1
|
Gomez F, Roter SF, Rossi D, Wu G, Safaripour M, Webster D, Chen Z. Molecular Structures of Surfaces and Interfaces of Poly(dimethylsiloxane) Incorporated with Silicone Oils Containing Phenyl Functionality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1985-1996. [PMID: 39813392 DOI: 10.1021/acs.langmuir.4c04566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Poly(dimethylsiloxane) (PDMS) materials have been widely researched and applied as fouling-release coatings. Incorporation of silicone oils into PDMS has been shown to improve the antifouling properties of PDMS materials. In this research, we applied sum frequency generation (SFG) vibrational spectroscopy to study PDMS materials incorporated with various silicone oils containing phenyl groups in air, water, and protein solutions. It was found that the surface structures of various silicone oils varied, which results in different surface structures of PDMS with different oils incorporated. Such different PDMS surfaces interact with water molecules differently, leading to different surface hydrations. A model protein, fibrinogen, was used to study molecular interactions between oil-incorporated PDMS and biological molecules, testing the antifouling and fouling-release performance of different PDMS materials. It was found that fibrinogen has different adsorption behaviors on different PDMS surfaces, while adsorbed fibrinogen adopts bent structures. This study demonstrated that SFG can be used to deduce molecular information on silicone oil, PDMS, water, and fibrinogen on surfaces/at interfaces in situ in real-time. The different silicone oils incorporated into PDMS changed the PDMS surfaces, leading to varied interactions with water and biological media, influencing the antifouling and fouling-release activities. In most cases, the presence of silicone oils could enhance the surface hydration. However, the presence of phenyl groups could reduce the level of surface hydration. Nevertheless, our studies demonstrated that incorporation of silicone oils into PDMS led to better antifouling or fouling-release properties.
Collapse
Affiliation(s)
- Fernando Gomez
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| | - Samuel F Roter
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
- Muhlenberg College, 2400 Chew Street, Allentown, Pennsylvania 18104, United States
| | - Daniel Rossi
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| | - Guangyao Wu
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| | - Maryam Safaripour
- Department of Coatings and Polymeric Materials, North Dakota State University, 1735 NDSU Research Park Drive, Fargo, North Dakota 58102, United States
| | - Dean Webster
- Department of Coatings and Polymeric Materials, North Dakota State University, 1735 NDSU Research Park Drive, Fargo, North Dakota 58102, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue Ann Arbor, Michigan 48103, United States
| |
Collapse
|
2
|
Dong W, Ni C, Li X, Yu L, Yan X. Preparation and antifouling performance of tin-free self-polishing antifouling coatings based on side-chain suspended indole derivative structural resins. MARINE POLLUTION BULLETIN 2024; 208:116931. [PMID: 39278177 DOI: 10.1016/j.marpolbul.2024.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Tin-free self-polishing antifouling coatings have the highest market share since organotin self-polishing antifouling coatings have been banned. However, its high dependence on cuprous oxide was found to have caused potential harm to the environment, making it necessary to improve the functionality of the resin. In this paper, a zinc acrylate resin with side chain hanging indole derivative structure was prepared by using N-(1H-5-bromoindole-3-methylene) (BIAM) with good biological activity as functional monomer. The functional resin with good antifouling performance was selected by antibacterial and algae inhibition experiments. The results showed that when the BIAM content was 9 %, the inhibition rates of the resin on E. coli and Prymnesium parvum reached 98 % and 90 %, respectively. Tin-free self-polishing antifouling coatings were prepared using the above resins as film-forming materials. The anti-protein adsorption performance and antifouling performance of the coating were tested by anti-protein adsorption experiment and real sea hanging plate experiment. The results showed that the coating containing indole derivative structure had good anti-protein adsorption performance and antifouling performance, and the higher the BIAM content, the better the anti-protein adsorption performance and marine antifouling performance.
