1
|
Hong H, Deng A, Tang Y, Liu Z. How to identify biofouling species in marine and freshwater. BIOFOULING 2024; 40:130-152. [PMID: 38450626 DOI: 10.1080/08927014.2024.2324008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
The identification and management of biofouling remain pressing challenges in marine and freshwater ecosystems, with significant implications for environmental sustainability and industrial operations. This comprehensive review synthesizes the current state-of-the-art in biofouling identification technologies, examining eight prominent methodologies: Microscopy Examination, Molecular Biology, Remote Sensing, Community Involvement, Ecological Methods, Artificial Intelligence, Chemical Analysis, and Macro Photography. Each method is evaluated for its respective advantages and disadvantages, considering factors such as precision, scalability, cost, and data quality. Furthermore, the review identifies current obstacles that inhibit the optimal utilization of these technologies, ranging from technical limitations and high operational costs to issues of data inconsistency and subjectivity. Finally, the review posits a future outlook, advocating for the development of integrated, standardized systems that amalgamate the strengths of individual approaches. Such advancement will pave the way for more effective and sustainable strategies for biofouling identification and management.
Collapse
Affiliation(s)
- Heting Hong
- Hubei Meteorological Bureau, Wuhan Regional Climate Center, Wuhan, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Aijuan Deng
- Hubei Meteorological Bureau, Wuhan Regional Climate Center, Wuhan, China
| | - Yang Tang
- Hubei Meteorological Bureau, Wuhan Regional Climate Center, Wuhan, China
| | - Zhixiong Liu
- Hubei Meteorological Bureau, Wuhan Regional Climate Center, Wuhan, China
| |
Collapse
|
2
|
Zarcero J, Antich A, Rius M, Wangensteen OS, Turon X. A new sampling device for metabarcoding surveillance of port communities and detection of non-indigenous species. iScience 2024; 27:108588. [PMID: 38111684 PMCID: PMC10726295 DOI: 10.1016/j.isci.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
Metabarcoding techniques are revolutionizing studies of marine biodiversity. They can be used for monitoring non-indigenous species (NIS) in ports and harbors. However, they are often biased by inconsistent sampling methods and incomplete reference databases. Logistic constraints in ports prompt the development of simple, easy-to-deploy samplers. We tested a new device called polyamide mesh for ports organismal monitoring (POMPOM) with a high surface-to-volume ratio. POMPOMS were deployed inside a fishing and recreational port in the Mediterranean alongside conventional settlement plates. We also compiled a curated database with cytochrome oxidase (COI) sequences of Mediterranean NIS. COI metabarcoding of the communities settled in the POMPOMs captured a similar biodiversity than settlement plates, with shared molecular operational units (MOTUs) representing ca. 99% of reads. 38 NIS were detected in the port accounting for ca. 26% of reads. POMPOMs were easy to deploy and handle and provide an efficient method for NIS surveillance.
Collapse
Affiliation(s)
- Jesús Zarcero
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Adrià Antich
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
| | - Marc Rius
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
- Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park Johannesburg 2006, South Africa
| | - Owen S. Wangensteen
- Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB), CSIC, 17300 Blanes, Catalonia, Spain
| |
Collapse
|
3
|
Latva M, Dedman CJ, Wright RJ, Polin M, Christie-Oleza JA. Microbial pioneers of plastic colonisation in coastal seawaters. MARINE POLLUTION BULLETIN 2022; 179:113701. [PMID: 35537304 DOI: 10.1016/j.marpolbul.2022.113701] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Plastics, when entering the environment, are immediately colonised by microorganisms. This modifies their physico-chemical properties as well as their transport and fate in natural ecosystems, but whom pioneers this colonisation in marine ecosystems? Previous studies have focused on microbial communities that develop on plastics after relatively long incubation periods (i.e., days to months), but very little data is available regarding the earliest stages of colonisation on buoyant plastics in marine waters (i.e., minutes or hours). We conducted a preliminary study where the earliest hours of microbial colonisation on buoyant plastics in marine coastal waters were investigated by field incubations and amplicon sequencing of the prokaryotic and eukaryotic communities. Our results show that members of the Bacteroidetes group pioneer microbial attachment to plastics but, over time, their presence is masked by other groups - Gammaproteobacteria at first and later by Alphaproteobacteria. Interestingly, the eukaryotic community on plastics exposed to sunlight became dominated by phototrophic organisms from the phylum Ochrophyta, diatoms at the start and brown algae towards the end of the three-day incubations. This study defines the pioneering microbial community that colonises plastics immediately when entering coastal marine environments and that may set the seeding Plastisphere of plastics in the oceans.
Collapse
Affiliation(s)
- Mira Latva
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Craig J Dedman
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Robyn J Wright
- School of Life Sciences, University of Warwick, Coventry, UK; School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada; Department of Pharmacology, Faculty of Medicine, Dalhousie University, Canada
| | - Marco Polin
- Department of Physics, University of Warwick, Coventry, UK; IMEDEA (CSIC-UIB), Esporles, Spain
| | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, UK; University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
4
|
Kim HJ, Park JS, Lee TK, Kang D, Kang JH, Shin K, Jung SW. Dynamics of marine bacterial biofouling communities after initial Alteromonas genovensis biofilm attachment to anti-fouling paint substrates. MARINE POLLUTION BULLETIN 2021; 172:112895. [PMID: 34455348 DOI: 10.1016/j.marpolbul.2021.112895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
To determine how bacterial communities succeed after the initial attachment of the bacterial biofilm adhesion using 16S rDNA meta-barcoding in plates coated with copper-based anti-fouling (AF) and non-AF (control) coatings as well as ambient seawater, coated plates were submerged in a marine environment in situ. Alteromonas genovensis (Gammaproteobacteria) in AF coating and Pacificibacter sp. (Alphaproteobacteria) in the control plate were initially abundant. In the AF coating, the abundance of A. genovensis decreased rapidly, whereas that of genus Phaeobacter (Alphaproteobacteria), Serratia (Gammaproteobacteria) and Cupriavidus (Betaproteobacteria) increased. Bacterial community in the control plate had a strong connection to pathogenic Vibrio spp. associated with the growth of invertebrates. Therefore, in the in situ AF coating experiment, A. genovensis accumulation was initially and intensively increased, and the bacteria responded to chemical antagonism, induced the proliferation of specific biofilm bacteria and influenced the interactions and recruitment of additional bacterial communities.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Joon Sang Park
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Donhyug Kang
- Maritime Security Research Center, Korea Institute of Ocean Science & Technology, Busan 49111, Republic of Korea
| | - Jung-Hoon Kang
- Risk Assessment Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyoungsoon Shin
- Ballast Water Research Center, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Seung Won Jung
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
5
|
Coons AK, Busch K, Lenz M, Hentschel U, Borchert E. Biogeography rather than substrate type determines bacterial colonization dynamics of marine plastics. PeerJ 2021; 9:e12135. [PMID: 34603853 PMCID: PMC8445087 DOI: 10.7717/peerj.12135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/18/2021] [Indexed: 01/04/2023] Open
Abstract
Since the middle of the 20th century, plastics have been incorporated into our everyday lives at an exponential rate. In recent years, the negative impacts of plastics, especially as environmental pollutants, have become evident. Marine plastic debris represents a relatively new and increasingly abundant substrate for colonization by microbial organisms, although the full functional potential of these organisms is yet to be uncovered. In the present study, we investigated plastic type and incubation location as drivers of marine bacterial community structure development on plastics, i.e., the Plastisphere, via 16S rRNA amplicon analysis. Four distinct plastic types: high-density polyethylene (HDPE), linear low-density polyethylene (LDPE), polyamide (PA), polymethyl methacrylate (PMMA), and glass-slide controls were incubated for five weeks in the coastal waters of four different biogeographic locations (Cape Verde, Chile, Japan, South Africa) during July and August of 2019. The primary driver of the coastal Plastisphere composition was identified as incubation location, i.e., biogeography, while substrate type did not have a significant effect on bacterial community composition. The bacterial communities were consistently dominated by the classes Alphaproteobacteria, Gammaproteobacteria, and Bacteroidia, irrespective of sampling location or substrate type, however a core bacterial Plastisphere community was not observable at lower taxonomic levels. Overall, this study sheds light on the question of whether bacterial communities on plastic debris are shaped by the physicochemical properties of the substrate they grow on or by the marine environment in which the plastics are immersed. This study enhances the current understanding of biogeographic variability in the Plastisphere by including biofilms from plastics incubated in the previously uncharted Southern Hemisphere.
