1
|
Neves AR, Godinho S, Gonçalves C, Gomes AS, Almeida JR, Pinto M, Sousa E, Correia-da-Silva M. A Chemical Toolbox to Unveil Synthetic Nature-Inspired Antifouling (NIAF) Compounds. Mar Drugs 2024; 22:416. [PMID: 39330297 PMCID: PMC11433177 DOI: 10.3390/md22090416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
The current scenario of antifouling (AF) strategies to prevent the natural process of marine biofouling is based in the use of antifouling paints containing different active ingredients, believed to be harmful to the marine environment. Compounds called booster biocides are being used with copper as an alternative to the traditionally used tributyltin (TBT); however, some of them were recently found to accumulate in coastal waters at levels that are deleterious for marine organisms. More ecological alternatives were pursued, some of them based on the marine organism mechanisms' production of specialized metabolites with AF activity. However, despite the investment in research on AF natural products and their synthetic analogues, many studies showed that natural AF alternatives do not perform as well as the traditional metal-based ones. In the search for AF agents with better performance and to understand which molecular motifs were responsible for the AF activity of natural compounds, synthetic analogues were produced and investigated for structure-AF activity relationship studies. This review is a comprehensive compilation of AF compounds synthesized in the last two decades with highlights on the data concerning their structure-activity relationship, providing a chemical toolbox for researchers to develop efficient nature-inspired AF agents.
Collapse
Affiliation(s)
- Ana Rita Neves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Sara Godinho
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Catarina Gonçalves
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Ana Sara Gomes
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Joana R Almeida
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Liu LL, Wu CH, Qian PY. Marine natural products as antifouling molecules - a mini-review (2014-2020). BIOFOULING 2020; 36:1210-1226. [PMID: 33401982 DOI: 10.1080/08927014.2020.1864343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
In the present review, 182 antifouling (AF) natural products from marine microorganisms, algae and marine invertebrates reported from August 2014 to May 2020 are presented. Amongst these compounds, over half were isolated from marine-derived microorganisms, including 70 compounds from fungi and 31 compounds from bacteria. The structure-relationship of some of these compounds is also briefly discussed. Based on the work reported, a general workflow was drafted to refine the procedures for the commercialization of any novel AF compounds. Finally, butenolide, which is considered a potential environmentally friendly antifoulant, is used as a case study to show the procedures involved in AF compound work from the aspect of discovery, structure optimization, toxicity, stability, AF mechanism and coating incorporation, which highlight the current challenges and future perspectives in AF compound research.
Collapse
Affiliation(s)
- Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Chuan-Hai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
3
|
Chiang HY, Pan J, Ma C, Qian PY. Combining a bio-based polymer and a natural antifoulant into an eco-friendly antifouling coating. BIOFOULING 2020; 36:200-209. [PMID: 32253933 DOI: 10.1080/08927014.2020.1749270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Biodegradable polymers are promising binders and carriers for natural antifoulants. In the present study, an antifouling (AF) coating was developed by adding a non-toxic AF compound (butenolide) to a bio-based and biodegradable poly(lactic acid)-based polyurethane. Mass loss measurement showed that the polymer degraded in seawater at a rate of 0.013 mg cm-2 day-1. Measurements showed that butenolide was released from the coatings into seawater over a period of at least three months. Both the concentration of butenolide in the coatings and the ambient temperature determined the release rate of butenolide. The results further demonstrate that incorporating rosin into the coatings increase the self-renewal rate of the polymer and facilitated the long-term release of butenolide from the coating. The results show that poly(lactic acid)-based polyurethane is a suitable polymer for butenolide-based AF coatings.
