 Quai Watier, 78401 Chatou Cedex 01, France
| | - Stephany Layousse
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 Quai Watier, 78401 Chatou Cedex 01, France
| | - Riadh Ata
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 Quai Watier, 78401 Chatou Cedex 01, France
| | - Franck Marolleau
- EDF DIPDE - Division de l'Ingénierie du Parc, de la Déconstruction & de l'Environnement, 154 avenue Thiers, 69458 Lyon Cedex 06, France.
| | - Said Kinani
- EDF R&D LNHE - Laboratoire National d'Hydraulique et Environnement, 6 Quai Watier, 78401 Chatou Cedex 01, France.
| |
Collapse
|
7
|
Di Pippo F, de Tora F, Di Gregorio L, Buccolini M, Capocecera R, Rossetti S, Tandoi V. Green bio-dispersant removal efficacy estimation for controlling biofilms in cooling towers. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1301-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Reddy GKK, Nancharaiah YV, Venugopalan VP. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms. Colloids Surf B Biointerfaces 2017; 155:487-496. [PMID: 28475985 DOI: 10.1016/j.colsurfb.2017.04.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/03/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
Abstract
Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C16(MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C16(MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C16(MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers.
Collapse
Affiliation(s)
- G Kiran Kumar Reddy
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India.
| | - V P Venugopalan
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India
| |
Collapse
|
9
|
Shen Y, Huang C, Lin J, Wu W, Ashbolt NJ, Liu WT, Nguyen TH. Effect of Disinfectant Exposure on Legionella pneumophila Associated with Simulated Drinking Water Biofilms: Release, Inactivation, and Infectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2087-2095. [PMID: 28085262 DOI: 10.1021/acs.est.6b04754] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Legionella pneumophila, the most commonly identified causative agent in drinking water associated with disease outbreaks, can be harbored by and released from drinking water biofilms. In this study, the release of biofilm-associated L. pneumophila under simulated drinking water flow containing a disinfectant residual was examined. Meanwhile, the inactivation and infectivity (to amoebae) of the released L. pneumophila were studied. To simulate drinking water system conditions, biofilms were prepared under either disinfectant exposure (predisinfected biofilms) or disinfectant-free (untreated biofilms) conditions, respectively. For experiments with water flow containing a disinfectant to release the biofilm-associated L. pneumophila from these two types of biofilms, the L. pneumophila release kinetics values from predisinfected and untreated biofilms under flow condition were not statistically different (one-way ANOVA, p > 0.05). However, inactivation of the L. pneumophila released from predisinfected biofilms was 1-2 times higher and amoeba infectivity was 2-29 times lower than that from untreated biofilms. The higher disinfectant resistance of L. pneumophila released from untreated biofilms was presumably influenced by the detachment of a larger amount of biofilm material (determined by 16S rRNA qPCR) surrounding the released L. pneumophila. This study highlights the interaction among disinfectant residual, biofilms, and L. pneumophila, which provides guidelines to assess and control pathogen risk.
Collapse
Affiliation(s)
- Yun Shen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-2352, United States
| | - Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-2352, United States
| | - Jie Lin
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-2352, United States
| | - Wenjing Wu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-2352, United States
| | - Nicholas J Ashbolt
- School of Public Health, University of Alberta , Edminton, Alberta AB T6G 2G7, Canada
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-2352, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801-2352, United States
| |
Collapse
|
10
|
Dos Santos VL, Veiga AA, Mendonça RS, Alves AL, Pagnin S, Santiago VMJ. Reuse of refinery's tertiary-treated wastewater in cooling towers: microbiological monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2945-2955. [PMID: 25226836 DOI: 10.1007/s11356-014-3555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The study was planned to quantify the distribution of bacteria between bulk water and biofilm formed on different materials in an industrial scale cooling tower system of an oil refinery operating with clarified and chlorinated freshwater (CCW) or chlorinated tertiary effluent (TRW) as makeup water. The sessile and planktonic heterotrophic bacteria and Pseudomonas aeruginosa densities were significantly higher in the cooling tower supplied with clarified and chlorinated freshwater (CTCW) (p < 0.05). In the two towers, the biofilm density was higher on the surface of glass slides and stainless steel coupons than on the surface of carbon steel coupons. The average corrosion rates of carbon steel coupons (0.4-0.8 millimeters per year (mpy)) and densities of sessile (12-1.47 × 10(3) colony-forming unit (CFU) cm(-1)) and planktonic (0-2.36 × 10(3) CFU mL(-1)) microbiota remained below of the maximum values of reference used by water treatment companies as indicative of efficient microbial control. These data indicate that the strategies of the water treatment station (WTS) (free chlorine) and industrial wastewater treatment station (IWTS) followed by reverse electrodialysis system (RES) (free chlorine plus chloramine) were effective for the microbiological control of the two makeup water sources.