Collapse
Affiliation(s)
- Wenjian Dong
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Chunhua Ni
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Xia Li
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.
| | - Liangmin Yu
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Xuefeng Yan
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| |
Collapse
|
3
|
Druvari D, Lainioti GC, Bekiari V, Avramidis P, Kallitsis JK, Bokias G. Development of Antifouling Coatings Based on Quaternary Ammonium Compounds through a Multilayer Approach. Int J Mol Sci 2023; 24:ijms24076594. [PMID: 37047567 PMCID: PMC10094943 DOI: 10.3390/ijms24076594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The development of polymeric materials as antifouling coatings for aquaculture nets is elaborated in the present work. In this context, cross-linked polymeric systems based on quaternary ammonium compounds (immobilized or releasable) prepared under mild aqueous conditions were introduced as a more environmentally friendly methodology for coating nets on a large scale. To optimize the duration of action of the coatings, a multilayer coating method was applied by combining the antimicrobial organo-soluble copolymer poly(cetyltrimethylammonium 4-styrenesulfonate-co-glycidyl methacrylate) [P(SSAmC16-co-GMA20)] as the first layer with either the water-soluble copolymer poly(vinylbenzyl trimethylammonium chloride-co-acrylic acid) [P(VBCTMAM-co-AA20)] or the water-soluble polymers poly(acrylic acid) (PAA) and poly(hexamethylene guanidine), PHMG, as the second layer. The above-mentioned approach, followed by thermal cross-linking of the polymeric coatings, resulted in stable materials with controlled release of the biocidal species. The coated nets were studied in terms of their antifouling efficiency under accelerated biofouling conditions as well as under real conditions in an aquaculture field. Resistance to biofouling after three water-nutrient replenishments was observed under laboratory accelerated biofouling conditions. In addition, at the end of the field test (day 23) the uncoated nets were completely covered by marine contaminants, while the coated nets remained intact over most of their extent.
Collapse
Affiliation(s)
- Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Vlasoula Bekiari
- Department of Agriculture, University of Patras, GR-30200 Messolonghi, Greece
| | - Pavlos Avramidis
- Department of Geology, University of Patras, GR-26504 Patras, Greece
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
4
|
Medhi R, Cintora A, Guazzelli E, Narayan N, Leonardi AK, Galli G, Oliva M, Pretti C, Finlay JA, Clare AS, Martinelli E, Ober CK. Nitroxide-Containing Amphiphilic Random Terpolymers for Marine Antifouling and Fouling-Release Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11150-11162. [PMID: 36802475 DOI: 10.1021/acsami.2c23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two types of amphiphilic random terpolymers, poly(ethylene glycol methyl ether methacrylate)-ran-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-ran-poly(polydimethyl siloxane methacrylate) (PEGMEMA-r-PTMA-r-PDMSMA), were synthesized and evaluated for antifouling (AF) and fouling-release (FR) properties using diverse marine fouling organisms. In the first stage of production, the two respective precursor amine terpolymers containing (2,2,6,6-tetramethyl-4-piperidyl methacrylate) units (PEGMEMA-r-PTMPM-r-PDMSMA) were synthesized by atom transfer radical polymerization using various comonomer ratios and two initiators: alkyl halide and fluoroalkyl halide. In the second stage, these were selectively oxidized to introduce nitroxide radical functionalities. Finally, the terpolymers were incorporated into a PDMS host matrix to create coatings. AF and FR properties were examined using the alga Ulva linza, the barnacle Balanus improvisus, and the tubeworm Ficopomatus enigmaticus. The effects of comonomer ratios on surface properties and fouling assay results for each set of coatings are discussed in detail. There were marked differences in the effectiveness of these systems against the different fouling organisms. The terpolymers had distinct advantages over monopolymeric systems across the different organisms, and the nonfluorinated PEG and nitroxide combination was identified as the most effective formulation against B. improvisus and F. enigmaticus.