Collapse
Affiliation(s)
- Ashley K Coons
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Kathrin Busch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Mark Lenz
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| | - Ute Hentschel
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany.,Christian-Albrechts-University Kiel, Kiel, Schleswig-Holstein, Germany
| | - Erik Borchert
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Schleswig-Holstein, Germany
| |
Collapse
|
6
|
Towards the Optimization of eDNA/eRNA Sampling Technologies for Marine Biosecurity Surveillance. WATER 2021. [DOI: 10.3390/w13081113] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The field of eDNA is growing exponentially in response to the need for detecting rare and invasive species for management and conservation decisions. Developing technologies and standard protocols within the biosecurity sector must address myriad challenges associated with marine environments, including salinity, temperature, advective and deposition processes, hydrochemistry and pH, and contaminating agents. These approaches must also provide a robust framework that meets the need for biosecurity management decisions regarding threats to human health, environmental resources, and economic interests, especially in areas with limited clean-laboratory resources and experienced personnel. This contribution aims to facilitate dialogue and innovation within this sector by reviewing current approaches for sample collection, post-sampling capture and concentration of eDNA, preservation, and extraction, all through a biosecurity monitoring lens.
Collapse
|
7
|
Duarte S, Vieira PE, Lavrador AS, Costa FO. Status and prospects of marine NIS detection and monitoring through (e)DNA metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141729. [PMID: 32889465 DOI: 10.1016/j.scitotenv.2020.141729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
In coastal ecosystems, non-indigenous species (NIS) are recognized as a major threat to biodiversity, ecosystem functioning and socio-economic activities. Here we present a systematic review on the use of metabarcoding for NIS surveillance in marine and coastal ecosystems, through the analysis of 42 publications. Metabarcoding has been mainly applied to environmental DNA (eDNA) from water samples, but also to DNA extracted from bulk organismal samples. DNA extraction kits have been widely used and the 18S rRNA and the COI genes the most employed markers, but less than half of the studies targeted more than one marker loci. The Illumina MiSeq platform has been used in >50% of the publications. Current weaknesses include potential occurrence of false negatives due to the primer-biased or faulty DNA amplification and the incompleteness of reference libraries. This is particularly concerning in the case of NIS surveillance, where proficiency in species level detection is critical. Until these weaknesses are resolved, ideally NIS metabarcoding should be supported by complementary approaches, such as morphological analysis or more targeted molecular approaches (e.g. qPCR, ddPCR). Even so, metabarcoding has already proved to be a highly sensitive tool to detect small organisms or undifferentiated life stages across a wide taxonomic range. In addition, it also seems to be very effective in ballast water management and to improve the spatial and temporal sampling frequency of NIS surveillance in marine and coastal ecosystems. Although specific protocols may be required for species-specific NIS detection, for general monitoring it would be vital to settle on a standard protocol able to generate comparable results among surveillance campaigns and regions of the globe, seeking the best approach for detecting the broadest range of species, while minimizing the chances of a false positive or negative detection.
Collapse
Affiliation(s)
- Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana S Lavrador
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Audrézet F, Zaiko A, Lear G, Wood SA, Tremblay LA, Pochon X. Biosecurity implications of drifting marine plastic debris: Current knowledge and future research. MARINE POLLUTION BULLETIN 2021; 162:111835. [PMID: 33220912 DOI: 10.1016/j.marpolbul.2020.111835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The introduction and spread of marine non-indigenous species (NIS) and pathogens into new habitats are a major threat to biodiversity, ecosystem services, human health, and can have substantial economic consequences. Shipping is considered the main vector for marine biological invasions; less well understood is the increased spread of marine NIS and pathogens rafting on marine plastic debris (MPD). Despite an increasing research interest and recent progress in characterizing the plastisphere, this manuscript highlights critical knowledge gaps and research priorities towards a better understanding of the biosecurity implications of MPD. We advocate for future research to (i) investigate plastisphere community succession and the factors influencing NIS propagules and pathogens recruitment through robust experimental investigations; (ii) combine microscopy and molecular approaches to effectively assess the presence of specific taxa; (iii) include additional genetic markers to thoroughly characterize the biodiversity associated with MPD and explore the presence of specific marine pests.
Collapse
Affiliation(s)
- François Audrézet
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand.
