1
|
Charlton SG, Jana S, Chen J. Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms. Biofilm 2024; 8:100209. [PMID: 39071175 PMCID: PMC11279707 DOI: 10.1016/j.bioflm.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm Pseudomonas fluorescens. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Saikat Jana
- Ulster University, School of Engineering, 2-24 York Street, Belfast, BT15 1AP, United Kingdom
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Jinju Chen
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- Loughborough University, Department of Materials, Loughborough, LE11 3TU, United Kingdom
| |
Collapse
|
2
|
Mookherjee A, Mitra M, Sason G, Jose PA, Martinenko M, Pietrokovski S, Jurkevitch E. Flagellar stator genes control a trophic shift from obligate to facultative predation and biofilm formation in a bacterial predator. mBio 2024; 15:e0071524. [PMID: 39037271 PMCID: PMC11323537 DOI: 10.1128/mbio.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
The bacterial predator Bdellovibrio bacteriovorus is considered to be obligatorily prey (host)-dependent (H-D), and thus unable to form biofilms. However, spontaneous host-independent (H-I) variants grow axenically and can form robust biofilms. A screen of 350 H-I mutants revealed that single mutations in stator genes fliL or motA were sufficient to generate flagellar motility-defective H-I strains able to adhere to surfaces but unable to develop biofilms. The variants showed large transcriptional shifts in genes related to flagella, prey-invasion, and cyclic-di-GMP (CdG), as well as large changes in CdG cellular concentration relative to the H-D parent. The introduction of the parental fliL allele resulted in a full reversion to the H-D phenotype, but we propose that specific interactions between stator proteins prevented functional complementation by fliL paralogs. In contrast, specific mutations in a pilus-associated protein (Bd0108) mutant background were necessary for biofilm formation, including secretion of extracellular DNA (eDNA), proteins, and polysaccharides matrix components. Remarkably, fliL disruption strongly reduced biofilm development. All H-I variants grew similarly without prey, showed a strain-specific reduction in predatory ability in prey suspensions, but maintained similar high efficiency in prey biofilms. Population-wide allele sequencing suggested additional routes to host independence. Thus, stator and invasion pole-dependent signaling control the H-D and the H-I biofilm-forming phenotypes, with single mutations overriding prey requirements, and enabling shifts from obligate to facultative predation, with potential consequences on community dynamics. Our findings on the facility and variety of changes leading to facultative predation also challenge the concept of Bdellovibrio and like organisms being obligate predators. IMPORTANCE The ability of bacteria to form biofilms is a central research theme in biology, medicine, and the environment. We show that cultures of the obligate (host-dependent) "solitary" predatory bacterium Bdellovibrio bacteriovorus, which cannot replicate without prey, can use various genetic routes to spontaneously yield host-independent (H-I) variants that grow axenically (as a single species, in the absence of prey) and exhibit various surface attachment phenotypes, including biofilm formation. These routes include single mutations in flagellar stator genes that affect biofilm formation, provoke motor instability and large motility defects, and disrupt cyclic-di-GMP intracellular signaling. H-I strains also exhibit reduced predatory efficiency in suspension but high efficiency in prey biofilms. These changes override the requirements for prey, enabling a shift from obligate to facultative predation, with potential consequences on community dynamics.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohor Mitra
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gal Sason
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Polpass Arul Jose
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Martinenko
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Hong SY, Miao LT, Zhang JQ, Wang SG. Identification of Two Clusters in Renal Pelvis Urobiome of Unilateral Stone Formers Using 2bRAD-M. Microorganisms 2023; 11:2276. [PMID: 37764120 PMCID: PMC10534321 DOI: 10.3390/microorganisms11092276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Urolithiasis is a common urological disease with increasing incidence and a high recurrence rate, whose etiology is not fully understood. The application of sequencing and culturomics has revealed that urolithiasis is closely related to the urinary microbiome (urobiome), shedding new light on the pathogenesis of stone formation. In this study, we recruited 30 patients with unilateral stones and collected their renal pelvis urine from both sides. Then, we performed 2bRAD-M, a novel sequencing technique that provides precise microbial identification at the species level, to characterize the renal pelvis urobiome of unilateral stone formers in the both sides. We first found that the urobiome in the stone side could be divided into two clusters (Stone1 and Stone2) based on distance algorithms. Stone2 harbored higher microbial richness and diversity compared to Stone1. The genera Cupriavidus and Sphingomonas were overrepresented in Stone1, whereas Acinetobacter and Pseudomonas were overrepresented in Stone2. Meanwhile, differential species were identified between Stone1 and Stone2. We further constructed a random forest model to discriminate two clusters which achieved a powerful diagnostic potential. Moreover, the urobiome of the non-stone side (Control1/2) was compared with that of the stone side (Stone1/2). Stone1 and Control1 showed different microbial community distributions, while Stone2 was similar to Control2 based on diversity analysis. We also identified differentially abundant species among all groups. We assumed that there might be different mechanisms of how microbiota contribute to stone formation in two clusters. Our findings might assist in the selection of suitable medical treatments for urolithiasis.