Collapse
Affiliation(s)
- Riddhiman Medhi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alicia Cintora
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Nila Narayan
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amanda K Leonardi
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Matteo Oliva
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
| | - Carlo Pretti
- Consorzio Interuniversitario di Biologia Marina e Ecologia Applicata "G. Bacci", Livorno 57128, Italy
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa 56124, Italy
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa 56124, Italy
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Leonardi AK, Medhi R, Zhang A, Düzen N, Finlay JA, Clarke JL, Clare AS, Ober CK. Investigation of N-Substituted Morpholine Structures in an Amphiphilic PDMS-Based Antifouling and Fouling-Release Coating. Biomacromolecules 2022; 23:2697-2712. [PMID: 35486708 DOI: 10.1021/acs.biomac.1c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biofouling is a major disruptive process affecting the fuel efficiency and durability of maritime vessel coatings. Previous research has shown that amphiphilic coatings consisting of a siloxane backbone functionalized with hydrophilic moieties are effective marine antifouling and fouling-release materials. Poly(ethylene glycol) (PEG) has been the primary hydrophilic component used in such systems. Recently, the morpholine group has emerged as a promising compact alternative in antifouling membranes but is yet to be studied against marine foulants. In this work, the use of morpholine moieties to generate amphiphilicity in a poly(dimethylsiloxane) (PDMS)-based antifouling and fouling-release coating was explored. Two separate coating sets were investigated. The first set examined the incorporation of an N-substituted morpholine amine, and while these coatings showed promising fouling-release properties for Ulva linza, they had unusually high settlement of spores compared to controls. Based on those results, a second set of materials was synthesized using an N-substituted morpholine amide to probe the source of the high settlement and was found to significantly improve antifouling performance. Both coating sets included PEG controls with varying lengths to compare the viability of the morpholine structures as alternative hydrophilic groups. Surfaces were evaluated through a combination of bubble contact angle goniometry, profilometry, X-ray photoelectron spectroscopy (XPS), and marine bioassays against two soft fouling species, U. linza and Navicula incerta, known to have different adhesion characteristics.
Collapse
Affiliation(s)
| | | | | | | | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | | |
Collapse
|
6
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
7
|
Hancox E, Derry MJ, Greenall MJ, Huband S, Al-Shok L, Town JS, Topham PD, Haddleton DM. Heterotelechelic homopolymers mimicking high χ - ultralow N block copolymers with sub-2 nm domain size. Chem Sci 2022; 13:4019-4028. [PMID: 35440978 PMCID: PMC8985574 DOI: 10.1039/d2sc00720g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/13/2022] [Indexed: 12/16/2022] Open
Abstract
Three fluorinated, hydrophobic initiators have been utilised for the synthesis of low molecular mass fluoro-poly(acrylic acid) heterotelechelic homopolymers to mimic high chi (χ)-low N diblock copolymers with ultrafine domains of sub-2 nm length scale. Polymers were obtained by a simple photoinduced copper(ii)-mediated reversible-deactivation radical polymerisation (Cu-RDRP) affording low molecular mass (<3 kDa) and low dispersity (Đ = 1.04-1.21) homopolymers. Heating/cooling ramps were performed on bulk samples (ca. 250 μm thick) to obtain thermodynamically stable nanomorpologies of lamellar (LAM) or hexagonally packed cylinders (HEX), as deduced by small-angle X-ray scattering (SAXS). Construction of the experimental phase diagram alongside a detailed theoretical model demonstrated typical rod-coil block copolymer phase behaviour for these fluoro-poly(acrylic acid) homopolymers, where the fluorinated initiator-derived segment acts as a rod and the poly(acrylic acid) as a coil. This work reveals that these telechelic homopolymers mimic high χ-ultralow N diblock copolymers and enables reproducible targeting of nanomorphologies with incredibly small, tunable domain size.
Collapse
Affiliation(s)
- E Hancox
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - M J Derry
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK
| | - M J Greenall
- School of Mathematics and Physics, University of Lincoln Brayford Pool Lincoln LN6 7TS UK
| | - S Huband
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - L Al-Shok
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - J S Town
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - P D Topham
- Aston Institute of Materials Research, Aston University Birmingham B4 7ET UK
| | - D M Haddleton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| |
Collapse
|
8
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Dhyani A, Wang J, Halvey AK, Macdonald B, Mehta G, Tuteja A. Design and applications of surfaces that control the accretion of matter. Science 2021; 373:373/6552/eaba5010. [PMID: 34437123 DOI: 10.1126/science.aba5010] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surfaces that provide control over liquid, solid, or vapor accretion provide an evolutionary advantage to numerous plants, insects, and animals. Synthetic surfaces inspired by these natural surfaces can have a substantial impact on diverse commercial applications. Engineered liquid and solid repellent surfaces are often designed to impart control over a single state of matter, phase, or fouling length scale. However, surfaces used in diverse real-world applications need to effectively control the accrual of matter across multiple phases and fouling length scales. We discuss the surface design strategies aimed at controlling the accretion of different states of matter, particularly those that work across multiple length scales and different foulants. We also highlight notable applications, as well as challenges associated with these designer surfaces' scale-up and commercialization.