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Louis A Tremblay
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand; School of Biological Sciences, University of Auckland, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand; Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Aylagas E, Borja A, Pochon X, Zaiko A, Keeley N, Bruce K, Hong P, Ruiz GM, Stein ED, Theroux S, Geraldi N, Ortega A, Gajdzik L, Coker DJ, Katan Y, Hikmawan T, Saleem A, Alamer S, Jones BH, Duarte CM, Pearman J, Carvalho S. Translational Molecular Ecology in practice: Linking DNA-based methods to actionable marine environmental management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140780. [PMID: 32693276 DOI: 10.1016/j.scitotenv.2020.140780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Molecular-based approaches can provide timely biodiversity assessments, showing an immense potential to facilitate decision-making in marine environmental management. However, the uptake of molecular data into environmental policy remains minimal. Here, we showcase a selection of local to global scale studies applying molecular-based methodologies for environmental management at various stages of implementation. Drawing upon lessons learned from these case-studies, we provide a roadmap to facilitate applications of DNA-based methods to marine policies and to overcome the existing challenges. The main impediment identified is the need for standardized protocols to guarantee data comparison across spatial and temporal scales. Adoption of Translational Molecular Ecology - the sustained collaboration between molecular ecologists and stakeholders, will enhance consensus with regards to the objectives, methods, and outcomes of environmental management projects. Establishing a sustained dialogue among stakeholders is key to accelerating the adoption of molecular-based approaches for marine monitoring and assessment.
Collapse
Affiliation(s)
- Eva Aylagas
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea s/n, 20110 Pasaia, Spain
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Nigel Keeley
- Benthic Resources and Processors Group, Institute of Marine Research, Postboks 6606 Langnes, 9296 Tromsø, Norway
| | - Kat Bruce
- Nature Metrics Ltd, CABI site, Bakeham Lane, Egham TW20 9TY, United Kingdom
| | - Peiying Hong
- Water Desalination and Reuse Center, Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gregory M Ruiz
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA; Aquatic Bioinvasion Research and Policy Institute, Environmental Science and Management, Portland State University, Portland, OR 97201, USA
| | - Eric D Stein
- Southern California Coastal Water Research Project, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA 92626-1437, USA
| | - Susanna Theroux
- Southern California Coastal Water Research Project, 3535 Harbor Blvd., Suite 110, Costa Mesa, CA 92626-1437, USA
| | - Nathan Geraldi
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Laura Gajdzik
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Darren J Coker
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yasser Katan
- Environmental Protection Department, Saudi Aramco, Dhahran 3131, Saudi Arabia
| | - Tyas Hikmawan
- Environmental Protection Department, Saudi Aramco, Dhahran 3131, Saudi Arabia
| | - Ammar Saleem
- The General Authority of Meteorology and Environmental Protection, The Ministry of Environment, Water and Agriculture, Saudi Arabia
| | - Sultan Alamer
- The General Authority of Meteorology and Environmental Protection, The Ministry of Environment, Water and Agriculture, Saudi Arabia
| | - Burton H Jones
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - John Pearman
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
| | - Susana Carvalho
- Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Duarte S, Vieira PE, Costa FO. Assessment of species gaps in DNA barcode libraries of non-indigenous species (NIS) occurring in European coastal regions. METABARCODING AND METAGENOMICS 2020. [DOI: 10.3897/mbmg.4.55162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA metabarcoding has the capacity to bolster current biodiversity assessment techniques, including the early detection and monitoring of non-indigenous species (NIS). However, the success of this approach is greatly dependent on the availability, taxonomic coverage and reliability of reference sequences in genetic databases, whose deficiencies can potentially compromise species identifications at the taxonomic assignment step. In this study we assessed lacunae in availability of DNA sequence data from four barcodes (COI, 18S, rbcL and matK) for NIS occurring in European marine and coastal environments. NIS checklists were based on EASIN and AquaNIS databases. The highest coverage was found for COI for Animalia and rbcL for Plantae (up to 63%, for both) and 18S for Chromista (up to 51%), that greatly increased when only high impact species were taken into account (up to 82 to 89%). Results show that different markers have unbalanced representations in genetic databases, implying that the parallel use of more than one marker can act complimentarily and may greatly increase NIS identification rates through DNA-based tools. Furthermore, based on the COI marker, data for approximately 30% of the species had maximum intra-specific distances higher than 3%, suggesting that many NIS may have undescribed or cryptic diversity. Although completing the gaps in reference libraries is essential to make the most of the potential of the DNA-based tools, a careful compilation, verification and annotation of available sequences is fundamental to assemble large curated and reliable reference libraries that provide support for rigorous species identifications.
Collapse
|
11
|
Azevedo J, Antunes JT, Machado AM, Vasconcelos V, Leão PN, Froufe E. Monitoring of biofouling communities in a Portuguese port using a combined morphological and metabarcoding approach. Sci Rep 2020; 10:13461. [PMID: 32778680 PMCID: PMC7417558 DOI: 10.1038/s41598-020-70307-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
Marine biofouling remains an unsolved problem with a serious economic impact on several marine associated industries and constitutes a major vector for the spread of non-indigenous species (NIS). The implementation of biofouling monitoring programs allows for better fouling management and also for the early identification of NIS. However, few monitoring studies have used recent methods, such as metabarcoding, that can significantly enhance the detection of those species. Here, we employed monthly monitoring of biofouling growth on stainless steel plates in the Atlantic Port of Leixões (Northern Portugal), over one year to test the effect of commercial anti-corrosion paint in the communities. Fouling organisms were identified by combining morpho-taxonomy identification with community DNA metabarcoding using multiple markers (16S rRNA, 18S rRNA, 23S rRNA, and COI genes). The dominant colonizers found at this location were hard foulers, namely barnacles and mussels, while other groups of organisms such as cnidarians, bryozoans, and ascidians were also abundant. Regarding the temporal dynamics of the fouling communities, there was a progressive increase in the colonization of cyanobacteria, green algae, and red algae during the sampled period with the replacement of less abundant groups. The tested anticorrosion paint demonstrated to have a significant prevention effect against the biofouling community resulting in a biomass reduction. Our study also reports, for the first time, 29 NIS in this port, substantiating the need for the implementation of recurring biofouling monitoring programs in ports and harbours.