Collapse
Affiliation(s)
| | | | - Jia-Qiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Huang C, Clark GG, Zaki FR, Won J, Ning R, Boppart SA, Elbanna AE, Nguyen TH. Effects of phosphate and silicate on stiffness and viscoelasticity of mature biofilms developed with simulated drinking water. BIOFOULING 2023; 39:36-46. [PMID: 36847486 PMCID: PMC10065970 DOI: 10.1080/08927014.2023.2177538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 05/21/2023]
Abstract
Biofilms, a porous matrix of cells aggregated with extracellular polymeric substances under the influence of chemical constituents in the feed water, can develop a viscoelastic response to mechanical stresses. In this study, the roles of phosphate and silicate, common additives in corrosion control and meat processing, on the stiffness, viscoelasticity, porous structure networks, and chemical properties of biofilm were investigated. Three-year biofilms on PVC coupons were grown from sand-filtered groundwater with or without one of the non-nutrient (silicate) or nutrient additives (phosphate or phosphate blends). Compared with non-nutrient additives, the phosphate and phosphate-blend additives led to a biofilm with the lowest stiffness, most viscoelastic, and more porous structure, including more connecting throats with greater equivalent radii. The phosphate-based additives also led to more organic species in the biofilm matrix than the silicate additive did. This work demonstrated that nutrient additives could promote biomass accumulation but also reduce mechanical stability.
Collapse
Affiliation(s)
- Conghui Huang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Gemma G. Clark
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Farzana R. Zaki
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
| | - Jungeun Won
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois Urbana Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA
| | - Runsen Ning
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois Urbana Champaign, 1304 West Springfield Avenue, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, 306 North Wright Street, Urbana, Illinois 61801, USA
| | - Ahmed E. Elbanna
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
| | - Thanh H. Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, 506 South Mathews Avenue, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Wu RX, Zhang Y, Guo ZQ, Zhao B, Guo JS. Role of Ca2+ and Mg2+ in changing biofilm structure and enhancing biofilm formation of P. stutzeri strain XL-2. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Yang Y, Li M, Zheng X, Ma H, Nerenberg R, Chai H. Extracellular DNA plays a key role in the structural stability of sulfide-based denitrifying biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155822. [PMID: 35561912 DOI: 10.1016/j.scitotenv.2022.155822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Sulfide-based biofilm processes are increasingly used for wastewater denitrification, yet little is known about the extracellular polymeric substance (EPS) composition of sulfide-oxidizing biofilms. This can have an important impact on biofilm mechanical strength and stability. In this research, the properties and roles of EPS components in biofilm stability were investigated. Weak biofilm stability characterized by high roughness and numerous "needle" structures was visualized by optical coherence tomography (OCT) and microscopy. A high abundance of extracellular DNA (eDNA) and a low protein to polysaccharide ratio were found in the biofilm. The roles of eDNA, protein and polysaccharide in biofilm cohesion and adhesion were identified through enzyme treatment and atomic force microscopy (AFM). The enzymatic hydrolysis of eDNA increased the elastic modulus of biofilms by 57 times and reduced the adhesion energy by 96%. The hydrolysis of proteins led to an increase of elastic modulus by 27 times and a loss of adhesion energy by 95.5%. The enzymatic hydrolysis of polysaccharides caused minimal changes in elastic modulus and adhesion energy. These results suggest that eDNA was the key EPS component for biofilm cohesion and adhesion, possibly because it provided special binding sites and can form strong cross-linking with magnesium or other multivalent cations. This study provided new insights into the role of eDNA in biofilm stability and shed light on the development of sulfide-based denitrifying biofilms.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China; Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
8
|
Effect of Calcium Ion Supplementation on Oral Microbial Composition and Biofilm Formation In Vitro. Microorganisms 2022; 10:microorganisms10091780. [PMID: 36144381 PMCID: PMC9500923 DOI: 10.3390/microorganisms10091780] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral cavity contains a variety of ecological niches with very different environmental conditions that shape biofilm structure and composition. The space between the periodontal tissue and the tooth surface supports a unique anaerobic microenvironment that is bathed in the nutrient-rich gingival crevicular fluid (GCF). During the development of periodontitis, this environment changes and clinical findings reported a sustained level of calcium ion concentration in the GCF collected from the periodontal pockets of periodontitis patients. Here, we report the effect of calcium ion supplementation on human oral microbial biofilm formation and community composition employing an established SHI medium-based in vitro model system. Saliva-derived human microbial biofilms cultured in calcium-supplemented SHI medium (SHICa) exhibited a significant dose-dependent increase in biomass and metabolic activity. The effect of SHICa medium on the microbial community composition was evaluated by 16S rRNA gene sequencing using saliva-derived microbial biofilms from healthy donors and periodontitis subjects. In this study, intracellular microbial genomic DNA (iDNA) and extracellular DNA (eDNA) were analyzed separately at the genus level. Calcium supplementation of SHI medium had a differential impact on iDNA and eDNA in the biofilms derived from healthy individuals compared to those from periodontitis subjects. In particular, the genus-level composition of the eDNA portion was distinct between the different biofilms. This study demonstrated the effect of calcium in a unique microenvironment on oral microbial complex supporting the dynamic transformation and biofilm formation.