Collapse
Affiliation(s)
- Abhishek Dhyani
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA
| | - Jing Wang
- Department of Mechanical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Alex Kate Halvey
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Brian Macdonald
- Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Geeta Mehta
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan-Ann Arbor, MI, USA
| | - Anish Tuteja
- Macromolecular Science and Engineering, University of Michigan-Ann Arbor, MI, USA. .,Biointerfaces Institute, University of Michigan-Ann Arbor, MI, USA.,Department of Materials Science and Engineering, University of Michigan-Ann Arbor, MI, USA.,Department of Chemical Engineering, University of Michigan-Ann Arbor, MI, USA
| |
Collapse
|
10
|
Hu P, Xie Q, Ma C, Zhang G. Silicone-Based Fouling-Release Coatings for Marine Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2170-2183. [PMID: 32013443 DOI: 10.1021/acs.langmuir.9b03926] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine biofouling profoundly influences marine industries and activities. It slows the speed and increases the fuel consumption of ships, corrodes offshore platforms, and blocks seawater pipelines. The most effective and economical antifouling approach uses coatings. Fouling-release coatings (FRCs) with low surface free energy and high elasticity weakly adhere to marine organisms, so they can be readily removed by the water shear force. FRCs have attracted increasing interest because they are biocide-free and hence ecofriendly. However, traditional silicone-based FRCs have weak adhesion to substrates, low mechanical strength, and low fouling resistance, limiting their applications. In recent years, many attempts have been made to improve their mechanical properties and fouling resistance. This review deals with the progress in the construction of high-performance silicone-based fouling-release surfaces.
Collapse
Affiliation(s)
- Peng Hu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
11
|
Preparation and synergistic antifouling effect of self-renewable coatings containing quaternary ammonium-functionalized SiO2 nanoparticles. J Colloid Interface Sci 2020; 563:261-271. [DOI: 10.1016/j.jcis.2019.12.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
|
12
|
Amphiphilic hydrolyzable polydimethylsiloxane-b-poly(ethyleneglycol methacrylate-co-trialkylsilyl methacrylate) block copolymers for marine coatings. I. Synthesis, hydrolysis and surface wettability. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.121954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Martini F, Guazzelli E, Martinelli E, Borsacchi S, Geppi M, Galli G. Molecular Dynamics of Amphiphilic Random Copolymers in the Bulk: A
1
H and
19
F NMR Relaxometry Study. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Francesca Martini
- Dipartimento di Chimica e Chimica Industriale Università di Pisa via G. Moruzzi 13 56124 Pisa Italy
- Consiglio Nazionale delle Ricerche–CNR Istituto di Chimica dei Composti OrganoMetallici Sede Secondaria di Pisa via G. Moruzzi 1 56124 Pisa Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale Università di Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale Università di Pisa via G. Moruzzi 13 56124 Pisa Italy
| | - Silvia Borsacchi
- Consiglio Nazionale delle Ricerche–CNR Istituto di Chimica dei Composti OrganoMetallici Sede Secondaria di Pisa via G. Moruzzi 1 56124 Pisa Italy
| | - Marco Geppi
- Dipartimento di Chimica e Chimica Industriale Università di Pisa via G. Moruzzi 13 56124 Pisa Italy
- Consiglio Nazionale delle Ricerche–CNR Istituto di Chimica dei Composti OrganoMetallici Sede Secondaria di Pisa via G. Moruzzi 1 56124 Pisa Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale Università di Pisa via G. Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
14
|
Leonardi AK, Ober CK. Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification. Annu Rev Chem Biomol Eng 2019; 10:241-264. [DOI: 10.1146/annurev-chembioeng-060718-030401] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In marine industries, the accumulation of organic matter and marine organisms on ship hulls and instruments limits performance, requiring frequent maintenance and increasing fuel costs. Current coatings technology to combat this biofouling relies heavily on the use of toxic, biocide-containing paints. These pose a serious threat to marine ecosystems, affecting both target and nontarget organisms. Innovation in the design of polymers offers an excellent platform for the development of alternatives, but the creation of a broad-spectrum, nontoxic material still poses quite a hurdle for researchers. Surface chemistry, physical properties, durability, and attachment scheme have been shown to play a vital role in the construction of a successful coating. This review explores why these characteristics are important and how recent research accounts for them in the design and synthesis of new environmentally benign antifouling and fouling release materials.