Collapse
Affiliation(s)
- Joana Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Jorge T Antunes
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - André M Machado
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| | - Elsa Froufe
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Matosinhos, Portugal.
| |
Collapse
|
12
|
Thakur IS, Roy D. Environmental DNA and RNA as Records of Human Exposome, Including Biotic/Abiotic Exposures and Its Implications in the Assessment of the Role of Environment in Chronic Diseases. Int J Mol Sci 2020; 21:ijms21144879. [PMID: 32664313 PMCID: PMC7402316 DOI: 10.3390/ijms21144879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Most of environment-related diseases often result from multiple exposures of abiotic and/or biotic stressors across various life stages. The application of environmental DNA/RNA (eDNA/eRNA) to advance ecological understanding has been very successfully used. However, the eminent extension of eDNA/eRNA-based approaches to estimate human exposure to biotic and/or abiotic environmental stressors to understand the environmental causes of chronic diseases has yet to start. Here, we introduce the potential of eDNA/eRNA for bio-monitoring of human exposome and health effects in the real environmental or occupational settings. This review is the first of its kind to discuss how eDNA/eRNA-based approaches can be applied for assessing the human exposome. eDNA-based exposome assessment is expected to rely on our ability to capture the genome- and epigenome-wide signatures left behind by individuals in the indoor and outdoor physical spaces through shedding, excreting, etc. Records of eDNA/eRNA exposome may reflect the early appearance, persistence, and presence of biotic and/or abiotic-exposure-mediated modifications in these nucleic acid molecules. Functional genome- and epigenome-wide mapping of eDNA offer great promise to help elucidate the human exposome. Assessment of longitudinal exposure to physical, biological, and chemical agents present in the environment through eDNA/eRNA may enable the building of an integrative causal dynamic stochastic model to estimate environmental causes of human health deficits. This model is expected to incorporate key biological pathways and gene networks linking individuals, their geographic locations, and random multi-hits of environmental factors. Development and validation of monitoring of eDNA/eRNA exposome should seriously be considered to introduce into safety and risk assessment and as surrogates of chronic exposure to environmental stressors. Here we highlight that eDNA/eRNA reflecting longitudinal exposure of both biotic and abiotic environmental stressors may serve as records of human exposome and discuss its application as molecular tools for understanding the toxicogenomics basis of environment-related health deficits.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
- Correspondence: (I.S.T.); (D.R.); Tel.: +91-2670-4321 (I.S.T.); +1-30-5348-1694 (D.R.)
| |
Collapse
|
13
|
Rey A, Basurko OC, Rodriguez‐Ezpeleta N. Considerations for metabarcoding-based port biological baseline surveys aimed at marine nonindigenous species monitoring and risk assessments. Ecol Evol 2020; 10:2452-2465. [PMID: 32184993 PMCID: PMC7069299 DOI: 10.1002/ece3.6071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/13/2023] Open
Abstract
Monitoring introduction and spread of nonindigenous species via maritime transport and performing risk assessments require port biological baseline surveys. Yet, the comprehensiveness of these surveys is often compromised by the large number of habitats present in a port, the seasonal variability, and the time-consuming morphological approach used for taxonomic identification. Metabarcoding represents a promising alternative for rapid comprehensive port biological baseline surveys, but its application in this context requires further assessments.We applied metabarcoding (based on barcodes of the cytochrome c oxidase subunit I and of the 18S ribosomal RNA gene) to 192 port samples collected (a) from diverse habitats (water column-including environmental DNA and zooplankton, sediment, and fouling structures), (b) at different sites (from inner to outer estuary), and iii) during the four seasons of the year.By comparing the biodiversity metrics derived from each sample group, we show that each sampling method resulted in a distinct community profile and that environmental DNA alone cannot substitute for organismal sampling, and that, although sampling at different seasons and locations resulted in higher observed biodiversity, operational results can be obtained by sampling selected locations and seasons.By assessing the taxonomic composition of the samples, we show that metabarcoding data allowed the detection of previously recorded nonindigenous species as well as to reveal presence of new ones, even if in low abundance. Synthesis and application. Our comprehensive assessment of metabarcoding for port biological baseline surveys sets the basics for cost-effective, standardized, and comprehensive monitoring of nonindigenous species and for performing risk assessments in ports. This development will contribute to the implementation of the recently entered into force International Convention for the Control and Management of Ships' Ballast Water and Sediments.
Collapse
Affiliation(s)
- Anaïs Rey
- Marine Research DivisionAZTISukarrietaSpain
| | | | | |
Collapse
|
14
|
Angelova AG, Ellis GA, Wijesekera HW, Vora GJ. Microbial Composition and Variability of Natural Marine Planktonic and Biofouling Communities From the Bay of Bengal. Front Microbiol 2019; 10:2738. [PMID: 31866960 PMCID: PMC6908470 DOI: 10.3389/fmicb.2019.02738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
The Bay of Bengal (BoB) is the largest bay in the world and presents a unique marine environment that is subjected to severe weather, a distinct hydrographic regime and a large anthropogenic footprint. Despite these features and the BoB’s overall economic significance, this ecosystem and its microbiome remain among the most underexplored in the world. In this study, amplicon-based microbial profiling was used to assess the bacterial, archaeal, and micro-eukaryotic content of unperturbed planktonic and biofilm/biofouling communities within the BoB. Planktonic microbial communities were collected during the Southwest monsoon season from surface (2 m), subsurface (75 m), and deep-sea (1000 m) waters from six south-central BoB locations and were compared to concomitant mature biofouling communities from photic-zone subsurface moorings (∼75 m). The results demonstrated vertical stratification of all planktonic communities with geographic variations disappearing in the deep-sea environment. Planktonic microbial diversity was found to be driven by different members of the community, with the most dominant phylotypes driving the diversity of the photic zone and rarer species playing a more influential role within the deep-sea. Geographic variability was not observed in the co-located biofouling microbiomes, but community composition and variability was found to be driven by depth and the presence of macro-fouling and photosynthetic organisms. Overall, these results provide much needed baselines for longitudinal assessments that can be used to monitor the health and evolution of this dynamic and critically important marine environment.