Collapse
|
9
|
Vitale S, Rampazzo E, Hiebner D, Devlin H, Quinn L, Prodi L, Casey E. Interaction between Engineered Pluronic Silica Nanoparticles and Bacterial Biofilms: Elucidating the Role of Nanoparticle Surface Chemistry and EPS Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34502-34512. [PMID: 35830504 DOI: 10.1021/acsami.2c10347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles (NPs) are considered a promising tool in the context of biofilm control. Many studies have shown that different types of NPs can interfere with the bacterial metabolism and cellular membranes, thus making them potential antibacterial agents; however, fundamental understanding is still lacking on the exact mechanisms involved in these actions. The development of NP-based approaches for effective biofilm control also requires a thorough understanding of how the chosen nanoparticles will interact with the biofilm itself, and in particular with the biofilm self-produced extracellular polymeric matrix (EPS). This work aims to provide advances in the understanding of the interaction between engineered fluorescent pluronic silica (PluS) nanoparticles and bacterial biofilms, with a main focus on the role of the EPS matrix in the accumulation and diffusion of the particles in the biofilm. It is demonstrated that particle surface chemistry has a key role in the different lateral distribution and specific affinity to the biofilm matrix components. The results presented in this study contribute to our understanding of biofilm-NP interactions and promote the principle of the rational design of smart nanoparticles as an important tool for antibiofilm technology.
Collapse
Affiliation(s)
- Stefania Vitale
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Enrico Rampazzo
- Dipartimento di Chimica "Giacomo Ciamician", Università degli Studi di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Dishon Hiebner
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Henry Devlin
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Laura Quinn
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| | - Luca Prodi
- Dipartimento di Chimica "Giacomo Ciamician", Università degli Studi di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Eoin Casey
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
10
|
Momenijavid M, Salimizand H, Korani A, Dianat O, Nouri B, Ramazanzadeh R, Ahmadi A, Rostamipour J, Khosravi MR. Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm. Sci Rep 2022; 12:7595. [PMID: 35534609 PMCID: PMC9085741 DOI: 10.1038/s41598-022-11780-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/11/2022] [Indexed: 11/12/2022] Open
Abstract
Calcium hydroxide Ca(OH)2 has been used as an intracanal medicament to targets microbial biofilms and avert secondary infection in the root canal system. This study evaluated the effects of this material on the morphology and physicochemical properties of an established in-vitro biofilm of Enterococcus faecalis. A biofilm of E. faecalis was grown in multichannel plates. The chemicals including Ca2+, OH-, and saturated Ca(OH)2 (ie 21.6 mM) were prepared in order to evaluate which component eradicated or amplified biofilm structure. Various biochemical and microscopic methods were used to investigate the properties of the biofilm. Biofilms treated with Ca(OH)2 absorbed more Ca2+ because of the alkaline pH of the environment and the ions affected the physicochemical properties of the E. faecalis biofilm. A denser biofilm with more cavities and a granular surface was observed in the presence of Ca2+ ions. This resulted in a decrease in the surface-to-biofilm ratio with increases in its biomass, thickness, colony size, and volume. Calcium hydroxide did not destroy E. faecalis biofilms but rather contributed to the biofilm structure. This in-vitro study sheds light on a missing link in the formation of E. faecalis biofilm in which the Ca2+ in Ca(OH)2.
