1
|
Li H, Yang J, Kuang SF, Fu HZ, Lin HY, Peng B. Magnesium modulates phospholipid metabolism to promote bacterial phenotypic resistance to antibiotics. eLife 2025; 13:RP100427. [PMID: 39745871 DOI: 10.7554/elife.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Non-inheritable antibiotic or phenotypic resistance ensures bacterial survival during antibiotic treatment. However, exogenous factors promoting phenotypic resistance are poorly defined. Here, we demonstrate that Vibrio alginolyticus are recalcitrant to killing by a broad spectrum of antibiotics under high magnesium. Functional metabolomics demonstrated that magnesium modulates fatty acid biosynthesis by increasing saturated fatty acid biosynthesis while decreasing unsaturated fatty acid production. Exogenous supplementation of unsaturated and saturated fatty acids increased and decreased bacterial susceptibility to antibiotics, respectively, confirming the role of fatty acids in antibiotic resistance. Functional lipidomics revealed that glycerophospholipid metabolism is the major metabolic pathway remodeled by magnesium, where phosphatidylethanolamine biosynthesis is reduced and phosphatidylglycerol production is increased. This process alters membrane composition, increasing membrane polarization, and decreasing permeability and fluidity, thereby reducing antibiotic uptake by V. alginolyticus. These findings suggest the presence of a previously unrecognized metabolic mechanism by which bacteria escape antibiotic killing through the use of an environmental factor.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jun Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Su-Fang Kuang
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Huan-Zhe Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui-Yin Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Bo Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
2
|
Srivastava V, Bandhu S, Mishra S, Chaudhuri TK. Serratiopeptidase exhibits antibiofilm activity through the proteolytic function of N-terminal domain and versatile function of the C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141046. [PMID: 39241938 DOI: 10.1016/j.bbapap.2024.141046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Serratiopeptidase, a serine protease traditionally used as an oral anti-inflammatory drug has been found to show antibiofilm action. Structurally, it comprises of two distinct domains; viz-the N-terminal catalytic domain (Ncat) and a C-terminal RTX (Repeat-In-Toxin) domain (Crtx). Understanding the antibiofilm action of the serratiopeptidase molecule, as well as the antibiofilm action of each of its two domains, was the objective of this study. RESULTS Separate clones to express the complete recombinant serratiopeptidase protein and its variant containing a mutation in the catalytic site, the N-terminal catalytic domain and its mutant, and the C-terminal Repeat-In-Toxin domain were prepared, and the proteins were purified. The impact of these proteins on pre-existing biofilms, as well as their effect upon addition of these proteins during biofilm formation was investigated. CONCLUSIONS In our investigation, we have been able to analyze the antibiofilm action of serratiopeptidase in detail. Obtained results conclude that while N-terminally located proteolytic domain of serratiopeptidase conventionally acts against biofilms by hydrolytic activity, the C-terminal domain regulates or prevents biofilm formation by yet unknown mechanism in addition to its known function as an C-terminal located calcium modulated internal chaperone ensuring the proper folding and secretion of the molecule. The study's findings give new evidence that the Crtx domain plays a significant role in antibiofilm action. The proteolytic Ncat domain breaks down pre-formed biofilms. The C-terminal domain, on the other hand, acts as an inhibitor of biofilm formation by regulating or preventing biofilm development.
Collapse
Affiliation(s)
- Vishal Srivastava
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sheetal Bandhu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shivam Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
3
|
Gad M, Khomami NTS, Krieg R, Schor J, Philippe A, Lechtenfeld OJ. Environmental drivers of dissolved organic matter composition across central European aquatic systems: A novel correlation-based machine learning and FT-ICR MS approach. WATER RESEARCH 2024; 273:123018. [PMID: 39742633 DOI: 10.1016/j.watres.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/03/2025]
Abstract
Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables detailed molecular-level analysis of DOM, allowing the identification of thousands of individual molecular formulas potentially representing unique markers for its "molecular history". The combination of FT-ICR MS with machine-learning techniques is promising to unravel DOM-environment interactions owing to their capacity to capture complex non-linear relationships. We present a novel unsupervised multi-variant machine-learning approach, aiming to model correlation coefficients as robust indicators of how changes in environmental factors (e.g., the concentration of nutrients or the land use) result in changes in the molecular formula descriptors of DOM (i.e., aromaticity index or hydrogen to carbon ratio). We applied this approach to an environmental data set collected from 84 sites across central Europe exhibiting a broad range of water chemistry and land uses. Our model revealed an increase in molecular mass and aromaticity of DOM in densely forested regions as compared to open urban areas, where DOM was characterized by higher concentrations of dissolved ions and increased microbial degradation, leading to smaller and more aliphatic DOM. Our findings highlight the substantial human impact on climate change, as evidenced by the accelerated photochemical and microbial degradation of DOM, which consequently enhances greenhouse gas emissions and exacerbates global warming.
Collapse
Affiliation(s)
- Michel Gad
- Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany.
| | - Narjes Tayyebi Sabet Khomami
- iES Landau, Research Group of Environmental and Soil Chemistry, University of Kaiserslautern-Landau (RPTU), Landau 76829, Germany
| | - Ronald Krieg
- Department Catchment Hydrology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Jana Schor
- Department Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig 04318, Germany; Department of Computer Science, Faculty of Mathematics and Computer Science, University of Leipzig, Leipzig 04109, Germany
| | - Allan Philippe
- iES Landau, Research Group of Environmental and Soil Chemistry, University of Kaiserslautern-Landau (RPTU), Landau 76829, Germany
| | - Oliver J Lechtenfeld
- Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
| |
Collapse
|
4
|
Zhou H, Huang S, Zhang Z, Li T, Li Y, Zhuang G, Liu G, Fu B, Kuang X. Network and stoichiometry analysis revealed a fast magnesium and calcium deficiency of mulched Phyllostachys violascens. FRONTIERS IN PLANT SCIENCE 2024; 15:1492137. [PMID: 39665104 PMCID: PMC11632225 DOI: 10.3389/fpls.2024.1492137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/16/2024] [Indexed: 12/13/2024]
Abstract
The imbalanced fertilization and the consequential deterioration on the rhizosphere microbial community (RMC) were two potential reasons for the quick yielding degradation of Phyllostachys violascens (Lei-bamboo), a high-value shoot-oriented bamboo. However, most research only focused on nitrogen, phosphorus, and potassium; the studies on the dynamics of other nutrients, such as calcium and magnesium; and their driving mechanisms, lags far behind. Thus, Lei-bamboo fields of different mulching and recovery ages were selected to investigate the dynamics of calcium and magnesium in both soil and bamboo tissue, and to explore their relationship to RMC composition and network patterns. The results showed that mulching increased the content of soil acidification, total organic carbon, alkali-hydrolysable nitrogen, available phosphorus, and available potassium but reduced soil exchangeable magnesium and calcium in soil as well as the magnesium and calcium content in rhizome, stem, and leaf of Lei-bamboo, which indicated an increased relative limitation on magnesium and calcium. Mulching also enhanced the α-diversity and reshaped the composition of RMC, which had a close link to Mg rather than nitrogen, phosphorus, and potassium. As the mulching years increased, the RMC network became bigger and more complex, and the magnesium and calcium gradually appeared in the network center, which further support the magnesium and calcium deficiency to RMC. Nearly all the variation mentioned above could be revered after the removing of mulching. Structural equation modeling showed two main pathways that mulching leads to magnesium and calcium deficiency in Lei-bamboo, one is directly by lowering soil magnesium and calcium content, the other one is indirectly by improving RMC network interactions, a sign of weakened mutualism between RMC and plant roots that hampering the uptake of nutrients. This research highlights the quick magnesium and calcium deficiency caused by mulching in Lei-bamboo forest and the contribution of RMC in amplify the effects of soil magnesium and calcium deficiency, which offers valuable information on balancing fertilization pattern for future sustainable Lei-bamboo cultivation.