Collapse
Affiliation(s)
- Amanda K. Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Christopher K. Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Surface Segregation of Amphiphilic PDMS-Based Films Containing Terpolymers with Siloxane, Fluorinated and Ethoxylated Side Chains. COATINGS 2019. [DOI: 10.3390/coatings9030153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
(Meth)acrylic terpolymers carrying siloxane (Si), fluoroalkyl (F) and ethoxylated (EG) side chains were synthesized with comparable molar compositions and different lengths of the Si and EG side chains, while the length of the fluorinated side chain was kept constant. Such terpolymers were used as surface-active modifiers of polydimethylsiloxane (PDMS)-based films with a loading of 4 wt%. The surface chemical compositions of both the films and the pristine terpolymers were determined by angle-resolved X-ray photoelectron spectroscopy (AR-XPS) at different photoemission angles. The terpolymer was effectively segregated to the polymer−air interface of the films independent of the length of the constituent side chains. However, the specific details of the film surface modification depended upon the chemical structure of the terpolymer itself. The exceptionally high enrichment in F chains at the surface caused the accumulation of EG chains at the surface as well. The response of the films to the water environment was also proven to strictly depend on the type of terpolymer contained. While terpolymers with shorter EG chains appeared not to be affected by immersion in water for seven days, those containing longer EG chains underwent a massive surface reconstruction.
Collapse
|
16
|
|
17
|
Guazzelli E, Martinelli E, Galli G, Cupellini L, Jurinovich S, Mennucci B. Single-chain self-folding in an amphiphilic copolymer: An integrated experimental and computational study. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Olajire AA. Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.053] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Julolidine-labelled fluorinated block copolymers for the development of two-layer films with highly sensitive vapochromic response. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9302-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Martinelli E, Pretti C, Oliva M, Glisenti A, Galli G. Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Martinelli E, Annunziata L, Guazzelli E, Pucci A, Biver T, Galli G. The Temperature-Responsive Nanoassemblies of Amphiphilic Random Copolymers Carrying Poly(siloxane) and Poly(oxyethylene) Pendant Chains. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Luisa Annunziata
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa; 56124 Pisa Italy
| |
Collapse
|
22
|
Guazzelli E, Masotti E, Biver T, Pucci A, Martinelli E, Galli G. The self-assembly over nano- to submicro-length scales in water of a fluorescent julolidine-labeled amphiphilic random terpolymer. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elisa Guazzelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Elena Masotti
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Tarita Biver
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
- INSTM, UdR Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
- INSTM, UdR Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale; Università di Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
- INSTM, UdR Pisa, Via G. Moruzzi 13; Pisa 56124 Italy
| |
Collapse
|
23
|
Wenning BM, Martinelli E, Mieszkin S, Finlay JA, Fischer D, Callow JA, Callow ME, Leonardi AK, Ober CK, Galli G. Model Amphiphilic Block Copolymers with Tailored Molecular Weight and Composition in PDMS-Based Films to Limit Soft Biofouling. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16505-16516. [PMID: 28429593 DOI: 10.1021/acsami.7b03168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces). All films performed well against U. linza and exhibited high removal of attached sporelings (young plants) under an applied shear stress, with the lower molecular weight block copolymers being the best performing in the set. The composition ratios from 50:50 to 60:40 of the AF6/PEGMA side groups were shown to be more effective, with several films exhibiting spontaneous removal of the sporelings. The cells of N. incerta were also removed from several coating compositions. All films were characterized by surface techniques including captive bubble contact angle, atomic force microscopy, and near edge X-ray absorption fine structure spectroscopy to correlate surface chemistry and morphology with biological performance.