Collapse
Affiliation(s)
- Mahere Momenijavid
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Himen Salimizand
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Aazam Korani
- Food Laboratory, Vice Chancellor for Food and Drug, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Omid Dianat
- Division of Endodontics, Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Bijan Nouri
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Rashid Ramazanzadeh
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amjad Ahmadi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jino Rostamipour
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Rastegar Khosravi
- Department of Endodontics, Faculty of Dentistry, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
11
|
Dai X, Xu Q, Yang L, Ma J, Gao F. pH-Responsive Fluorescent Polymer-Drug System for Real-Time Detection and In Situ Eradication of Bacterial Biofilms. ACS Biomater Sci Eng 2022; 8:893-902. [PMID: 35012306 DOI: 10.1021/acsbiomaterials.1c01520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial biofilms encased in extracellular polymeric substances to create protected microenvironments are typically challenging to disperse by common antibiotics and cannot be in situ visualized under current modalities. Herein, a pH-responsive branched polymer [poly(MBA-AEPZ)-AEPZ-NA] capable of overcoming antibiotic resistance and real-time visualizing biofilms for fluorescence imaging-guided infection control is reported. The positively charged polymer can effectively penetrate bacterial biofilms, neutralize the anionic character, and then disrupt the structural integrity, thus significantly promoting the transport of antibiotics into biofilms. The polymer shows a weak fluorescence emission intensity under physiological conditions (pH 7.4) but emits intense green-light emission within the localized biofilm microenvironment (pH 5.5) to real-time visualize bacterial biofilms. A therapeutic system made of the polymer and a model antibiotic can significantly reduce the dosages of the drug, thereby minimizing biofilm-induced drug resistance. Notably, a green fluorescent polymer responding to localized pH conditions is demonstrated in living zebrafish. This work confirmed that combinations of the pH-responsive branched polymer and antibiotics could be administered to overcome drug resistance and realize fluorescence imaging-guided treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qingqing Xu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lele Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Jifang Ma
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
12
|
Daly S, Casey E, Semião AJ. Osmotic backwashing of forward osmosis membranes to detach adhered bacteria and mitigate biofouling. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hiebner DW, Barros C, Quinn L, Vitale S, Casey E. Surface functionalization-dependent localization and affinity of SiO 2 nanoparticles within the biofilm EPS matrix. Biofilm 2020; 2:100029. [PMID: 33447814 PMCID: PMC7798476 DOI: 10.1016/j.bioflm.2020.100029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022] Open
Abstract
The contribution of the biofilm extracellular polymeric substance (EPS) matrix to reduced antimicrobial susceptibility in biofilms is widely recognised. As such, the direct targeting of the EPS matrix is a promising biofilm control strategy that allows for the disruption of the matrix, thereby allowing a subsequent increase in susceptibility to antimicrobial agents. To this end, surface-functionalized nanoparticles (NPs) have received considerable attention. However, the fundamental understanding of the interactions occurring between engineered NPs and the biofilm EPS matrix has not yet been fully elucidated. An insight into the underlying mechanisms involved when a NP interacts with the EPS matrix will aid in the design of more efficient NPs for biofilm control. Here we demonstrate the use of highly specific fluorescent probes in confocal laser scanning microscopy (CLSM) to illustrate the distribution of EPS macromolecules within the biofilm. Thereafter, a three-dimensional (3D) colocalization analysis was used to assess the affinity of differently functionalized silica NPs (SiNPs) and EPS macromolecules from Pseudomonas fluorescens biofilms. Results show that both the charge and surface functional groups of SiNPs dramatically affected the extent to which SiNPs interacted and localized with EPS macromolecules, including proteins, polysaccharides and DNA. Hypotheses are also presented about the possible physicochemical interactions which may be dominant in EPS matrix-NP interactions. This research not only develops an innovative CLSM-based methodology for elucidating biofilm-nanoparticle interactions but also provides a platform on which to build more efficient NP systems for biofilm control.
Collapse
Affiliation(s)
- Dishon Wayne Hiebner
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Caio Barros
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Laura Quinn
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Stefania Vitale
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Eoin Casey
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| |
Collapse
|
14
|
Influence of organic fouling layer characteristics and osmotic backwashing conditions on cleaning efficiency of RO membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Daboss S, Lin J, Godejohann M, Kranz C. Redox Switchable Polydopamine-Modified AFM-SECM Probes: A Probe for Electrochemical Force Spectroscopy. Anal Chem 2020; 92:8404-8413. [PMID: 32337984 DOI: 10.1021/acs.analchem.0c00995] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polydopamine (PDA) has high potential in biorelevant applications as a versatile thin film material, e.g., as adhesive coating for cell immobilization or for sensing applications due to the plethora of functional groups. In this study we present the modification of conductive colloidal atomic force-scanning electrochemical microscopy (AFM-SECM) probes with electrochemically deposited PDA resulting in functional probes for quantitative electrochemical adhesion studies. Surface functionality of PDA can be altered by oxidation or reduction of functional groups applying an appropriate potential to the PDA-modified AFM-SECM probe, thereby enabling adhesion measurements under potential control. This facilitates probing specific interactions of surface groups present in PDA with various surfaces of different wettabilities. The versatility of such switchable AFM-SECM probes is demonstrated for electrochemical force spectroscopic studies at model samples such as plasma-treated gold substrates, hydrophobic or hydrophilic self-assembled monolayers, and for adhesion measurements of bacteria in dependence of altered surface charges of the colloidal probe. The maximum obtained adhesion force of a positively polarized PDA-modified AFM-SECM probe was 6.2 ± 2.2 nN, and it was about 50% less (i.e., 2.6 ± 1.1 nN) for a negatively polarized probe at a hydrophilic OH-terminated gold surface. In situ control of the active surface groups enabled investigations on the influence of surface charges on adhesion. Furthermore, plateaus of constant force were observed, which are a characteristic of polymer structures. Finally, electrochemical force measurements with switchable probes were used for the first time during adhesion studies of bacterial cells (i.e., Pseudomonas fluorescens). Positively biased PDA-coated colloidal probes revealed adhesion forces of 6.0 ± 1.1 nN, whereas significantly reduced adhesion forces 1.1 ± 0.7 nN were observed for negatively biased PDA-modified colloidal probes.