Collapse
Affiliation(s)
- Hanchang Zhou
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Huang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ziying Zhang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ting Li
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Guohua Liu
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Bojie Fu
- The Bamboo Institute, Jiangxi Academy of Forestry, Nanchang, China
| | - Xiaobao Kuang
- The Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Gandasurya G, Waturangi DE, Papuangan N, Nurhasanah, Julyantoro PGS. Supernatant of plant-associated bacteria potency against biofilms formed by foodborne pathogen and food spoilage bacteria. BMC Res Notes 2024; 17:338. [PMID: 39543762 PMCID: PMC11566819 DOI: 10.1186/s13104-024-06997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVES Food products are often contaminated by pathogens and spoilage bacteria. Most of them can form biofilms, a community of cells embedded in protective extracellular matrix layers resistant to harsh conditions, including antibiotics. Therefore, alternative antibiofilm agents are required to overcome biofilm formation. This study aims to determine and quantify the antibiofilm activity of supernatants from plant-associated bacteria against biofilms of foodborne pathogen and food spoilage bacterium, namely Bacillus cereus and Bacillus subtilis. RESULTS Plant-associated bacteria (PAB) have shown promising antibiofilm activities against biofilm-forming pathogens in previous studies. Thirteen PAB isolated from Ternate, Indonesia were used in this study. Supernatants of PAB were subjected to antimicrobial activity and quorum quenching detection, both using the well diffusion method. Four supernatants inhibited the growth of B. subtilis, but none affected the growth of B. cereus. Eight supernatants were able to disrupt the quorum sensing system of an indicator bacterium, wild-type Chromobacterium violaceum. Biofilm inhibition and destruction were quantified using 96-well microplates. The highest biofilm inhibition and destruction activities of PAB supernatants against each of B. cereus and B. subtilis biofilms were > 76%, and were later confirmed by light microscope and scanning electron microscope. Brine shrimp lethality assay (BSLA) was conducted and revealed that the selected PAB supernatants were non-toxic. The 16S rRNA gene of PAB were sequenced and they showed similarities to Bacillus, Priestia, and Chryseobacterium. Compounds in the supernatants were determined by GC-MS which revealed contents of fatty acids, ethyl esters, and diketopiperazines. Therefore, PAB supernatants have potential as antibiofilm agents against biofilm formed by Bacillus cereus and Bacillus subtilis.
Collapse
Affiliation(s)
- Gabriella Gandasurya
- Department of Food Technology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk Lapan, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Master in Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| | - Nurhasanah
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| |
Collapse
|
7
|
Oliveira WV, Silva MCF, Araújo BR, Romão LPC. Assessment of homogeneous electro-Fenton process coupled with microbial fuel cell utilizing Serratia sp. AC-11 for glyphosate degradation in aqueous phase. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122797. [PMID: 39383744 DOI: 10.1016/j.jenvman.2024.122797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Glyphosate (GLY), a globally-used organophosphate herbicide, is frequently detected in various environmental matrices, including water, prompting significant attention due to its persistence and potential ecological impacts. In light of this environmental concern, innovative remediation strategies are warranted. This study utilized Serratia sp. AC-11 isolated from a tropical peatland as a biocatalyst in a microbial fuel cell (MFC) coupled with a homogeneous electron-Fenton (EF) process to degrade glyphosate in aqueous medium. After coupling the processes with a resistance of 100 Ω, an output voltage value of 0.64 V was obtained and maintained stable throughout the experiment. A bacterial biofilm of Serratia sp. AC-11 was formed on the carbon felt electrode, confirmed by attenuated total reflectance-Fourier transformed infrared (ATR-FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). In the anodic chamber, the GLY biodegradation rate was 100% after 48 h of experimentation, with aminomethylphosphonic acid (AMPA) remaining in the solution. In the cathodic chamber, the GLY degradation rate for the EF process was 69.5% after 48 h experimentation, with almost all of the AMPA degraded by the in situ generated hydroxyl radicals. In conclusion, the results demonstrated that Serratia sp. AC-11 not only catalyzed the biodegradation of glyphosate but also facilitated the generation of electrons for subsequent transfer to initiate the EF reaction to degrade glyphosate. This dual functionality emphasizes the unique capabilities of Serratia sp. AC-11, it as an electrogenic microorganism with application in innovative bioelectrochemical processes, and highlighting its role in sustainable strategies for environmental remediation.
Collapse
Affiliation(s)
- Weverton V Oliveira
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Mércia C F Silva
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Bruno R Araújo
- Laboratory of Forensic Chemistry, Scientific Police, Secretary of Public Security, 49107-230, São Cristóvão, SE, Brazil
| | - Luciane P C Romão
- Laboratory of Natural Organic Matter, Department of Chemistry, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, Araraquara, SP, 14800-900, Brazil.