Collapse
Affiliation(s)
- Angelina G Angelova
- American Society for Engineering Education, Postdoctoral Fellowship Program, U.S. Naval Research Laboratory, Washington, DC, United States
| | - Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States
| | | | - Gary J Vora
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, United States
| |
Collapse
|
15
|
Wood SA, Pochon X, Laroche O, Ammon U, Adamson J, Zaiko A. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species‐specific detection in environmental DNA. Mol Ecol Resour 2019; 19:1407-1419. [DOI: 10.1111/1755-0998.13055] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Susanna A. Wood
- Coastal and Freshwater Group Cawthron Institute Nelson New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group Cawthron Institute Nelson New Zealand
- Institute of Marine Science University of Auckland Auckland New Zealand
| | - Olivier Laroche
- Coastal and Freshwater Group Cawthron Institute Nelson New Zealand
- Department of Oceanography, School of Ocean and Earth Science and Technology University of Hawaii at Manoa Honolulu HI USA
| | - Ulla Ammon
- Coastal and Freshwater Group Cawthron Institute Nelson New Zealand
- Institute of Marine Science University of Auckland Auckland New Zealand
| | - Janet Adamson
- Coastal and Freshwater Group Cawthron Institute Nelson New Zealand
| | - Anastasija Zaiko
- Coastal and Freshwater Group Cawthron Institute Nelson New Zealand
- Institute of Marine Science University of Auckland Auckland New Zealand
| |
Collapse
|
16
|
Pochon X, Wecker P, Stat M, Berteaux-Lecellier V, Lecellier G. Towards an in-depth characterization of Symbiodiniaceae in tropical giant clams via metabarcoding of pooled multi-gene amplicons. PeerJ 2019; 7:e6898. [PMID: 31139503 PMCID: PMC6521813 DOI: 10.7717/peerj.6898] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
High-throughput sequencing is revolutionizing our ability to comprehensively characterize free-living and symbiotic Symbiodiniaceae, a diverse dinoflagellate group that plays a critical role in coral reef ecosystems. Most studies however, focus on a single marker for metabarcoding Symbiodiniaceae, potentially missing important ecological traits that a combination of markers may capture. In this proof-of-concept study, we used a small set of symbiotic giant clam (Tridacna maxima) samples obtained from nine French Polynesian locations and tested a dual-index sequence library preparation method that pools and simultaneously sequences multiple Symbiodiniaceae gene amplicons per sample for in-depth biodiversity assessments. The rationale for this approach was to allow the metabarcoding of multiple genes without extra costs associated with additional single amplicon dual indexing and library preparations. Our results showed that the technique effectively recovered very similar proportions of sequence reads and dominant Symbiodiniaceae clades among the three pooled gene amplicons investigated per sample, and captured varying levels of phylogenetic resolution enabling a more comprehensive assessment of the diversity present. The pooled Symbiodiniaceae multi-gene metabarcoding approach described here is readily scalable, offering considerable analytical cost savings while providing sufficient phylogenetic information and sequence coverage.
Collapse
Affiliation(s)
- Xavier Pochon
- Coastal & Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | | | - Michael Stat
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Gaël Lecellier
- UMR250/9220 ENTROPIE, IRD-CNRS-UR, LabEx CORAIL, Nouméa, New-Caledonia
- Université Paris-Saclay, UVSQ, Versailles Cedex, France
| |
Collapse
|
17
|
Morín JG, Venera-Pontón DE, Driskell AC, Sánchez JA, Lasker HR, Collin R. Reference DNA barcodes and other mitochondrial markers for identifying Caribbean Octocorals. Biodivers Data J 2019:e30970. [PMID: 30828253 PMCID: PMC6393399 DOI: 10.3897/bdj.7.e30970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/01/2022] Open
Abstract
DNA barcoding is a useful tool for documenting the diversity of metazoans. The most commonly used barcode markers, 16S and COI, are not considered suitable for species identification within some "basal" phyla of metazoans. Nevertheless metabarcoding studies of bulk mixed samples commonly use these markers and may obtain sequences for "basal" phyla. We sequenced mitochondrial DNA fragments of cytochrome oxidase c subunit I (COI), 16S ribosomal RNA (16S), NADH dehydrogenase subunits 2 (16S-ND2), 6 (ND6-ND3) and 4L (ND4L-MSH) for 27 species of Caribbean octocorals to create a reference barcode dataset and to compare the utility of COI and 16S to other markers more typically used for octocorals. The most common genera (Erythropodium, Ellisella, Briareum, Plexaurella, Muriceopsis and Pterogorgia) were effectively distinguished by small differences (5 or more substitutions or indels) in COI and 16S sequences. Gorgonia and Antillogorgia were effectively distinguished from each other by unique haplotypes, but the small genetic differences make distance approaches ineffective for these taxa. Plexaura, Pseudoplexaura and Eunicea were indistinguishable from each other but were generally effectively distinguished from other genera, further supporting the idea that these genera have undergone a rapid endemic radiation in the Caribbean.
Collapse
Affiliation(s)
- Jaime G Morín
- Laboratorio de Sistemática Molecular y Filogeografía, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru Laboratorio de Sistemática Molecular y Filogeografía, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos Lima Peru
| | - Dagoberto E Venera-Pontón
- Smithsonian Tropical Research Institute, Panama City, Panama Smithsonian Tropical Research Institute Panama City Panama
| | - Amy C Driskell
- Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution Washington, D.C. United States of America
| | - Juan A Sánchez
- Laboratorio de Biología Molecular Marina - BIOMMAR, Bogotá, Colombia Laboratorio de Biología Molecular Marina - BIOMMAR Bogotá Colombia
| | - Howard R Lasker
- Department of Geology, University at Buffalo, Buffalo, United States of America Department of Geology, University at Buffalo Buffalo United States of America
| | - Rachel Collin
- Smithsonian Tropical Research Institute, Balboa, Panama Smithsonian Tropical Research Institute Balboa Panama
| |
Collapse
|
18
|
Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 2019. [DOI: 10.1016/j.gecco.2019.e00547] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
19
|
Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci Rep 2018; 8:16290. [PMID: 30389965 PMCID: PMC6215007 DOI: 10.1038/s41598-018-34541-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/19/2018] [Indexed: 11/09/2022] Open
Abstract
Marine infrastructure can favor the spread of non-indigenous marine biofouling species by providing a suitable habitat for them to proliferate. Cryptic organisms or those in early life stages can be difficult to distinguish by conventional morphological taxonomy. Molecular tools, such as metabarcoding, may improve their detection. In this study, the ability of morpho-taxonomy and metabarcoding (18S rRNA and COI) using three reference databases (PR2, BOLD and NCBI) to characterize biodiversity and detect non-indigenous species (NIS) in biofouling was compared on 60 passive samplers deployed over summer and winter in a New Zealand marina. Highest resolution of metazoan taxa was identified using 18S rRNA assigned to PR2. There were higher assignment rates to NCBI reference sequences, but poorer taxonomic identification. Using all methods, 48 potential NIS were identified. Metabarcoding detected the largest proportion of those NIS: 77% via 18S rRNA/PR2 and NCBI and 35% via COI/BOLD and NCBI. Morpho-taxonomy detected an additional 14% of all identified NIS comprising mainly of bryozoan taxa. The data highlight several on-going challenges, including: differential marker resolution, primer biases, incomplete sequence reference databases, and variations in bioinformatic pipelines. Combining morpho-taxonomy and molecular analysis methods will likely enhance the detection of NIS from complex biofouling.