Collapse
Affiliation(s)
- Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jing Lin
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Godejohann
- MG Optical Solutions GmbH, Industriestraße 23, 86919 Utting am Ammersee, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
16
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
17
|
Wang T, Flint S, Palmer J. Magnesium and calcium ions: roles in bacterial cell attachment and biofilm structure maturation. BIOFOULING 2019; 35:959-974. [PMID: 31687841 DOI: 10.1080/08927014.2019.1674811] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The ubiquitous divalent cations magnesium and calcium are important nutrients required by bacteria for growth and cell maintenance. Multi-faceted roles are shown both in bacterial initial attachment and biofilm maturation. The effects of calcium and magnesium can be highlighted in physio-chemical interactions, gene regulation and bio-macromolecular structural modification, which lead to either promotion or inhibition of biofilms. This review outlines recent research addressing phenotypic changes and mechanisms undertaken by calcium and magnesium in affecting bacterial biofilm formation.
Collapse
Affiliation(s)
- Tianyang Wang
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, New Zealand
| | - Steve Flint
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, New Zealand
| | - Jon Palmer
- Institute of Food Science and Technology, School of Food and Advanced Technology, Massey University, New Zealand
| |
Collapse
|
18
|
Fulaz S, Hiebner D, Barros CHN, Devlin H, Vitale S, Quinn L, Casey E. Ratiometric Imaging of the in Situ pH Distribution of Biofilms by Use of Fluorescent Mesoporous Silica Nanosensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32679-32688. [PMID: 31418546 DOI: 10.1021/acsami.9b09978] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biofilms are communities of microorganisms enclosed in a self-generated matrix of extracellular polymeric substances. While biofilm recalcitrance and persistence are caused by several factors, a reduction in antimicrobial susceptibility has been closely associated with the generation of pH gradients within the biofilm structure. Cells embedded within the biofilm create a localized acidic microenvironment, which is unaffected by the external pH. Therefore, pH monitoring is a promising approach for understanding the complexities of a three-dimensional heterogeneous biofilm. A fluorescent pH nanosensor was designed through the synthesis of mesoporous silica nanoparticles (47 ± 5 nm diameter) conjugated to a pH-sensitive dye (fluorescein) and a pH-insensitive dye (rhodamine B) as an internal standard (dye-MSNs). The fluorescence intensity of fluorescein (IF) reduced significantly as the pH was decreased from 8.5 to 3.5. In contrast, the fluorescence intensity of rhodamine B (IR) remained constant at any pH. The ratio of IF/IR produced a sigmoidal curve with respect to the pH, in a working pH range between 4.5 and 7.5. Dye-MSNs enabled the measurement of pH gradients within Pseudomonas fluorescens WCS 365 biofilm microcolonies. The biofilms showed spatially distinct low-pH regions that were enclosed into large clusters corresponding to high-cell-density areas. Also present were small low-pH areas that spread indistinctly throughout the microcolony caused by the mass transfer effect. The lowest detected pH within the inner core of the microcolonies was 5.1, gradually increasing to a neutral pH toward the exterior of the microcolonies. The dye-MSNs were able to fully penetrate the biofilm matrix and allowed a quantitative ratiometric analysis of pH gradients and distribution throughout the biofilm, which was independent of the nanoparticle concentration.