| |
Collapse
|
8
|
Wen J, Dan Y, Liu X, Li H. Promoting microalgal biofilm formation by crushed oyster shell-hydroxyapatite layer on micropatterned aluminum coating for heavy metal ions removal. Colloids Surf B Biointerfaces 2024; 243:114168. [PMID: 39190939 DOI: 10.1016/j.colsurfb.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Microalgal biomass has shown inspiring potential for the heavy metal removal from wastewater, and forming microalgal biofilm is one of the sustainable methods for the microalgal biomass production. Here we report the formation of microalgal biofilm by accelerated colonization of typical algae Chlorella on thermal sprayed aluminum (Al) coatings with biologically modified surfaces. Micro-patterning surface treatment of the Al coatings promotes the attachment of Chlorella from 6.31 % to 17.51 %. Further enhanced algae attachment is achieved through liquid flame spraying a bioactive crushed oyster shell-hydroxyapatite (CaCO3-HA) composite top layer on the micropatterned coating, reaching 46.03-49.62 % of Chlorella attachment ratio after soaking in Chlorella suspension for 5 days. The rapidly formed microalgal biofilm shows an adsorption ratio of 95.43 % and 85.23 % for low concentration Zn2+ and Cu2+ in artificial seawater respectively within 3 days. Quick interaction has been realized between heavy metal ions and the negatively-charged extracellular polymeric substances (EPS) matrix existing in the biofilm. Fourier transform infrared spectroscopy (FTIR) results indicate that both carboxyl and phosphoryl groups of biofilms are crucial in the adsorption of Cu2+ and the adsorption of Zn2+ is due to the hydroxyl and phosphate groups. Meanwhile, the biofilm could act as a barrier to protect Chlorella against the attack of the heavy metal ions with relatively low concentrations in aqueous solution. The route of quick cultivating microalgal biofilm on marine structures through constructing biological layer on their surfaces would give insight into developing new techniques for removing low concentration heavy metal ions from water for environmental bioremediation.
Collapse
Affiliation(s)
- Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Dan
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Wang Z, Zeng Y, Ahmed Z, Qin H, Bhatti IA, Cao H. Calcium‐dependent antimicrobials: Nature‐inspired materials and designs. EXPLORATION (BEIJING, CHINA) 2024; 4:20230099. [PMID: 39439493 PMCID: PMC11491315 DOI: 10.1002/exp.20230099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Bacterial infection remains a major complication answering for the failures of various implantable medical devices. Tremendous extraordinary advances have been published in the design and synthesis of antimicrobial materials addressing this issue; however, the clinical translation has largely been blocked due to the challenge of balancing the efficacy and safety of these materials. Here, calcium's biochemical features, natural roles in pathogens and the immune systems, and advanced uses in infection medications are illuminated, showing calcium is a promising target for developing implantable devices with less infection tendency. The paper gives a historical overview of biomedical uses of calcium and summarizes calcium's merits in coordination, hydration, ionization, and stereochemistry for acting as a structural former or trigger in biological systems. It focuses on the involvement of calcium in pathogens' integrity, motility, and metabolism maintenance, outlining the potential antimicrobial targets for calcium. It addresses calcium's uses in the immune systems that the authors can learn from for antimicrobial synthesis. Additionally, the advances in calcium's uses in infection medications are highlighted to sketch the future directions for developing implantable antimicrobial materials. In conclusion, calcium is at the nexus of antimicrobial defense, and future works on taking advantage of calcium in antimicrobial developments are promising in clinical translation.
Collapse
Affiliation(s)
- Zhong Wang
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Yongjie Zeng
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Zubair Ahmed
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Hui Qin
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | | | - Huiliang Cao
- Interfacial Electrochemistry and BiomaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
- Engineering Research Center for Biomedical Materials of Ministry of EducationEast China University of Science and TechnologyShanghaiChina
- Key Laboratory for Ultrafine Materials of Ministry of EducationEast China University of Science & TechnologyShanghaiChina
| |
Collapse
|
10
|
Dolphen R, Treesubsuntorn C, Kanjanapokin C, Chonjoho N, Anusaraporn S, Julpanwattana P, Praditsmanont A. Exploring bioluminescence in Aglaonema: Investigating Vibrio campbellii translocation and plant responses under CaCl₂ stimulation. ENVIRONMENTAL RESEARCH 2024; 257:119414. [PMID: 38871271 DOI: 10.1016/j.envres.2024.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
The feasibility of creating light-emitting plants by immobilizing Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema sp. 'Banlangngoen' was investigated in depth, including bacteria translocation and plant response. Results from scanning electron microscope showed that an inorganic salt-containing medium affected the root. However, transmission electron microscope results displayed bacteria translocation through the root to the leaf and colonized in the cytosol of vascular tissues. Bacteria cell counts exhibited high colonization in the root zone, approximately 3.65 × 106 CFU/mL, resulting in a light-emitting intensity increase of 23.68-fold higher than the control after the first week. Nevertheless, light microscope revealed that inorganic salts in the culture medium led to enlarged air spaces, resulting in leaf and stalk withering. Notably, spraying plants with calcium chloride (CaCl2) solution effectively mitigated salt stress, activated luminescence, and facilitated bacterial movement from roots to leaves. Additionally, CaCl2 contributed to ongoing salinity reduction in the culture medium, as evidenced by reduced malondialdehyde levels, alongside increased indole-3-acetic acid and salicylic acid concentrations, indicating plant defense responses. The interaction between plants and luminescent bacteria demonstrated the potential for producing glowing plants following CaCl2 application, addressing salinity stress, enhancing luminescence, and maintaining plant growth.
Collapse
Affiliation(s)
- Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chutipa Kanjanapokin
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Siraphatsorn Anusaraporn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Panpisu Julpanwattana
- Research and Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Thailand
| | - Apichat Praditsmanont
- Research and Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Thailand
| |
Collapse
|
11
|
Wang X, Wang L, Wu B, Yuan Z, Zhong Y, Qi L, Wang M, Wu Y, Ge T, Zhu Z. Neglected role of microelements in determining soil microbial communities and fruit micronutrients in loquat orchards. Front Microbiol 2024; 15:1447921. [PMID: 39234550 PMCID: PMC11373571 DOI: 10.3389/fmicb.2024.1447921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction The relationships among microelements and soil microbial communities are essential for understanding the maintenance of soil's ecological functions and their effects on fruit quality in orchards. However, these relationships have not been adequately studied, despite the importance of microelements for the growth of microorganisms and plants. Methods To address this research gap, we investigated the relationships among microelements (K, Ca, Na, Mg, Fe, Mn, Zn, and Cu), the diversity and composition of soil microbiomes, and fruit quality in loquat orchards. Results We found that microelements explained more variations in microbial community structures than geographic position, basic soil properties, and macroelements, with 19.6-42.6% of bacterial, 4.3-27.7% of fungal, and 5.9-18.8% of protistan genera significantly correlated with microelements. Among the microelements, AMg and ACu were the most influential in determining the soil microbiome. The soil microbes exhibited varied threshold values for environmental breadth among the microelements, with the broadest range for AMg and the narrowest for AZn. Additionally, the microbes showed significant phylogenetic signals for all microelements, with an increasing divergence of soil microelements. The dominant community assembly shifted from homogeneous selection to stochastic, and then to heterogeneous selection. Moreover, microelements and the microbiome were the top two factors individually explaining 11.0 and 11.4% of fruit quality variation, respectively. Discussion These results highlight the importance of microelement fertilization in orchard management and provide scientific guidance for improving fruit quality.