Collapse
|
20
|
Wood SA, Pochon X, Ming W, von Ammon U, Woods C, Carter M, Smith M, Inglis G, Zaiko A. Considerations for incorporating real-time PCR assays into routine marine biosecurity surveillance programmes: a case study targeting the Mediterranean fanworm ( Sabella spallanzanii) and club tunicate ( Styela clava) 1. Genome 2018; 62:137-146. [PMID: 30278148 DOI: 10.1139/gen-2018-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular techniques may provide effective tools to enhance marine biosecurity surveillance. Prior to routine implementation, evidence-based consideration of their benefits and limitations is needed. In this study, we assessed the efficiency and practicality of visual diver surveys and real-time PCR assays (targeting DNA and RNA) for detecting two marine invasive species whose infestation levels varied between species and location: Sabella spallanzanii and Styela clava. Filtered water samples (n = 171) were collected in parallel with dive surveys at two locations as part of the New Zealand Marine High Risk Site Surveillance programme: Nelson Harbour (27 sites) and Waitemata Harbour (30 sites). Diver surveys resulted in a greater number of detections compared to real-time PCR: S. clava - 21 versus 5 sites in Nelson, 6 versus 1 in Auckland; S. spallanzanii - 18 versus 10 in Auckland, no detections in Nelson. Occupancy modelling derived detection probabilities for the real-time PCR for S. clava were low (14%), compared to S. spallanzanii (66%). This could be related to abundances, or species-specific differences in DNA shedding. Only one RNA sample was positive, suggesting that most detections were from extracellular DNA or non-viable fragments. While molecular methods cannot yet replace visual observations, this study shows they provide useful complementary information.
Collapse
Affiliation(s)
- Susanna A Wood
- a Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Xavier Pochon
- a Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,c Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Witold Ming
- a Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Ulla von Ammon
- a Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,b School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chris Woods
- d National Institute of Water & Atmospheric Research Ltd., New Zealand
| | - Megan Carter
- d National Institute of Water & Atmospheric Research Ltd., New Zealand
| | - Matt Smith
- d National Institute of Water & Atmospheric Research Ltd., New Zealand
| | - Graeme Inglis
- d National Institute of Water & Atmospheric Research Ltd., New Zealand
| | - Anastasija Zaiko
- a Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.,b School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Ojaveer H, Galil BS, Carlton JT, Alleway H, Goulletquer P, Lehtiniemi M, Marchini A, Miller W, Occhipinti-Ambrogi A, Peharda M, Ruiz GM, Williams SL, Zaiko A. Historical baselines in marine bioinvasions: Implications for policy and management. PLoS One 2018; 13:e0202383. [PMID: 30114232 PMCID: PMC6095587 DOI: 10.1371/journal.pone.0202383] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human-mediated introduction of marine non-indigenous species is a centuries- if not millennia-old phenomenon, but was only recently acknowledged as a potent driver of change in the sea. We provide a synopsis of key historical milestones for marine bioinvasions, including timelines of (a) discovery and understanding of the invasion process, focusing on transfer mechanisms and outcomes, (b) methodologies used for detection and monitoring, (c) approaches to ecological impacts research, and (d) management and policy responses. Early (until the mid-1900s) marine bioinvasions were given little attention, and in a number of cases actively and routinely facilitated. Beginning in the second half of the 20th century, several conspicuous non-indigenous species outbreaks with strong environmental, economic, and public health impacts raised widespread concerns and initiated shifts in public and scientific perceptions. These high-profile invasions led to policy documents and strategies to reduce the introduction and spread of non-indigenous species, although with significant time lags and limited success and focused on only a subset of transfer mechanisms. Integrated, multi-vector management within an ecosystem-based marine management context is urgently needed to address the complex interactions of natural and human pressures that drive invasions in marine ecosystems.
Collapse
Affiliation(s)
- Henn Ojaveer
- Estonian Marine Institute, University of Tartu, Pärnu, Estonia
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - James T. Carlton
- Maritime Studies Program of Williams College and Mystic Seaport, Mystic, Connecticut, United States of America
| | - Heidi Alleway
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | | | - Maiju Lehtiniemi
- Marine Research Centre, Finnish Environment Institute, Helsinki, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Whitman Miller
- Marine Invasion Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | | | | | - Gregory M. Ruiz
- Marine Invasion Research Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland, United States of America
| | - Susan L. Williams
- Bodega Marine Laboratory and Department of Evolution and Ecology, University of California at Davis, Bodega Bay, California, United States of America
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Marine Research Institute, Klaipeda University, Klaipeda, Lithuania
| |
Collapse
|
22
|
Briand JF, Pochon X, Wood SA, Bressy C, Garnier C, Réhel K, Urvois F, Culioli G, Zaiko A. Metabarcoding and metabolomics offer complementarity in deciphering marine eukaryotic biofouling community shifts. BIOFOULING 2018; 34:657-672. [PMID: 30185057 DOI: 10.1080/08927014.2018.1480757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Metabarcoding and metabolomics were used to explore the taxonomic composition and functional diversity of eukaryotic biofouling communities on plates with antifouling paints at two French coastal sites: Lorient (North Eastern Atlantic Ocean; temperate and eutrophic) and Toulon (North-Western Mediterranean Sea; mesotrophic but highly contaminated). Four distinct coatings were tested at each site and season for one month. Metabarcoding showed biocidal coatings had less impact on eukaryotic assemblages compared to spatial and temporal effects. Ciliophora, Chlorophyceae or Cnidaria (mainly hydrozoans) were abundant at Lorient, whereas Arthropoda (especially crustaceans), Nematoda, and Ochrophyta dominated less diversified assemblages at Toulon. Seasonal shifts were observed at Lorient, but not Toulon. Metabolomics also showed clear site discrimination, but these were associated with a coating and not season dependent clustering. The meta-omics analysis enabled identifications of some associative patterns between metabolomic profiles and specific taxa, in particular those colonizing the plates with biocidal coatings at Lorient.