Collapse
Affiliation(s)
- Stephanie Fulaz
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| | - Dishon Hiebner
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| | - Caio H N Barros
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| | - Henry Devlin
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| | - Stefania Vitale
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| | - Laura Quinn
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| | - Eoin Casey
- UCD School of Chemical and Bioprocess Engineering , University College Dublin , Belfield, Dublin 4 Dublin , Ireland
| |
Collapse
|
19
|
Wang Z, Gong X, Xie J, Xu Z, Liu G, Zhang G. Investigation of Formation of Bacterial Biofilm upon Dead Siblings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7405-7413. [PMID: 30084644 DOI: 10.1021/acs.langmuir.8b01962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biocides can effectively kill bacteria; however, whether the dead bacterial cells left on the surface influence the later growth of biofilm is unknown. In this study, we have cultured Pseudomonas aeruginosa (PAO1) biofilm on their dead siblings and have investigated their evolution by using magnetic force modulation atomic force microscopy (MF-AFM). The time dependence of the biofilm thickness indicates that the deposited dead siblings can slow down the growth of PAO1 biofilm. The biofilm growing on dead bacteria layers is softer in comparison with those upon alive siblings, as reflected by the static elastic modulus ( E) and dynamic stiffness ( kd) scaled to the disturbing frequency ( f) as kd = kd,0 fγ, where kd,0 is the scaling factor and γ is the power-law exponent. We reveal that the smaller population instead of the variation of extracellular polymeric substances (EPS) within the biofilm upon the dead siblings is responsible for the softer biofilm. The present study provides a better understanding of the biofilm formation, thus, making it significant for designing antimicrobial medical materials and antifouling coatings.
Collapse
Affiliation(s)
- Zhi Wang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Jinhong Xie
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Zhenbo Xu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
- Department of Microbial Pathogenesis, School of Dentistry , University of Maryland , Baltimore , Maryland 21201 , United States
| | - Guangming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , People's Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering , South China University of Technology , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
20
|
Unsal T, Cansever N, Ilhan-Sungur E. Impact of biofilm in the maturation process on the corrosion behavior of galvanized steel: long-term evaluation by EIS. World J Microbiol Biotechnol 2019; 35:22. [PMID: 30656423 DOI: 10.1007/s11274-019-2592-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/10/2019] [Indexed: 01/06/2023]
Abstract
In this study, the effect of biofilm in the maturation process on the corrosion behavior of galvanized steel was investigated in a model of a recirculating water system over 6 months. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization methods were used to determine the corrosion behavior of galvanized steel. The biofilm and corrosion products on the galvanized steel surfaces were investigated by using scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). EIS results showed that the structure of the biofilm changed during the maturation process over time and the altering structure of the biofilm affects the corrosion behavior of galvanized steel. Also, EIS analyses validated that the biofilm has a dynamic and complex structure. The data obtained from SEM and macroscopic images indicated that EIS is an effective method for monitoring the biofilm-development process.
Collapse
Affiliation(s)
- Tuba Unsal
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| | - Nurhan Cansever
- Faculty of Chemistry-Metallurgy, Metallurgical and Materials Engineering Department, Yildiz Technical University, Esenler, 34210, Istanbul, Turkey
| | - Esra Ilhan-Sungur
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| |
Collapse
|
21
|
Habimana O, Zanoni M, Vitale S, O'Neill T, Scholz D, Xu B, Casey E. One particle, two targets: A combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms. J Colloid Interface Sci 2018; 526:419-428. [PMID: 29763820 DOI: 10.1016/j.jcis.2018.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/06/2023]
Abstract
Attempts to deal with the problem of detrimental biofilms using nanoparticle technologies have generally focussed on exploiting biocidal approaches. However, it is now recognised that biofilm matrix-components may be targets for the disruption or dispersion of biofilms. Here, we show that the functionalization of gold nanoparticles with the enzyme, proteinase-K (PK) led to both biocidal and matrix disruption effects within Pseudomonas fluorescens biofilms and released cells. This study highlights the potential mechanisms underpinning the properties of Proteinase-K functionalized gold nanoparticles. With the emergence of biocide-resistant biofilm-forming organisms, novel nanoparticle strategies may provide the ideal solution for disrupting and inactivating biofilm cells, thereby minimising the use of biocides or antibiotics.
Collapse
Affiliation(s)
- Olivier Habimana
- The University of Hong Kong, School of Biological Sciences, Pokfulam, Hong Kong Special Administrative Region
| | - Michele Zanoni
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Stefania Vitale
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Tiina O'Neill
- Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Dimitri Scholz
- Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Bin Xu
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
22
|
Gafri HFS, Mohamed Zuki F, Aroua MK, Hashim NA. Mechanism of bacterial adhesion on ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) and combination with activated carbon (PAC). REV CHEM ENG 2018. [DOI: 10.1515/revce-2017-0006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Bacterial adhesion to surfaces is related to several factors, such as surface charge, surface energy, and substrate characteristics (leading to the formation of biofilms). Organisms are dominant in most environmental, industrial, and medical problems and processes that are of interest to microbiologists. Biofilm cells are at least 500 times more resistant to antibacterial agents compared to planktonic cells. The usage of ultrafiltration membranes is fast becoming popular for water treatment. Membrane lifetime and permeate flux are primarily affected by the phenomena of microbial accumulation and fouling at the membrane’s surface. This review intends to understand the mechanism of membrane fouling by bacterial attachment on polymeric ultrafiltration membrane modified by natural antimicrobial polymers (chitosan) combined with powder activated carbon. Also, to guide future research on membrane water treatment processes, adhesion prediction using the extended Derjaguin-Landau-Verwey-Overbeek theory is discussed.