Collapse
Affiliation(s)
- Brandon M Wenning
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| | - Sophie Mieszkin
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - John A Finlay
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Daniel Fischer
- National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States
| | - James A Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | - Maureen E Callow
- School of Biosciences, The University of Birmingham , Edgbaston, Birmingham B15 5TT, U.K
| | | | | | - Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa , Pisa 56124, Italy
| |
Collapse
|
24
|
La Manna P, Musto P, Galli G, Martinelli E. In Situ FT-IR Spectroscopy Investigation of the Water Sorption of Amphiphilic PDMS Crosslinked Networks. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pietro La Manna
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Pellegrino Musto
- Institute of Chemistry and Technology of Polymers; National Research Council of Italy; 80078 Pozzuoli Naples Italy
| | - Giancarlo Galli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Department of Chemistry and Industrial Chemistry; University of Pisa; 56124 Pisa Italy
| |
Collapse
|
25
|
Galli G, Martinelli E. Amphiphilic Polymer Platforms: Surface Engineering of Films for Marine Antibiofouling. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600704] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 12/31/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM; Università di Pisa; 56124 Pisa Italy
| |
Collapse
|
26
|
Zhu P, Meng W, Huang Y. Synthesis and antibiofouling properties of crosslinkable copolymers grafted with fluorinated aromatic side chains. RSC Adv 2017. [DOI: 10.1039/c6ra26409c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To obtain highly effective antifouling coatings, ternary copolymers grafted with short fluoroalkyl or perfluoropolyether modified fluorinated aromatic side chains and cross-linkable functional groups were prepared via radical polymerization.
Collapse
Affiliation(s)
- Pengcheng Zhu
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- 201620 Shanghai
- China
| | - Weidong Meng
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- 201620 Shanghai
- China
| | - Yangen Huang
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- 201620 Shanghai
- China
| |
Collapse
|
27
|
Inutsuka M, Tanoue H, Yamada N, Ito K, Yokoyama H. Dynamic contact angle on a reconstructive polymer surface by segregation. RSC Adv 2017. [DOI: 10.1039/c7ra00708f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A peculiar time evolution of contact angle of water on reconstructive polymer surface was analyzed.
Collapse
Affiliation(s)
- Manabu Inutsuka
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa-shi
- Japan
| | - Hirokazu Tanoue
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa-shi
- Japan
| | - Norifumi L. Yamada
- Neutron Science Laboratory
- High Energy Accelerator Research Organization
- Japan
| | - Kohzo Ito
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa-shi
- Japan
| | - Hideaki Yokoyama
- Graduate School of Frontier Sciences
- The University of Tokyo
- Kashiwa-shi
- Japan
| |
Collapse
|
28
|
PDMS-based films containing surface-active amphiphilic block copolymers to combat fouling from barnacles B. amphitrite and B. improvisus. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Ma C, Xu W, Pan J, Xie Q, Zhang G. Degradable Polymers for Marine Antibiofouling: Optimizing Structure To Improve Performance. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02917] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chunfeng Ma
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Wentao Xu
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Jiansen Pan
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Qingyi Xie
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Guangzhao Zhang
- Faculty of Materials Science
and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
| |
Collapse
|
30
|
Galli G, Barsi D, Martinelli E, Glisenti A, Finlay JA, Callow ME, Callow JA. Copolymer films containing amphiphilic side chains of well-defined fluoroalkyl-segment length with biofouling-release potential. RSC Adv 2016. [DOI: 10.1039/c6ra15104c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel methacrylate copolymers containing polysiloxane (SiMA) and mixed poly(ethyleneglycol)-perfluorohexyl side chains (MEF) were synthesised and dispersed as surface-active additives in crosslinked PDMS films.
Collapse
Affiliation(s)
- Giancarlo Galli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM
- Università di Pisa
- 56124 Pisa
- Italy
| | - David Barsi
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM
- Università di Pisa
- 56124 Pisa
- Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale and UdR Pisa INSTM
- Università di Pisa
- 56124 Pisa
- Italy
| | | | - John A. Finlay
- School of Biosciences
- University of Birmingham
- Birmingham B15 2TT
- UK
| | | | - James A. Callow
- School of Biosciences
- University of Birmingham
- Birmingham B15 2TT
- UK
| |
Collapse
|