Collapse
Affiliation(s)
| | - Xavier Pochon
- b Coastal and Freshwater Group , Cawthron Institute , Private Bag 2 , Nelson 7042 , New Zealand
- c Institute of Marine Science , University of Auckland , Private Bag 349 , Warkworth 0941 , New Zealand
| | - Susanna A Wood
- b Coastal and Freshwater Group , Cawthron Institute , Private Bag 2 , Nelson 7042 , New Zealand
| | | | - Cédric Garnier
- d Université de Toulon , PROTEE-EA 3819 , Toulon , France
| | - Karine Réhel
- e Université de Bretagne Sud , LBCM-EA 3883 , IUEM , Lorient , France
| | - Félix Urvois
- a Université de Toulon , MAPIEM-EA 4323 , Toulon , France
| | - Gérald Culioli
- a Université de Toulon , MAPIEM-EA 4323 , Toulon , France
| | - Anastasija Zaiko
- b Coastal and Freshwater Group , Cawthron Institute , Private Bag 2 , Nelson 7042 , New Zealand
- c Institute of Marine Science , University of Auckland , Private Bag 349 , Warkworth 0941 , New Zealand
| |
Collapse
|
23
|
von Ammon U, Wood SA, Laroche O, Zaiko A, Tait L, Lavery S, Inglis G, Pochon X. The impact of artificial surfaces on marine bacterial and eukaryotic biofouling assemblages: A high-throughput sequencing analysis. MARINE ENVIRONMENTAL RESEARCH 2018; 133:57-66. [PMID: 29229186 DOI: 10.1016/j.marenvres.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Vessel hulls and underwater infrastructure can be severely impacted by marine biofouling. Knowledge on which abiotic conditions of artificial structures influence bacterial and eukaryotic community composition is limited. In this study, settlement plates with differing surface texture, orientation and copper-based anti-fouling coatings were deployed in a marina. After three months, biofouling samples were collected and bacterial and eukaryotic communities characterised using DNA metabarcoding. The copper anti-fouling coating treatments incurred the most significant compositional changes (p ≤ 0.001) within both domains. Bacterial diversity decreased, with Gammaproteobacteria becoming the dominant phylum. In contrast, protist diversity increased as well as opportunist nematodes and bryozoans; urochordates and molluscs became less abundant. Network analyses displayed complex relationships on untreated plates, while revealing a simpler, but disturbed and unstable community composition on the anti-fouling coated plates. These networks of copper treatments displayed opportunist taxa that appeared as key organisms in structuring the bacterial and eukaryotic communities.
Collapse
Affiliation(s)
- Ulla von Ammon
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand.
| | - Susanna A Wood
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Environmental Research Institute, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand
| | - Olivier Laroche
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Anastasija Zaiko
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Leigh Tait
- National Institute of Water & Atmospheric Research Ltd, PO Box 8602, Riccarton, Christchurch 8440, New Zealand
| | - Shane Lavery
- School of Biological Sciences, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| | - Graeme Inglis
- National Institute of Water & Atmospheric Research Ltd, PO Box 8602, Riccarton, Christchurch 8440, New Zealand
| | - Xavier Pochon
- Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth 0941, New Zealand
| |
Collapse
|
24
|
Hunsucker KZ, Vora GJ, Hunsucker JT, Gardner H, Leary DH, Kim S, Lin B, Swain G. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating. BIOFOULING 2018; 34:162-172. [PMID: 29347829 DOI: 10.1080/08927014.2017.1417395] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.
Collapse
Affiliation(s)
- Kelli Z Hunsucker
- a Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Gary J Vora
- b Center for Bio/Molecular Science & Engineering , US Naval Research Laboratory , Washington , DC , USA
| | - J Travis Hunsucker
- a Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Harrison Gardner
- a Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| | - Dagmar H Leary
- b Center for Bio/Molecular Science & Engineering , US Naval Research Laboratory , Washington , DC , USA
| | - Seongwon Kim
- b Center for Bio/Molecular Science & Engineering , US Naval Research Laboratory , Washington , DC , USA
| | - Baochuan Lin
- b Center for Bio/Molecular Science & Engineering , US Naval Research Laboratory , Washington , DC , USA
- c Chemical and Biological Technologies , Defense Threat Reduction Agency , Fort Belvoir , VA , USA
| | - Geoffrey Swain
- a Center for Corrosion and Biofouling Control , Florida Institute of Technology , Melbourne , FL , USA
| |
Collapse
|
25
|
Pochon X, Zaiko A, Fletcher LM, Laroche O, Wood SA. Wanted dead or alive? Using metabarcoding of environmental DNA and RNA to distinguish living assemblages for biosecurity applications. PLoS One 2017; 12:e0187636. [PMID: 29095959 PMCID: PMC5667844 DOI: 10.1371/journal.pone.0187636] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022] Open
Abstract
High-throughput sequencing metabarcoding studies in marine biosecurity have largely focused on targeting environmental DNA (eDNA). DNA can persist extracellularly in the environment, making discrimination of living organisms difficult. In this study, bilge water samples (i.e., water accumulating on-board a vessel during transit) were collected from 15 small recreational and commercial vessels. eDNA and eRNA molecules were co-extracted and the V4 region of the 18S ribosomal RNA gene targeted for metabarcoding. In total, 62.7% of the Operational Taxonomic Units (OTUs) were identified at least once in the corresponding eDNA and eRNA reads, with 19.5% unique to eDNA and 17.7% to eRNA. There were substantial differences in diversity between molecular compartments; 57% of sequences from eDNA-only OTUs belonged to fungi, likely originating from legacy DNA. In contrast, there was a higher percentage of metazoan (50.2%) and ciliate (31.7%) sequences in the eRNA-only OTUs. Our data suggest that the presence of eRNA-only OTUs could be due to increased cellular activities of some rare taxa that were not identified in the eDNA datasets, unusually high numbers of rRNA transcripts in ciliates, and/or artefacts produced during the reverse transcriptase, PCR and sequencing steps. The proportions of eDNA/eRNA shared and unshared OTUs were highly heterogeneous within individual bilge water samples. Multiple factors including boat type and the activities performed on-board, such as washing of scientific equipment, may play a major role in contributing to this variability. For some marine biosecurity applications analysis, eDNA-only data may be sufficient, however there are an increasing number of instances where distinguishing the living portion of a community is essential. For these circumstances, we suggest only including OTUs that are present in both eDNA and eRNA data. OTUs found only in the eRNA data need to be interpreted with caution until further research provides conclusive evidence for their origin.
Collapse
Affiliation(s)
- Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- * E-mail:
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
- Marine Science and Technology Centre, Klaipeda University, Klaipeda, Lithuania
| | | | - Olivier Laroche
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Susanna A. Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
26
|
Borrell YJ, Miralles L, Do Huu H, Mohammed-Geba K, Garcia-Vazquez E. DNA in a bottle-Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS One 2017; 12:e0183347. [PMID: 28873426 PMCID: PMC5584753 DOI: 10.1371/journal.pone.0183347] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/02/2017] [Indexed: 11/18/2022] Open
Abstract
Biota monitoring in ports is increasingly needed for biosecurity reasons and safeguarding marine biodiversity from biological invasion. Present and future international biosecurity directives can be accomplished only if the biota acquired by maritime traffic in ports is controlled. Methodologies for biota inventory are diverse and now rely principally on extensive and labor-intensive sampling along with taxonomic identification by experts. In this study, we employed an extremely simplified environmental DNA (eDNA) sampling methodology from only three 1-L bottles of water per port, followed by metabarcoding (high-throughput sequencing and DNA-based species identification) using 18S rDNA and Cytochrome oxidase I as genetic barcodes. Eight Bay of Biscay ports with available inventory of fouling invertebrates were employed as a case study. Despite minimal sampling efforts, three invasive invertebrates were detected: the barnacle Austrominius modestus, the tubeworm Ficopomatus enigmaticus and the polychaete Polydora triglanda. The same species have been previously found from visual and DNA barcoding (genetic identification of individuals) surveys in the same ports. The current costs of visual surveys, conventional DNA barcoding and this simplified metabarcoding protocol were compared. The results encourage the use of metabarcoding for early biosecurity alerts.