Collapse
Affiliation(s)
- Hasan Fouzi S. Gafri
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Mohamed Kheireddine Aroua
- Centre for Carbon Dioxide Capture and Utilization (CCDCU), School of Science and Technology , Sunway University, Bandar Sunway , 47500 Petaling Jaya , Malaysia
- Department of Engineering , Lancaster University , Lancaster, LA1 4YW , UK
| | - Nur Awanis Hashim
- Department of Chemical Engineering , University of Malaya , 50603 Kuala Lumpur , Malaysia
| |
Collapse
|
23
|
Allen A, Habimana O, Casey E. The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: A combined study of nutrient concentrations and shear conditions. Colloids Surf B Biointerfaces 2018; 165:127-134. [PMID: 29471219 DOI: 10.1016/j.colsurfb.2018.02.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 01/17/2018] [Accepted: 02/14/2018] [Indexed: 12/16/2022]
Abstract
The growth of biofilms on surfaces is a complicated process influenced by several environmental factors such as nutrient availability and fluid shear. In this study, combinations of growth conditions were selected for the study of Pseudomonas fluorescens biofilms including as cultivation time (24- or 48 h), nutrient levels (1:1 or 1:10 King B medium), and shear conditions (75 RPM shaking, 0.4 mL min -1 or 0.7 mL min -1). The use of Confocal Laser Scanning Microscopy (CLSM) determined biofilm structure, while liquid-phase Atomic Force Microscopy (AFM) techniques resolved the mechanical properties of biofilms. Under semi-static conditions, high nutrient environments led to more abundant biofilms with three times higher EPS content compared to biofilms grown under low nutrient conditions. AFM results revealed that biofilms formed under these conditions were less stiff, as shown by their Young's modulus values of 2.35 ± 0.08 kPa, compared to 4.98 ± 0.02 kPa for that of biofilms formed under low nutrient conditions. Under dynamic conditions, however, biofilms exposed to low nutrient conditions and high shear rates led to more developed biofilms compared to other tested dynamic conditions. These biofilms were also found to be significantly more adhesive compared to their counterparts grown at higher nutrient conditions.
Collapse
Affiliation(s)
- Ashley Allen
- School of Engineering, The University of Edinburgh, Edinburgh, UK
| | - Olivier Habimana
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Eoin Casey
- School of Chemical and Bioprocess Engineering, University College Dublin (UCD), Belfield, Dublin 4, Ireland.
| |
Collapse
|
24
|
Calcium Hydroxide Treatment Does Not Alter the Susceptibility of Enterococcus faecalis Biofilms to Sodium Hypochlorite. Eur Endod J 2017; 2:1-5. [PMID: 33403351 PMCID: PMC7757968 DOI: 10.14744/eej.2017.17022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/04/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022] Open
Abstract
Objective: To investigate the influence of calcium hydroxide (Ca(OH)2) on susceptibility to disinfection with sodium hypochlorite (NaOCl) of biofilm bacteria. Methods: Monospecies biofilms of eight Enterococcus faecalis strains were subjected to a 2-h challenge with Ca(OH)2. After a recovery phase, the biofilms were treated with a concentration of NaOCl that was lower than the minimum inhibitory concentration. In a metabolic assay, the efficacy of NaOCl disinfection in Ca(OH)2-challenged biofilms and unchallenged biofilms was evaluated. The data were analyzed with Mann-Whitney U and Kruskall- Wallis tests. A P value of less than 0.05 was considered statistically significant. Results: There were marginal differences in susceptibility to NaOCl among the E. faecalis strains. After the Ca(OH)2 challenge, seven strains remained equally susceptible to NaOCl disinfection whereas one strain became more resistant to NaOCl (P=0.03). Conclusion: After a Ca(OH)2 challenge, in general E. faecalis remained equally susceptible to disinfection with NaOCl.
Collapse
|
25
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
26
|
Tallawi M, Opitz M, Lieleg O. Modulation of the mechanical properties of bacterial biofilms in response to environmental challenges. Biomater Sci 2017; 5:887-900. [DOI: 10.1039/c6bm00832a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we highlight recent research on the relationship between biofilm matrix composition, biofilm mechanics and environmental stimuli.
Collapse
Affiliation(s)
- Marwa Tallawi
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| | - Madeleine Opitz
- Center for NanoScience
- Faculty of Physics
- Ludwig-Maximilians-Universität München
- Munich
- Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering
- Technische Universität München
- Garching
- Germany
| |
Collapse
|
27
|
Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach. NPJ Biofilms Microbiomes 2016. [PMID: 28649399 PMCID: PMC5460257 DOI: 10.1038/s41522-016-0005-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis. This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24 h and 48 h) and alternate ionic conditions (with and without calcium chloride supplementation). The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character.