Collapse
Affiliation(s)
- Xianting Wang
- Yinzhou Station of Agricultural Technical Extension, Ningbo, China
| | - Li Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bibo Wu
- Ninghai County Forestry Specialty Technology Promotion Station, Ningbo, China
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | | | - Lin Qi
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Miao Wang
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Yuping Wu
- Ningbo Agricultural and Rural Green Development Center, Ningbo, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Jia P, Tian M, Zhang B, Wu X, He X, Zhang W. Habitat changes due to glacial freezing and melting reshape microbial networks. ENVIRONMENT INTERNATIONAL 2024; 189:108788. [PMID: 38838490 DOI: 10.1016/j.envint.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The phenomenon of glacial freezing and thawing involves microbial sequestration, release, and colonization, which has the potential to impact ecosystem functioning through changes in microbial diversity and interactions. In this study, we examined the structural features of microbial communities of the Dongkemadi glacier, including bacteria, fungi, and archaea, in four distinct glacial environments (snow, ice, meltwater, and frontier soil). The sequestration, release, and colonization of glacial microbes have been found to significantly impact the diversity and structure of glacial microbial communities, as well as the complexity of microbial networks. Specifically, the complexity of bacterial networks has been observed to increase in a sequential manner during these processes. Utilizing the Inter-Domain Ecological Network approach, researchers have further explored the cross-trophic interactions among bacteria, fungi, and archaea. The complexity of the bacteria-fungi-archaea network exhibited a sequential increase due to the processes of sequestration, release, and colonization of glacial microbes. The release and colonization of glacial microbes led to a shift in the role of archaea as key species within the network. Additionally, our findings suggest that the hierarchical interactions among various microorganisms contributed to the heightened complexity of the bacteria-fungi-archaea network. The primary constituents of the glacial microbial ecosystem are unclassified species associated with the Polaromonas. It is noteworthy that various key species in glacial ecosystems are influenced by the distinct environmental factors. Moreover, our findings suggest that key species are not significantly depleted in response to abrupt alterations in individual environmental factors, shedding light on the dynamics of microbial cross-trophic interactions within glacial ecosystems.
Collapse
Affiliation(s)
- Puchao Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mao Tian
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binglin Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiukun Wu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaobo He
- Key Laboratory of Cryospheric Sciences and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Tanggula Mountain Cryosphere and Environment Observation and Research Station of Tibet Autonomous Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wei Zhang
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
13
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
14
|
Montoya C, Baraniya D, Chen T, Al-Hebshi NN, Orrego S. The effect of dental material type and masticatory forces on periodontitis-derived subgingival microbiomes. Biofilm 2024; 7:100199. [PMID: 38800100 PMCID: PMC11127099 DOI: 10.1016/j.bioflm.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Restorative dental materials can frequently extend below the gingival margin, serving as a potential haven for microbial colonization, and altering the local oral microbiome to ignite infection. However, the contribution of dental materials on driving changes of the composition of the subgingival microbiome is under-investigated. This study evaluated the microbiome-modulating properties of three biomaterials, namely resin dental composites (COM), antimicrobial piezoelectric composites (BTO), and hydroxyapatite (HA), using an optimized in vitro subgingival microbiome model derived from patients with periodontal disease. Dental materials were subjected to static or cyclic loading (mastication forces) during biofilm growth. Microbiome composition was assessed by 16S rRNA gene sequencing. Dysbiosis was measured in terms of subgingival microbial dysbiosis index (SMDI). Biomaterials subjected to cyclic masticatory loads were associated with enhanced biofilm viability except on the antibacterial composite. Biomaterials held static were associated with increased biofilm biomass, especially on HA surfaces. Overall, the microbiome richness (Chao index) was similar for all the biomaterials and loading conditions. However, the microbiome diversity (Shannon index) for the HA beams was significantly different than both composites. In addition, beta diversity analysis revealed significant differences between composites and HA biomaterials, and between both loading conditions (static and cyclic). Under static conditions, microbiomes formed over HA surfaces resulted in increased dysbiosis compared to composites through the enrichment of periopathogens, including Porphyromonas gingivalis, Porphyromonas endodontalis, and Fretibacterium spp., and depletion of commensals such as Granulicatella and Streptococcus spp. Interestingly, cyclic loading reversed the dysbiosis of microbiomes formed over HA (depletion of periopathogenes) but increased the dysbiosis of microbiomes formed over composites (enrichment of Porphyromonas gingivalis and Fusobacterim nucleatum). Comparison of species formed on both composites (control and antibacterial) showed some differences. Commercial composites enriched Selenomonas spp. and depleted Campylobacter concisus. Piezoelectric composites effectively controlled the microbiome viability without significantly impacting the species abundance. Findings of this work open new understandings of the effects of different biomaterials on the modulation of oral biofilms and the relationship with oral subgingival infections.
Collapse
Affiliation(s)
- Carolina Montoya
- Smart Biomaterials Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, MA, USA
| | - Nezar Noor Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
| | - Santiago Orrego
- Smart Biomaterials Laboratory, Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, USA
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
15
|
Osei-Owusu H, Rondevaldova J, Houdkova M, Kudera T, Needham T, Mascellani A, Kokoska L. Evaluation of In Vitro Synergistic Effects of Tetracycline with Alkaloid-Related Compounds against Diarrhoeic Bacteria. Int J Mol Sci 2024; 25:6038. [PMID: 38892226 PMCID: PMC11173066 DOI: 10.3390/ijms25116038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Diarrhoea remains an important public health concern, particularly in developing countries, and has become difficult to treat because of antibacterial resistance. The development of synergistic antimicrobial agents appears to be a promising alternative treatment against diarrhoeic infections. In this study, the combined effect of tetracycline together with either nitroxoline, sanguinarine, or zinc pyrithione (representing various classes of plant-based compounds) was evaluated in vitro against selected diarrhoeic bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Shigella flexneri, Vibrio parahaemolyticus, and Yersinia enterocolitica). The chequerboard method in 96-well microtiter plates was used to determine the sum of the fractional inhibitory concentration indices (FICIs). Three independent experiments were performed per combination, each in triplicate. It was observed that the combination of tetracycline with either nitroxoline, sanguinarine, or zinc pyrithione produced synergistic effects against most of the pathogenic bacteria tested, with FICI values ranging from 0.086 to 0.5. Tetracycline-nitroxoline combinations produced the greatest synergistic action against S. flexneri at a FICI value of 0.086. The combinations of the agents tested in this study can thus be used for the development of new anti-diarrhoeic medications. However, studies focusing on their in vivo anti-diarrhoeic activity and safety are required before any consideration for utilization in human medicine.