Collapse
Affiliation(s)
- Yaisel J. Borrell
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Laura Miralles
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Hoang Do Huu
- Department of Aquaculture Biotechnology, Institute of Oceanography, Vietnam Academy of Science and Technology, Nha Trang, Vietnam
| | - Khaled Mohammed-Geba
- Genetic Engineering and Molecular Biology Division, Faculty of Science, Menoufia University, Egypt
| | | |
Collapse
|
27
|
Ferrario J, Caronni S, Occhipinti-Ambrogi A, Marchini A. Role of commercial harbours and recreational marinas in the spread of non-indigenous fouling species. BIOFOULING 2017; 33:651-660. [PMID: 28786306 DOI: 10.1080/08927014.2017.1351958] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
The role of commercial harbours as sink and source habitats for non-indigenous species (NIS) and the role of recreational boating for their secondary spread were investigated by analysing the fouling community of five Italian harbours and five marinas in the western Mediterranean Sea. It was first hypothesised that NIS assemblages in the recreational marinas were subsets of those occurring in commercial harbours. However, the data did not consistently support this hypothesis: the NIS pools of some marinas significantly diverged from harbours even belonging to the same coastal stretches, including NIS occurring only in marinas. This study confirms harbours as hotspots for marine NIS, but also reveals that numbers of NIS in some marinas is higher than expected, suggesting that recreational vessels effectively facilitate NIS spread. It is recommended that this vector of NIS introduction is taken into account in the future planning of sustainable development of maritime tourism in Europe.
Collapse
Affiliation(s)
- Jasmine Ferrario
- a Department of Earth and Environmental Sciences , University of Pavia , Pavia , Italy
| | - Sarah Caronni
- a Department of Earth and Environmental Sciences , University of Pavia , Pavia , Italy
| | | | - Agnese Marchini
- a Department of Earth and Environmental Sciences , University of Pavia , Pavia , Italy
| |
Collapse
|
28
|
Rampadarath S, Bandhoa K, Puchooa D, Jeewon R, Bal S. Early bacterial biofilm colonizers in the coastal waters of Mauritius. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
29
|
Wood SA, Zaiko A, Richter I, Inglis GJ, Pochon X. Development of a real-time polymerase chain reaction assay for the detection of the invasive Mediterranean fanworm, Sabella spallanzanii, in environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17373-17382. [PMID: 28589279 DOI: 10.1007/s11356-017-9357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
The Mediterranean fanworm, Sabella spallanzanii Gmelin 1791, was first detected in the Southern Hemisphere in the 1990s and is now abundant in many parts of southern Australia and in several locations around northern New Zealand. Once established, it can proliferate rapidly, reaching high densities with potential ecological and economic impacts. Early detection of new S. spallanzanii incursions is important to prevent its spread, guide eradication or control efforts and to increase knowledge on the species' dispersal pathways. In this study, we developed a TaqMan probe real-time polymerase chain reaction assay targeting a region of the mitochondrial cytochrome oxidase I gene. The assay was validated in silico and in vitro using DNA from New Zealand and Australian Sabellidae with no cross-reactivity detected. The assay has a linear range of detection over seven orders of magnitude with a limit of detection reached at 12.4 × 10-4 ng/μL of DNA. We analysed 145 environmental (water, sediment and biofouling) samples and obtained positive detections only from spiked samples and those collected at a port where S. spallanzanii is known to be established. This assay has the potential to enhance current morphological and molecular-based methods, through its ability to rapidly and accurately identify S. spallanzanii in environmental samples.
Collapse
Affiliation(s)
- Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand.
| | - Anastasija Zaiko
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Marine Science and Technology Centre, Klaipeda University, Klaipeda, Lithuania
| | - Ingrid Richter
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Graeme J Inglis
- National Institute of Water and Atmospheric Research Ltd, Christchurch, New Zealand
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Fletcher LM, Zaiko A, Atalah J, Richter I, Dufour CM, Pochon X, Wood SA, Hopkins GA. Bilge water as a vector for the spread of marine pests: a morphological, metabarcoding and experimental assessment. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1489-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Guardiola M, Wangensteen OS, Taberlet P, Coissac E, Uriz MJ, Turon X. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA. PeerJ 2016; 4:e2807. [PMID: 28028473 PMCID: PMC5180584 DOI: 10.7717/peerj.2807] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022] Open
Abstract
We assessed spatio-temporal patterns of diversity in deep-sea sediment communities using metabarcoding. We chose a recently developed eukaryotic marker based on the v7 region of the 18S rRNA gene. Our study was performed in a submarine canyon and its adjacent slope in the Northwestern Mediterranean Sea, sampled along a depth gradient at two different seasons. We found a total of 5,569 molecular operational taxonomic units (MOTUs), dominated by Metazoa, Alveolata and Rhizaria. Among metazoans, Nematoda, Arthropoda and Annelida were the most diverse. We found a marked heterogeneity at all scales, with important differences between layers of sediment and significant changes in community composition with zone (canyon vs slope), depth, and season. We compared the information obtained from metabarcoding DNA and RNA and found more total MOTUs and more MOTUs per sample with DNA (ca. 20% and 40% increase, respectively). Both datasets showed overall similar spatial trends, but most groups had higher MOTU richness with the DNA template, while others, such as nematodes, were more diverse in the RNA dataset. We provide metabarcoding protocols and guidelines for biomonitoring of these key communities in order to generate information applicable to management efforts.
Collapse
Affiliation(s)
- Magdalena Guardiola
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC) , Blanes , Spain
| | - Owen S Wangensteen
- Department of Animal Biology and Biodiversity Research Institute (IRBIO), University of Barcelona, Barcelona, Spain; Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, United Kingdom
| | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique and Université Grenoble-Alpes , Grenoble , France
| | - Eric Coissac
- Laboratoire d'Ecologie Alpine (LECA), Centre National de la Recherche Scientifique and Université Grenoble-Alpes , Grenoble , France
| | - María Jesús Uriz
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC) , Blanes , Spain
| | - Xavier Turon
- Department of Marine Ecology, Centre for Advanced Studies of Blanes (CEAB-CSIC) , Blanes , Spain
| |
Collapse
|