Collapse
|
28
|
Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy. Biointerphases 2016; 11:041005. [PMID: 27907987 DOI: 10.1116/1.4968809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (ks) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, ks is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.
Collapse
|
29
|
Zhou G, Shi QS, Huang XM, Xie XB. Proteome responses of Citrobacter werkmanii BF-6 planktonic cells and biofilms to calcium chloride. J Proteomics 2016; 133:134-143. [DOI: 10.1016/j.jprot.2015.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 11/27/2022]
|
30
|
Zeng G, Vad BS, Dueholm MS, Christiansen G, Nilsson M, Tolker-Nielsen T, Nielsen PH, Meyer RL, Otzen DE. Functional bacterial amyloid increases Pseudomonas biofilm hydrophobicity and stiffness. Front Microbiol 2015; 6:1099. [PMID: 26500638 PMCID: PMC4595789 DOI: 10.3389/fmicb.2015.01099] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022] Open
Abstract
The success of Pseudomonas species as opportunistic pathogens derives in great part from their ability to form stable biofilms that offer protection against chemical and mechanical attack. The extracellular matrix of biofilms contains numerous biomolecules, and it has recently been discovered that in Pseudomonas one of the components includes β-sheet rich amyloid fibrils (functional amyloid) produced by the fap operon. However, the role of the functional amyloid within the biofilm has not yet been investigated in detail. Here we investigate how the fap-based amyloid produced by Pseudomonas affects biofilm hydrophobicity and mechanical properties. Using atomic force microscopy imaging and force spectroscopy, we show that the amyloid renders individual cells more resistant to drying and alters their interactions with hydrophobic probes. Importantly, amyloid makes Pseudomonas more hydrophobic and increases biofilm stiffness 20-fold. Deletion of any one of the individual members of in the fap operon (except the putative chaperone FapA) abolishes this ability to increase biofilm stiffness and correlates with the loss of amyloid. We conclude that amyloid makes major contributions to biofilm mechanical robustness.
Collapse
Affiliation(s)
- Guanghong Zeng
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| | - Brian S. Vad
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| | - Morten S. Dueholm
- Center for Microbial Communities, Aalborg UniversityAalborg, Denmark
| | - Gunna Christiansen
- Department of Biomedicine-Medical Microbiology and Immunology, Aarhus UniversityAarhus, Denmark
| | - Martin Nilsson
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Aalborg UniversityAalborg, Denmark
| | - Rikke L. Meyer
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Centre, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
31
|
Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach. J Mech Behav Biomed Mater 2015; 54:205-18. [PMID: 26474034 DOI: 10.1016/j.jmbbm.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 11/20/2022]
Abstract
A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments.
Collapse
|
32
|
Safari A, Tukovic Z, Walter M, Casey E, Ivankovic A. Mechanical properties of a mature biofilm from a wastewater system: from microscale to macroscale level. BIOFOULING 2015; 31:651-64. [PMID: 26371590 DOI: 10.1080/08927014.2015.1075981] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A fundamental understanding of biofilm mechanical stability is critical in order to describe detachment and develop biofouling control strategies. It is thus important to characterise the elastic deformation and flow behaviour of the biofilm under different modes of applied force. In this study, the mechanical properties of a mature wastewater biofilm were investigated with methods including macroscale compression and microscale indentation using atomic force microscopy (AFM). The mature biofilm was found to be mechanically isotropic at the macroscale level as its mechanical properties did not depend on the scales and modes of loading. However, the biofilm showed a tendency for mechanical inhomogeneity at the microscale level as indentation progressed deeper into the matrix. Moreover, it was observed that the adhesion force had a significant influence on the elastic properties of the biofilm at the surface, subjected to microscale tensile loading. These results are expected to inform a damage-based model for biofilm detachment.
Collapse
Affiliation(s)
- Ashkan Safari
- a School of Electrical, Electronic and Mechanical Engineering , University College Dublin (UCD) , Dublin , Ireland
| | - Zeljko Tukovic
- b Faculty of Mechanical Engineering and Naval Architecture , University of Zagreb , Zagreb , Croatia
| | - Maik Walter
- c School of Chemical and Bioprocess Engineering , University College Dublin (UCD) , Dublin , Ireland
| | - Eoin Casey
- c School of Chemical and Bioprocess Engineering , University College Dublin (UCD) , Dublin , Ireland
| | - Alojz Ivankovic
- a School of Electrical, Electronic and Mechanical Engineering , University College Dublin (UCD) , Dublin , Ireland
| |
Collapse
|