Collapse
Affiliation(s)
- Hayford Osei-Owusu
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Johana Rondevaldova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Marketa Houdkova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Tomas Kudera
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| | - Tersia Needham
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic;
| | - Anna Mascellani
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic;
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, Suchdol, 16500 Prague, Czech Republic; (H.O.-O.); (J.R.); (M.H.); (T.K.)
| |
Collapse
|
16
|
Zhang YM, Qiao B, Shang W, Ding MZ, Xu QM, Duan TX, Cheng JS. Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:89-100. [PMID: 38598883 DOI: 10.1016/j.wasman.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.
Collapse
Affiliation(s)
- Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Tian-Xu Duan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China.
| |
Collapse
|
17
|
Li Y, Tang S, Luo Z, Liu K, Luo Y, Wen W, Ding S, Li L, Liu M, Zhou C, Luo B. Chitin whisker/chitosan liquid crystal hydrogel assisted scaffolds with bone-like ECM microenvironment for bone regeneration. Carbohydr Polym 2024; 332:121927. [PMID: 38431420 DOI: 10.1016/j.carbpol.2024.121927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.
Collapse
Affiliation(s)
- Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shengyue Tang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Ziang Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yiting Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Lihua Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
18
|
Nayak R, Rai VK, Pradhan D, Halder J, Rajwar TK, Dash P, Das C, Mishra A, Mahanty R, Saha I, Manoharadas S, Kar B, Ghosh G, Rath G. Exploring the Biofilm Inhibition Potential of a Novel Phytic Acid-Crosslinked Chitosan Nanoparticle: In Vitro and In Vivo Investigations. AAPS PharmSciTech 2024; 25:106. [PMID: 38724834 DOI: 10.1208/s12249-024-02829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 07/19/2024] Open
Abstract
The primary factor underlying the virulence of Candida albicans is its capacity to form biofilms, which in turn leads to recurrent complications. Over-the-counter antifungal treatments have proven ineffective in eliminating fungal biofilms and the inflammatory cytokines produced during fungal infections. Chitosan nanoparticles offer broad and versatile therapeutic potential as both antifungal agents and carriers for antifungal drugs to combat biofilm-associated Candida infections. In our study, we endeavoured to develop chitosan nanoparticles utilising chitosan and the antifungal crosslinker phytic acid targeting C. albicans. Phytic acid, known for its potent antifungal and anti-inflammatory properties, efficiently crosslinks with chitosan. The nanoparticles were synthesised using the ionic gelation technique and subjected to analyses including Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential analysis. The synthesised nanoparticles exhibited dimensions with a diameter (Dh) of 103 ± 3.9 nm, polydispersity index (PDI) of 0.33, and zeta potential (ZP) of 37 ± 2.5 mV. These nanoparticles demonstrated an antifungal effect with a minimum inhibitory concentration (MIC) of 140 ± 2.2 µg/mL, maintaining cell viability at approximately 90% of the MIC value and reducing cytokine levels. Additionally, the nanoparticles reduced ergosterol content and exhibited a 62% ± 1.2 reduction in biofilm susceptibility, as supported by colony-forming unit (CFU) and XTT assays-furthermore, treatment with nanoparticles reduced exopolysaccharide production and decreased secretion of aspartyl protease by C. albicans. Our findings suggest that the synthesised nanoparticles effectively combat Candida albicans infections. In vivo studies conducted on a mouse model of vaginal candidiasis confirmed the efficacy of the nanoparticles in combating fungal infections in vivo.
Collapse
Affiliation(s)
- Reena Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
19
|
Lopes AA, Vendrell-Fernández S, Deschamps J, Georgeault S, Cokelaer T, Briandet R, Ghigo JM. Bile-induced biofilm formation in Bacteroides thetaiotaomicron requires magnesium efflux by an RND pump. mBio 2024; 15:e0348823. [PMID: 38534200 PMCID: PMC11078008 DOI: 10.1128/mbio.03488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteroides thetaiotaomicron is a prominent member of the human gut microbiota contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm lifestyle, and it was recently shown that B. thetaiotaomicron biofilm formation is promoted by the presence of bile. This process also requires a B. thetaiotaomicron extracellular DNase, which is not, however, regulated by bile. Here, we showed that bile induces the expression of several Resistance-Nodulation-Division (RND) efflux pumps and that inhibiting their activity with a global competitive efflux inhibitor impaired bile-dependent biofilm formation. We then showed that, among the bile-induced RND-efflux pumps, only the tripartite BT3337-BT3338-BT3339 pump, re-named BipABC [for Bile Induced Pump A (BT3337), B (BT3338), and C (BT3339)], is required for biofilm formation. We demonstrated that BipABC is involved in the efflux of magnesium to the biofilm extracellular matrix, which leads to a decrease of extracellular DNA concentration. The release of magnesium in the biofilm matrix also impacts biofilm structure, potentially by modifying the electrostatic repulsion forces within the matrix, reducing interbacterial distance and allowing bacteria to interact more closely and form denser biofilms. Our study therefore, identified a new molecular determinant of B. thetaiotaomicron biofilm formation in response to bile salts and provides a better understanding on how an intestinal chemical cue regulates biofilm formation in a major gut symbiont.IMPORTANCEBacteroides thetaiotaomicron is a prominent member of the human gut microbiota able to degrade dietary and host polysaccharides, altogether contributing to nutrient exchange, gut function, and maturation of the host's immune system. This obligate anaerobe symbiont can adopt a biofilm community lifestyle, providing protection against environmental factors that might, in turn, protect the host from dysbiosis and dysbiosis-related diseases. It was recently shown that B. thetaiotaomicron exposure to intestinal bile promotes biofilm formation. Here, we reveal that a specific B. thetaiotaomicron membrane efflux pump is induced in response to bile, leading to the release of magnesium ions, potentially reducing electrostatic repulsion forces between components of the biofilm matrix. This leads to a reduction of interbacterial distance and strengthens the biofilm structure. Our study, therefore, provides a better understanding of how bile promotes biofilm formation in a major gut symbiont, potentially promoting microbiota resilience to stress and dysbiosis events.