Collapse
Affiliation(s)
- Ho Yin Chiang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science & Technology, Hong Kong, China
| | - Jiansen Pan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science & Technology, Hong Kong, China
| |
Collapse
|
4
|
Takamura H, Ohashi T, Kikuchi T, Endo N, Fukuda Y, Kadota I. Late-stage divergent synthesis and antifouling activity of geraniol-butenolide hybrid molecules. Org Biomol Chem 2018. [PMID: 28632269 DOI: 10.1039/c7ob01160a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid molecules consisting of geraniol and butenolide were designed and synthesized by the late-stage divergent strategy. In the synthetic route, ring-closing metathesis was utilized for the construction of a butenolide moiety. A biological evaluation of the eight synthetic hybrid compounds revealed that these molecules exhibit antifouling activity against the cypris larvae of the barnacle Balanus (Amphibalanus) amphitrite with EC50 values of 0.30-1.31 μg mL-1. These results show that hybridization of the geraniol and butenolide structural motifs resulted in the enhancement of the antifouling activity.
Collapse
Affiliation(s)
- Hiroyoshi Takamura
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Chen L, Lam JCW, Zhang X, Pan K, Guo C, Lam PKS, Wang W, Liu H, Qian PY. Relationship between metal and polybrominated diphenyl ether (PBDE) body burden and health risks in the barnacle Balanus amphitrite. MARINE POLLUTION BULLETIN 2015; 100:383-392. [PMID: 26320980 DOI: 10.1016/j.marpolbul.2015.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 06/04/2023]
Abstract
In the present study, we employed the widespread and gregarious barnacle species Balanus amphitrite in a biomonitoring program to evaluate coastal pollution around three piers (i.e., Tso Wo Hang, Sai Kung and Hebe Haven) in Hong Kong. An integrated approach was used herein, combining both the chemical determination of contaminant concentrations, including metals and polybrominated diphenyl ethers (PBDEs), and a suite of biological responses across the entire barnacle lifecycle (i.e., adult, nauplius, cyprid and juvenile). The analytical results revealed a distinct geographical distribution of metals and PBDEs. Adult physiological processes and larval behaviors varied significantly among the three piers. Furthermore, a correlation analysis demonstrated a specific suite of biological responses towards metal and PBDE exposure, likely resulting from their distinct modes of action. Overall, the results of this study indicated that the combination of chemical and biological tests provided an integrated measure for the comprehensive assessment of marine pollution.
Collapse
Affiliation(s)
- Lianguo Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - James C W Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong Shenzhen Research Institute Building, Shenzhen 518057, China
| | - Xiaohua Zhang
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong Shenzhen Research Institute Building, Shenzhen 518057, China
| | - Ke Pan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Cui Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, Shenzhen Key Laboratory for Sustainable Use of Marine Biodiversity, City University of Hong Kong Shenzhen Research Institute Building, Shenzhen 518057, China; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiong Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Hongbin Liu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Chen X, Zhang G, Zhang Q, Zhan X, Chen F. Preparation and Performance of Amphiphilic Polyurethane Copolymers with Capsaicin-Mimic and PEG Moieties for Protein Resistance and Antibacteria. Ind Eng Chem Res 2015. [DOI: 10.1021/ie505062a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xi Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guangfa Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qinghua Zhang
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengqiu Chen
- College of Chemical and Biochemical
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Chen HN, Tsang LM, Chong VC, Chan BKK. Worldwide genetic differentiation in the common fouling barnacle, Amphibalanus amphitrite. BIOFOULING 2014; 30:1067-1078. [PMID: 25343722 DOI: 10.1080/08927014.2014.967232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Amphibalanus amphitrite is a common fouling barnacle distributed globally in tropical and subtropical waters. In the present study, the genetic (mitochondrial cytochrome oxidase subunit I) and morphological differentiation in A. amphitrite from 25 localities around the world were investigated. The results revealed three clades within A. amphitrite with a genetic divergence of ~ 4% among clades, whereas there were no diagnostic morphological differences among clades. Clade 1 is widely distributed in both temperate and tropical waters, whereas Clade 3 is currently restricted to the tropical region. The deep divergence among clades suggests historical isolation within A. amphitrite; thus, the present geographical overlaps are possibly a result of the combined effects of rising sea level and human-mediated dispersals. This study highlights the genetic differentiation that exists in a common, widely distributed fouling organism with great dispersal potential; future antifouling research should take into account the choice of lineages.