Collapse
Affiliation(s)
- Vera Lúcia Dos Santos
- Microbiology Department, Biological Sciences Institute, Universidade Federal de Minas Gerais, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil,
| | | | | | | | | | | |
Collapse
|
11
|
Chien SH, Chowdhury I, Hsieh MK, Li H, Dzombak DA, Vidic RD. Control of biological growth in recirculating cooling systems using treated secondary effluent as makeup water with monochloramine. WATER RESEARCH 2012; 46:6508-6518. [PMID: 23063442 DOI: 10.1016/j.watres.2012.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
Secondary-treated municipal wastewater, an abundant and widely distributed impaired water source, is a promising alternative water source for thermoelectric power plant cooling. However, excessive biological growth is a major challenge associated with wastewater reuse in cooling systems as it can interfere with normal system operation as well as enhance corrosion and scaling problems. Furthermore, possible emission of biological aerosols (e.g., Legionella pneumophila) with the cooling tower drift can lead to public health concerns within the zone of aerosol deposition. In this study, the effectiveness of pre-formed and in-situ-formed monochloramine was evaluated for its ability to control biological growth in recirculating cooling systems using secondary-treated municipal wastewater as the only makeup water source. Bench-scale studies were compared with pilot-scale studies for their ability to predict system behavior under realistic process conditions. Effectiveness of the continuous addition of pre-formed monochloramine and monochloramine formed in-situ through the reaction of free chlorine with ammonia in the incoming water was evaluated in terms of biocide residual and its ability to control both planktonic and sessile microbial populations. Results revealed that monochloramine can effectively control biofouling in cooling systems employing secondary-treated municipal wastewater and has advantages relative to use of free chlorine, but that bench-scale studies seriously underestimate biocide dose and residual requirements for proper control of biological growth in full-scale systems. Pre-formed monochloramine offered longer residence time and more reliable performance than in-situ-formed monochloramine due to highly variable ammonia concentration in the recirculating water caused by ammonia stripping in the cooling tower. Pilot-scale tests revealed that much lower dosing rate was required to maintain similar total chlorine residual when pre-formed monochloramine was used as compared to in-situ-formed monochloramine. Adjustment of biocide dose to maintain monochloramine residual above 3mg/L is needed to achieve successful biological growth control in recirculating cooling systems using secondary-treated municipal effluent as the only source of makeup water.
Collapse
Affiliation(s)
- Shih-Hsiang Chien
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
12
|
Li H, Chien SH, Hsieh MK, Dzombak DA, Vidic RD. Escalating water demand for energy production and the potential for use of treated municipal wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:4195-4200. [PMID: 21466187 DOI: 10.1021/es1040305] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To ensure sufficient thermoelectric power production in the future, the use of alternative water sources to replace freshwater consumption in power plants will be required. The amount of municipal wastewater (MWW) being produced and its widespread availability merit the investigation of this potential source of cooling water. This is particularly important for thermoelectric power plants in regions where freshwater is not readily available. Critical regulatory and technical challenges for using MWW as makeup water in recirculating cooling systems are examined. The existing regulations do not prohibit wastewater reuse for power plant cooling. The challenges of controlling corrosion, mineral scaling, and biofouling in recirculating cooling systems need to be carefully considered and balanced in a holistic fashion. Initial investigations suggest that many of these challenges can be surmounted to ensure the use of MWW in recirculating cooling systems.