Collapse
Affiliation(s)
- Anne-Aurélie Lopes
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
- Pediatric Emergency, AP-HP, Necker-Enfants-Malades University Hospital, Paris, France
| | - Sol Vendrell-Fernández
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| | - Julien Deschamps
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Sonia Georgeault
- Plateforme IBiSA des Microscopies, Université et CHRU de Tours, Tours, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Center for Technological Resources and Research, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Center for Technological Resources and Research, Paris, France
| | - Romain Briandet
- INRAE, AgroParisTech, Université Paris-Saclay Institut Micalis, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris-Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, Department of Microbiology, Paris, France
| |
Collapse
|
20
|
Yuan L, Zhang Y, Mi Z, Zheng X, Wang S, Li H, Yang Z. Calcium-mediated modulation of Pseudomonas fluorescens biofilm formation. J Dairy Sci 2024; 107:1950-1966. [PMID: 37949404 DOI: 10.3168/jds.2023-23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biofilm formation is usually affected by many environmental factors, including divalent cations. The purpose of the current work was to analyze how calcium (Ca2+) affects the biofilm formation of dairy Pseudomonas fluorescens isolates by investigating their growth, swarming motility, biofilm-forming capacity, extracellular polymeric substance production, and biofilm structures. Moreover, the regulation mechanism of Ca2+ involved in its biofilm formation was explored through RNA-sequencing analysis. This work revealed that supplementation of 5, 10, 15, and 20 mM Ca2+ significantly reduced the swarming motility of P. fluorescens strains (P.F2, P.F4, and P.F17), but the biofilm-forming ability and polysaccharide production were increased after the supplementation of 5 and 10 mM Ca2+. By the supplementation of Ca2+, complex structures with more cell clusters glued together in P. fluorescens P.F4 biofilms were confirmed by scanning electron microscopy, and increased biomass and coverage of P. fluorescens P.F4 biofilms were observed by confocal laser scanning microscopy. In addition, RNA-sequencing results showed that P. fluorescens P.F4 showed a transcriptional response to the supplementation of 10 mM Ca2+, and a total of 137 genes were significantly expressed. The differential genes were represented in 4 upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (nonribosomal peptide structures, quorum sensing, biosynthesis of siderophore group nonribosomal peptides, and phenylalanine metabolism), and 4 downregulated KEGG pathways (flagellar assembly, amino sugar and nucleotide sugar metabolism, nitrotoluene degradation, and cationic antimicrobial peptide resistance). The results indicate that Ca2+ might serve as an enhancer to substantially trigger the biofilm formation of dairy P. fluorescens isolates in the dairy industry.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin 150030, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
| | - Yanhe Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zizhuo Mi
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Shuo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Huaxiang Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
21
|
Fan L, Dai H, Zhou W, Yuan L, Yang J, Yang Z, Jiao XA. Unraveling the significance of calcium as a biofilm promotion signal for Bacillus licheniformis strains isolated from dairy products. Food Res Int 2024; 182:114145. [PMID: 38519175 DOI: 10.1016/j.foodres.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.
Collapse
Affiliation(s)
- Luyao Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin, Heilongjiang 150030, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Jia Yang
- Yangzhou Institute for Food and Drug Control, Yangzhou, Jiangsu 225106, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
22
|
Soriano-Jerez Y, Macías-de la Rosa A, García-Abad L, López-Rosales L, Maza-Márquez P, García-Camacho F, Bressy C, Cerón-García MC, Molina-Grima E. Transparent antibiofouling coating to improve the efficiency of Nannochloropsis gaditana and Chlorella sorokiniana culture photobioreactors at the pilot-plant scale. CHEMOSPHERE 2024; 347:140669. [PMID: 37967681 DOI: 10.1016/j.chemosphere.2023.140669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
The implementation of industrial-scale facilities for microalgae cultivation is limited due to the high operation costs. One of the main problems in obtaining an efficient and long-lasting microalgae culture system is biofouling. The particular issue when developing antibiofouling surfaces for microalgae cultures is that the material must be transparent. The main purpose of this work was to evaluate the antibiofouling efficiency of a non-toxic polydimethylsiloxane-based coating prepared with polyethylene glycol-based copolymer on different photobioreactors at the pilot-plant scale. The antifouling properties result from the development of a fouling-release coating utilizing hydrogel technology. Nannochloropsis gaditana and Chlorella sorokiniana were cultured outdoors for 3 months over the summer, when biofouling formation is at its highest due to environmental conditions, to test the coating's antibiofouling efficiency. Although biofouling was not completely prevented in either photobioreactor, the coating significantly reduced cell adhesion compared to the polydimethylsiloxane control (70% less adhesion). Therefore, this coating was shown to be a good alternative for constructing efficient closed-photobioreactors at the pilot-plant scale, at least for cultures lasting 3 months.
Collapse
Affiliation(s)
- Y Soriano-Jerez
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - A Macías-de la Rosa
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - L García-Abad
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - L López-Rosales
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - P Maza-Márquez
- Department of Microbiology and Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, Spain
| | - F García-Camacho
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - C Bressy
- Laboratoire MAPIEM, U.R. 4323, SeaTech Ecole d'Ingénieur, Université de Toulon, CS, 60584, 83041, Toulon, Cedex 9, France
| | - M C Cerón-García
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - E Molina-Grima
- Department of Chemical Engineering and Research Centre CIAIMBITAL, University of Almería, 04120, Almería, Spain
| |
Collapse
|
23
|
Shabtai IA, Wilhelm RC, Schweizer SA, Höschen C, Buckley DH, Lehmann J. Calcium promotes persistent soil organic matter by altering microbial transformation of plant litter. Nat Commun 2023; 14:6609. [PMID: 37857604 PMCID: PMC10587086 DOI: 10.1038/s41467-023-42291-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Calcium (Ca) can contribute to soil organic carbon (SOC) persistence by mediating physico-chemical interactions between organic compounds and minerals. Yet, Ca is also crucial for microbial adhesion, potentially affecting colonization of plant and mineral surfaces. The importance of Ca as a mediator of microbe-mineral-organic matter interactions and resulting SOC transformation has been largely overlooked. We incubated 44Ca labeled soils with 13C15N labeled leaf litter to study how Ca affects microbial transformation of litter and formation of mineral associated organic matter. Here we show that Ca additions promote hyphae-forming bacteria, which often specialize in colonizing surfaces, and increase incorporation of litter into microbial biomass and carbon use efficiency by approximately 45% each. Ca additions reduce cumulative CO2 production by 4%, while promoting associations between minerals and microbial byproducts of plant litter. These findings expand the role of Ca in SOC persistence from solely a driver of physico-chemical reactions to a mediator of coupled abiotic-biotic cycling of SOC.
Collapse
Affiliation(s)
- Itamar A Shabtai
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA.
- Department of Environmental Science and Forestry, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA.
| | - Roland C Wilhelm
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Steffen A Schweizer
- Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Carmen Höschen
- Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Daniel H Buckley
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
- Department of Microbiology, Cornell University, Ithaca, NY, 14850, USA
| | - Johannes Lehmann
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14850, USA
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, 14850, USA
- Institute for Advanced Study, Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
24
|
Naz N, Harandi BF, Newmark J, Kounaves SP. Microbial growth in actual martian regolith in the form of Mars meteorite EETA79001. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:381. [PMID: 38665180 PMCID: PMC11041791 DOI: 10.1038/s43247-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/04/2023] [Indexed: 04/28/2024]
Abstract
Studies to understand the growth of organisms on Mars are hampered by the use of simulants to duplicate martian mineralogy and chemistry. Even though such materials are improving, no terrestrial simulant can replace a real martian sample. Here we report the use of actual martian regolith, in the form of Mars meteorite EETA79001 sawdust, to demonstrate its ability to support the growth of four microorganisms, E. coli. Eucapsis sp., Chr20-20201027-1, and P. halocryophilus, for up to 23 days under terrestrial conditions using regolith:water ratios from 4:1 to 1:10. If the EETA79001 sawdust is widely representative of regolith on the martian surface, our results imply that microbial life under appropriate conditions could have been present on Mars in the past and/or today in the subsurface, and that the regolith does not contain any bactericidal agents. The results of our study have implications not only for putative martian microbial life but also for building bio-sustainable human habitats on Mars.