Collapse
Affiliation(s)
- Hsi-Nien Chen
- a Institute of Ecology and Evolutionary Biology , National Taiwan University , Taipei , Taiwan , ROC
| | | | | | | |
Collapse
|
8
|
Chen ZF, Zhang H, Wang H, Matsumura K, Wong YH, Ravasi T, Qian PY. Quantitative proteomics study of larval settlement in the Barnacle Balanus amphitrite. PLoS One 2014; 9:e88744. [PMID: 24551147 PMCID: PMC3923807 DOI: 10.1371/journal.pone.0088744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Timothy Ravasi
- Integrative Systems Biology Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
9
|
Abstract
Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, HKSAR, China.
| | | | | |
Collapse
|
10
|
Zhang YF, Kitano Y, Nogata Y, Zhang Y, Qian PY. The mode of action of isocyanide in three aquatic organisms, Balanus amphitrite, Bugula neritina and Danio rerio. PLoS One 2012; 7:e45442. [PMID: 23029013 PMCID: PMC3445549 DOI: 10.1371/journal.pone.0045442] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/21/2012] [Indexed: 02/06/2023] Open
Abstract
Isocyanide is a potential antifouling compound in marine environments. In this study, we investigated its mode of action in three aquatic organisms. Two of them, the bryozoan Bugula neritina and the barnacle Balanus amphitrite, are major marine fouling invertebrates, and the other organism is the non-target species zebrafish Danio rerio. In the swimming larvae of B. neritina, isocyanide did not affect the total attachment rate (≤50 µg ml(-1)), but it did change the attachment site by increasing the percentage of attachment on the bottom of the container rather than on the wall or air-water inter-surface. Isocyanide binds several proteins in B. neritina as identified via SDS-PAGE-LC-MS/MS: 1) a 30 kD protein band containing two proteins similar to voltage dependent anion channels (VDAC), which control the direct coupling of the mitochondrial matrix to the energy maintenance of the cytosol and the release of apoptogenic factors from mitochondria of mammalian cells; and 2) an unknown 39 kD protein. In B. amphitrite cyprids, the isocyanide binding protein were 1) a protein similar to NADH-ubiquinone oxidoreductase, which is the "entry enzyme" of oxidative phosphorylation in mitochondria; and 2) cytochrome P450. In Danio rerio embryos, isocyanide caused "wavy" notochords, hydrocephalus, pericardial edema, poor blood circulation, and defects in pigmentation and hematopoiesis, which phenocopied copper deficiency. This is the first report on isocyanide binding proteins in fouling organisms, as well as the first description of its phenotype and potential toxicology in zebrafish.
Collapse
Affiliation(s)
- Yi-Fan Zhang
- KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yoshikazu Kitano
- Laboratory of Bio-organic Chemistry, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasuyuki Nogata
- Abiko Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Yu Zhang
- KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
11
|
Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem Biol 2012; 7:1049-58. [PMID: 22458453 DOI: 10.1021/cb200545s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolide's molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms.
Collapse
|
12
|
Li Y, Zhang F, Xu Y, Matsumura K, Han Z, Liu L, Lin W, Jia Y, Qian PY. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds. BIOFOULING 2012; 28:857-864. [PMID: 22920194 DOI: 10.1080/08927014.2012.717071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity.
Collapse
Affiliation(s)
- Yongxin Li
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong , PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Acute toxicity of the antifouling compound butenolide in non-target organisms. PLoS One 2011; 6:e23803. [PMID: 21897857 PMCID: PMC3163639 DOI: 10.1371/journal.pone.0023803] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/25/2011] [Indexed: 02/05/2023] Open
Abstract
Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD's guideline, the predicted no effect concentration (PNEC) was 0.168 µg l−1, which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.
Collapse
|