Collapse
Affiliation(s)
- Heng Li
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
13
|
Hsieh MK, Dzombak DA, Vidic RD. Effect of Tolyltriazole on the Corrosion Protection of Copper against Ammonia and Disinfectants in Cooling Systems. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100384d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming-Kai Hsieh
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - David A. Dzombak
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Radisav D. Vidic
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
14
|
Doğruöz N, Göksay D, Ilhan-Sungur E, Cotuk A. Pioneer colonizer microorganisms in biofilm formation on galvanized steel in a simulated recirculating cooling-water system. J Basic Microbiol 2009; 49 Suppl 1:S5-12. [PMID: 19455520 DOI: 10.1002/jobm.200800250] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Some bacteria have a higher tendency to produce biofilm than others. Especially, Pseudomonas and Aeromonas strains are acknowledged to be pioneer colonizers and are predominant in biofilm formation. We examined biofilm formation and first attachment maintance of biofilms of Pseudomonas spp., Pseudomonas aeruginosa, Aeromonas spp, sulphate reducing bacteria and filamentous fungi. A simulated recirculating cooling-water system was used. Heterotrophic bacteria counts on galvanized steel and glass surfaces rose during the tidy period of 720 hours. In addition, we determined that although Pseudomonas spp., Pseudomonas aeruginosa and Aeromonas spp. were the pioneer colonizers, they surprisingly could not be determined in the biofilms on both types of surface after 456 hours. Sulphate reducing bacteria were observed in biofilms on both surfaces from the outset of the experiments. Filamentous fungi were seen on the galvanized steel and glass surfaces after 0.5 h.
Collapse
Affiliation(s)
- Nihal Doğruöz
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Istanbul, Turkey.
| | | | | | | |
Collapse
|
15
|
Liu Y, Zhang W, Sileika T, Warta R, Cianciotto NP, Packman A. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems. BIOFOULING 2009; 25:241-53. [PMID: 19177226 PMCID: PMC2723952 DOI: 10.1080/08927010802713414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.
Collapse
Affiliation(s)
- Yang Liu
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Wei Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Tadas Sileika
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Richard Warta
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL, USA
| | - Aaron Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
16
|
Alleron L, Merlet N, Lacombe C, Frère J. Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 2008; 57:497-502. [PMID: 18839249 DOI: 10.1007/s00284-008-9275-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/03/2008] [Indexed: 11/29/2022]
Abstract
Legionella pneumophila, a facultative intracellular human pathogen, can persist for long periods in natural and artificial aquatic environments. Eradication of this bacterium from plumbing systems is often difficult. We tested L. pneumophila survival after monochloramine treatment. Survival was monitored using the BacLight Bacterial Viability Kit (Molecular Probes), ChemChrome V6 Kit (Chemunex), quantitative polymerase chain reaction and culturability on buffered charcoal-yeast extract agar. In nonculturable samples, regain of culturability was obtained after addition of the amoeba Acanthamoeba castellanii, and esterase activity and membrane integrity were observed after >4 months after treatment. These results demonstrate for the first time that L. pneumophila could persist for long periods in biofilms into the viable but nonculturable (VBNC) state. Monitoring L. pneumophila in water networks is generally done by enumeration on standard solid medium. This method does not take into account VBNC bacteria. VBNC L. pneumophila could persist for long periods and should be resuscitated by amoeba. These cells constitute potential sources of contamination and should be taken into account in monitoring water networks.