Collapse
Affiliation(s)
- Neveda Naz
- Department of Chemistry, Tufts University, Medford, MA 02155 USA
| | - Bijan F. Harandi
- Department of Chemistry, Tufts University, Medford, MA 02155 USA
| | - Jacob Newmark
- Department of Chemistry, Tufts University, Medford, MA 02155 USA
| | | |
Collapse
|
25
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
26
|
Zhu Y, Xu Y, Yan J, Fang Y, Dong N, Shan A. "AMP plus": Immunostimulant-Inspired Design Based on Chemotactic Motif -( PhHA hPH) n. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43563-43579. [PMID: 37691475 DOI: 10.1021/acsami.3c09353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Ability to stimulate antimicrobial immunity has proven to be a useful therapeutic strategy in treating infections, especially in the face of increasing antibiotic resistance. Natural antimicrobial peptides (AMPs) exhibiting immunomodulatory functions normally encompass complex activities, which make it difficult to optimize their therapeutic benefits. Here, a chemotactic motif was harnessed as a template to design a series of AMPs with immunostimulatory activities plus bacteria-killing activities ("AMP plus"). An amphipathic peptide ((PhHAhPH)n) was employed to improve the antimicrobial impact and expand the therapeutic potential of the chemotactic motif that lacked obvious bacteria-killing properties. A total of 18 peptides were designed and evaluated for their structure-activity relationships. Among the designed, KWH2 (1) potently killed bacteria and exhibited a narrow antimicrobial spectrum against Gram-negative bacteria and (2) activated macrophages (i.e., inducing Ca2+ influx, cell migration, and reactive oxygen species production) as a macrophage chemoattractant. Membrane permeabilization is the major antimicrobial mechanism of KWH2. Furthermore, the mouse subcutaneous abscess model supported the dual immunomodulatory and antimicrobial potential of KWH2 in vivo. The above results confirmed the efficiency of KWH2 in treating bacterial infection and provided a viable approach to develop immunomodulatory antimicrobial materials with desired properties.
Collapse
Affiliation(s)
- Yunhui Zhu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yinghan Xu
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Jianming Yan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150038, China
| |
Collapse
|
27
|
Reis MDP, de Paula RS, E Souza CC, de Oliveira Júnior RB, Cardoso AV. Linking microbial slime community structure with abiotic factors and antifouling strategy in hydroelectric cooling systems. Braz J Microbiol 2023; 54:1547-1557. [PMID: 37301793 PMCID: PMC10484857 DOI: 10.1007/s42770-023-01020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Microfouling can have significant economic impacts for hydroelectric power plants. However, knowledge concerning the composition and metabolism of microbial biofilm in cooling systems remains scarce. We examined the metagenome present in a cooling system, comprising a filter (F) and heat exchanger (HE), in the Nova Ponte hydroelectric power plant in Brazil, to identify bacteria and pathways that could be targeted to monitor and control biofilm formation. Our data revealed that the microfouling sample from heat exchanger 1 (HEM1), with porous consistency, presented enriched bacterial members not frequently described as biofilm formers in cooling systems, besides it has been shown to be an autoinducer repression pathway. Furthermore, the microfouling sample from heat exchanger 2 (HEM2), with gelatinous consistency, seemed to be an established biofilm, containing enriched bacterial groups such as Desulfotomaculum and Crenothrix and autoinducers, with biotechnological relevance in industrial biofilms. The results demonstrate that biofilm composition will vary depending on different abiotic conditions and the antifouling strategy used, including type of compound, concentration, and frequency of use. Therefore, all these variables must be evaluated when a power plant is affected by microbial slime in the cooling system. Our findings could help to define strategies for efficient and ecofriendly measures to contain microfouling in power plants.
Collapse
Affiliation(s)
- Mariana de Paula Reis
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Avenida José Cândido da Silveira, 2100/09, Belo Horizonte, MG, 31035-536, Brazil.
| | - Rayan Silva de Paula
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Avenida José Cândido da Silveira, 2100/09, Belo Horizonte, MG, 31035-536, Brazil
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Clara Carvalho E Souza
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Avenida José Cândido da Silveira, 2100/09, Belo Horizonte, MG, 31035-536, Brazil
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato Brito de Oliveira Júnior
- Centro de Bioengenharia de Espécies Invasoras de Hidrelétricas (CBEIH), Avenida José Cândido da Silveira, 2100/09, Belo Horizonte, MG, 31035-536, Brazil
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antonio Valadão Cardoso
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Escola de Design, Universidade do Estado de Minas Gerais (UEMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
28
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
29
|
Li X, Zhang N, Zhang L, Liu C, Zheng S, Lou H. Synergy and Mechanism of Leflunomide Plus Fluconazole Against Resistant Candida albicans: An in vitro Study. Infect Drug Resist 2023; 16:4147-4158. [PMID: 37396066 PMCID: PMC10314782 DOI: 10.2147/idr.s415229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Objective The global rise in the resistance of Candida albicans to conventional antifungals makes Candida albicans infections harder to treat. The main objective of this study was to investigate the antifungal effects and underlying mechanisms of leflunomide in combination with triazoles against resistant Candida albicans. Methods In this study, the microdilution method was used to determine the antifungal effects of leflunomide in combination with three triazoles on planktonic cells in vitro. The morphological transition from yeast to hyphae was observed under a microscope. The effects on ROS, metacaspase, efflux pumps, and intracellular calcium concentration were investigated, respectively. Results Our findings suggested that leflunomide + triazoles showed a synergistic effect against resistant Candida albicans in vitro. Further study concluded that the synergistic mechanisms were resulted from multiple factors, including the inhibited efflux of triazoles, the inhibition of yeast-to-hyphae transition, ROS increasing, metacaspase activation, and [Ca2+]i disturbance. Discussion Leflunomide appears to be a potential enhancer of current antifungal agents for treating candidiasis caused by resistant Candida albicans. This study can also serve as an example to inspire the exploration of new approaches to treating resistant Candida albicans.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| | - Ning Zhang
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Liuping Zhang
- Pharmaceutical Department, Shanxian Central Hospital, Heze, Shandong Province, 274300, People’s Republic of China
| | - Chang Liu
- Hospital for Reproductive Medicine Affiliated to Shandong University, Jinan, Shandong Province, 250021, People’s Republic of China
| | - Shicun Zheng
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, 250012, People’s Republic of China
| |
Collapse
|
30
|
Sharipova M, Rudakova N, Mardanova A, Evtugyn V, Akosah Y, Danilova I, Suleimanova A. Biofilm Formation by Mutant Strains of Bacilli under Different Stress Conditions. Microorganisms 2023; 11:1486. [PMID: 37374988 PMCID: PMC10302059 DOI: 10.3390/microorganisms11061486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Bacillus subtilis is traditionally classified as a PGPR that colonizes plant roots through biofilm formation. The current study focused on investigating the influence of various factors on bacilli biofilm formation. In the course of the study, the levels of biofilm formation by the model strain B. subtilis WT 168 and on its basis created regulatory mutants, as well as strains of bacilli with deleted extracellular proteases under conditions of changes in temperature, pH, salt and oxidative stress and presence of divalent metals ions. B. subtilis 168 forms halotolerant and oxidative stress-resistant biofilms at a temperature range of 22 °C-45 °C and a pH range of 6-8.5. The presence of Ca2+, Mn2+ and Mg2+ upsurges the biofilm development while an inhibition with Zn2+. Biofilm formation level was higher in protease-deficient strains. Relative to the wild-type strain, degU mutants showed a decrease in biofilm formation, abrB mutants formed biofilms more efficiently. spo0A mutants showed a plummeted film formation for the first 36 h, followed by a surge after. The effect of metal ions and NaCl on the mutant biofilms formation is described. Confocal microscopy indicated that B. subtilis mutants and protease-deficient strains differ in matrix structure. The highest content of amyloid-like proteins in mutant biofilms was registered for degU-mutants and protease-deficient strains.