Collapse
Affiliation(s)
- Laëtitia Alleron
- Laboratoire de Chimie et de Microbiologie de l'Eau, University of Poitiers, 86022, Poitiers Cedex, France
| | | | | | | |
Collapse
|
17
|
Turetgen I. Induction of Viable but Nonculturable (VBNC) state and the effect of multiple subculturing on the survival ofLegionella pneumophila strains in the presence of monochloramine. ANN MICROBIOL 2008. [DOI: 10.1007/bf03179460] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Sanchez I, Garcia-Nuñez M, Ragull S, Sopena N, Pedro-Botet ML, Estere M, Rey-Joly C, Sabria M, Esteve M. Genotypic variability and persistence of Legionella pneumophila PFGE patterns in 34 cooling towers from two different areas. Environ Microbiol 2008; 10:395-9. [PMID: 18199124 DOI: 10.1111/j.1462-2920.2007.01460.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genotypic variability and clonal persistence are important concepts in molecular epidemiology as they facilitate the search for the source of sporadic cases or outbreaks of legionellosis. We studied the genotypic variability and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns over time (period > 6 months) in 34 positive cooling towers from two different areas. In area A, radius of 70 km, 52 indistinguishable PFGE patterns were differentiated among the 27 cooling towers. In 13 cooling towers we observed >or= 2 PFGE patterns. Each cooling tower had its own indistinguishable Legionella PFGE pattern which was not shared with any other cooling tower. In area B, radius of 1 km, 10 indistinguishable PFGE patterns were obtained from the seven cooling towers. In four, we observed >or= 2 PFGE patterns. Three of these 10 indistinguishable PFGE patterns were shared by more than one cooling tower. In 27 of 34 cooling towers the same PFGE pattern was recovered after 6 months to up to 5 years of follow-up. The large genotypic diversity of Legionella observed in the cooling towers aids in the investigation of community outbreaks of Legionnaires' disease. However, shared patterns in small areas may confound the epidemiological investigation. The persistence of some PFGE patterns in cooling towers makes the recovery of the Legionella isolate causing the outbreak possible over time.
Collapse
Affiliation(s)
- Inma Sanchez
- Infectious Diseases Unit, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ceyhan N, Ozdemir G. Extracellular polysaccharides produced by cooling water tower biofilm bacteria and their possible degradation. BIOFOULING 2008; 24:129-135. [PMID: 18256966 DOI: 10.1080/08927010801911316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The extracellular polymers (EPS) of biofilm bacteria that can cause heat and mass transfer problems in cooling water towers in the petrochemical industry were investigated. In addition, these microorganisms were screened for their ability to grow and degrade their own EPS and the EPS of other species. Twelve bacteria producing the most EPS were isolated from cooling water towers and characterized biochemically by classic and commercial systems. These were species of Pseudomonas, Burkholderia, Aeromonas, Pasteurella, Pantoea, Alcaligenes and Sphingomonas. EPS of these species were obtained by propan-2-ol precipitation and centrifugation from bacterial cultures in media enriched with glucose, sucrose or galactose. EPS yields were of 1.68-4.95 g l(-1). These EPS materials were characterized for total sugar and protein contents. Their total sugar content ranged from 24 to 56% (g sugar g(-1) EPS), and their total protein content ranged from 10 to 28% (g protein g(-1) EPS). The monosaccharide compositions of EPS were determined by HPLC. Generally, these compositions were enriched in galactose and glucose, with lesser amounts of mannose, rhamnose, fructose and arabinose. All bacteria were investigated in terms of EPS degradation. Eight of the bacteria were able to utilize EPS from Burkholderia cepacia, seven of the bacteria were able to utilize EPS from Pseudomonas sp. and Sphingomonas paucimobilis. The greatest viscosity reduction of B. cepacia was obtained with Pseudomonas sp. The results show that the bacteria in this study are able to degrade EPS from biofilms in cooling towers.
Collapse
Affiliation(s)
- Nur Ceyhan
- Faculty of Science and Letters, Biology Department, Mugla University, Mugla, Turkey.
| | | |
Collapse
|
20
|
Türetgen I, Ilhan-Sungur E, Cotuk A. Effects of short-time drying on biofilm-associated bacteria. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
21
|
Türetgen I, Cotuk A. Monitoring of biofilm-associated Legionella pneumophila on different substrata in model cooling tower system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2007; 125:271-9. [PMID: 17219241 DOI: 10.1007/s10661-006-9519-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Cooling towers have the potential to develop infectious concentrations of Legionella pneumophila. Legionella counts increases where biofilm and warm water temperatures are present. In this study, biofilm associated L. pneumophila and heterotrophic bacteria were compared in terms of material dependence. Model cooling tower system was experimentally infected by L. pneumophila standard strain and monthly monitored. Different materials were tested for a period of 180 days. The lowest L. pneumophila and heterotrophic plate counts were measured on plastic polymers, whereas L. pneumophila and heterotrophic bacteria were accumulated rapidly on galvanized steel surfaces. It can be concluded that selection of plastic polymers, as a manufacturing material, are suitable for recirculating water systems.
Collapse
Affiliation(s)
- Irfan Türetgen
- Department of Biology, Faculty of Science, Istanbul University, 34118 Vezneciler, Istanbul, Turkey.
| | | |
Collapse
|
22
|
Eguía E, Trueba A, Girón A, Río-Calonge B, Otero F, Bielva C. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent. BIOFOULING 2007; 23:231-47. [PMID: 17653933 DOI: 10.1080/08927010701306740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biofouling is one of the most serious problems facing numerous industrial processes. In the case of a heat exchanger unit, biological deposits adhering to the inside surface of its tubes reduce heat transfer and, thus, the thermal performance of the cycle. Control of this phenomenon is proving fundamental for both land and marine equipment to operate in optimum working conditions. Hence, it is necessary to apply antifouling methods capable of keeping surfaces free of any kind of biofouling. This paper reports on the behaviour resulting from use of the flow inversion method vs that obtained by using various chemical treatments. The study compares the effectiveness of certain chemical treatments (Na hypochlorite, peracetic acid and a compound formed by Na bromide + Na hypochlorite) for removing a biofouling film that has already formed on the inside surfaces of tubes in a heat exchanger pilot plant. The paper also addresses the issue of optimising the concentration of biocide dose as a function of the residual biocide in order minimise the environmental impact caused by effluent from industrial plants. The results indicate that it is possible to eliminate a biofilm formed on the inside surfaces of tubes by the use of intermittent doses of chemical treatments at low concentrations and over long application times. Furthermore, once the stabilisation phase is reached 6 d after starting the treatment, it is possible to maintain the conditions achieved using only 20% of the initial dosage.
Collapse
Affiliation(s)
- Emilio Eguía
- Department of Sciences and Techniques of Navigation and Ship Construction, Cantabria University, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Wang XJ, Liu RM. Spatial analysis and eutrophication assessment for chlorophyll a in Taihu Lake. ENVIRONMENTAL MONITORING AND ASSESSMENT 2005; 101:167-174. [PMID: 15736882 DOI: 10.1007/s10661-005-9154-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Spatial structure analysis and kriging analysis have been identified to be useful tools in illustrating the spatial patterns of variables. Taihu Lake is one of the largest fresh water lakes in China, and has suffered serious eutrophication in recent years due to the rapid economic development and growing environmental pollution in the Taihu Catchment. In this paper, spatial structural analysis, kriging interpolation and eutrophication assessment were carried out for chlorophyll a in the lake. Studies show that spherical model could be applied to fit all experimental variograms. Positive nuggets were observed for three directions except NE-SW direction. The variograms show some anisotropy with anisotropic ratio falling within 1.76. The spatial structural patterns of chlorophyll a in the lake were affected by factors such as distribution of pollution sources, water flow and wind. Two-dimensional ordinary block kriging was applied for interpolation process. An eutrophication assessment map was also made based on a water-quality evaluation standard. Results show that the content of chlorophyll a in Taihu Lake was quite high. The whole lake has suffered serious eutrophication. However, the eutrophic situation varied in space. Higher contents of chlorophyll a appeared mainly in the northern part of the lake.
Collapse
Affiliation(s)
- X J Wang
- MOE Lab. of Earth Surface Process, College of Environmental Sciences, Peking University, Beijing, China.
| | | |
Collapse
|