Collapse
Affiliation(s)
- Margarita Sharipova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Natalia Rudakova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Ayslu Mardanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, Paris Commune St. 9, 420008 Kazan, Russia
| | - Yaw Akosah
- Department of Molecular Pathology, NYU College of Dentistry, 345 E. 24th Street, New York, NY 10010, USA
| | - Iuliia Danilova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| | - Aliya Suleimanova
- Institute of Fundamental Medicine, Kazan Federal University, Kremlevskaya St. 18, 420008 Kazan, Russia; (A.M.)
| |
Collapse
|
31
|
Dos Reis BA, Da Ponte Leguizamón N, Del Rey YC, Fernandes L, do Nascimento C, Vaz LG. Bacterial response to Ti-35Nb-7Zr-5Ta alloy incorporated with calcium, phosphate and magnesium. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:21. [PMID: 37118367 PMCID: PMC10147773 DOI: 10.1007/s10856-023-06717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
High implant survival rates have been achieved in recent decades due to continual modifications in implant design and surface topography, however there is still an ongoing quest to control peri-implant bone loss. The objective of this work was to develop Ti-35Nb-7Zr-5Ta (TNZT) alloys, perform physicochemical and morphological characterization of their surface modified by electrolytic oxidative plasma technique with ions related to osseointegration and lastly evaluate bacterial colonization in vitro. Three groups were evaluated: C group (polished TNZT), CaP group (sodium β glycerophosphate + calcium acetate) and Mg group (magnesium acetate). Before and after anodizing the surfaces, physicochemical and morphological analyses were performed: scanning electron microscopy with field emission gun (FEG-SEM), energy dispersion spectroscopy (EDS), X-ray diffraction (DRX), wettability (goniometer) and roughness (rugometer). Controlled and treated specimens were contaminated with unstimulated saliva collected from 10 healthy volunteers. Then, biofilm samples were collected and up to 35 microbial species, including commensal and pathogenic microorganisms, were identified and quantified by the Checkerboard DNA-DNA Hybridization method. The CaP group modified the surface morphology in the form of pores, while the Mg group modified it in the form of flakes. The contact angle was significantly smaller in the CaP group. The average roughness was higher in the CaP and Mg groups. A smaller total amount of bacteria was identified in the Mg group and relevant differences were found in the microbial profile associated with different surface treatments. Therefore, considering the microbiological profile and for the prevention of peri-implantitis, the Mg group presented more satisfactory and encouraging results for the manufacture of dental implants.
Collapse
Affiliation(s)
- Bárbara Araújo Dos Reis
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil.
| | - Natalia Da Ponte Leguizamón
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| | - Yumi Chokyu Del Rey
- Department of Dental Materials and Prosthodontics, School of Dentistry, University of São Paulo (USP), Ribeirão Preto, 14049-900, Brazil
| | - Leandro Fernandes
- Department of Dental Material and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| | - Cássio do Nascimento
- Department of Dental Material and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| | - Luis Geraldo Vaz
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
- Department of Dental Material and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara, 14800900, Brazil
| |
Collapse
|
32
|
Rahmawati IS, Kusumaningrum HD, Yuliana ND, Sitanggang AB. A systematic review and meta‐analysis of
in vitro
antibacterial activity of depolymerised polysaccharides. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
33
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
34
|
Agles AA, Bourg IC. Structure-Thermodynamic Relationship of a Polysaccharide Gel (Alginate) as a Function of Water Content and Counterion Type (Na vs Ca). J Phys Chem B 2023; 127:1828-1841. [PMID: 36791328 PMCID: PMC10159261 DOI: 10.1021/acs.jpcb.2c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties. An important route toward establishing this distinction has been the study of simplified models of the EPS matrix. This study builds on such efforts by using atomistic simulations to predict the nanoscale (≤10 nm scale) structure of a model EPS matrix and the sensitivity of this structure to interpolymer interactions and water content. To accomplish this, we use replica exchange molecular dynamics (REMD) simulations to generate all-atom configurations of ten 3.4 kDa alginate polymers at a range of water contents and Ca-Na ratios. Simulated systems are solvated with explicitly modeled water molecules, which allows us to capture the discrete structure of the hydrating water and to examine the thermodynamic stability of water in the gels as they are progressively dehydrated. Our primary findings are that (i) the structure of the hydrogels is highly sensitive to the identity of the charge-compensating cations, (ii) the thermodynamics of water within the gels (specific enthalpy and free energy) are, surprisingly, only weakly sensitive to cation identity, and (iii) predictions of the differential enthalpy and free energy of hydration include a short-ranged enthalpic term that promotes hydration and a longer-ranged (presumably entropic) term that promotes dehydration, where short and long ranges refer to distances shorter or longer than ∼0.6 nm between alginate strands.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering and High Meadows Environmental
Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
35
|
Staphylococcus aureus Behavior on Artificial Surfaces Mimicking Bone Environment. Pathogens 2023; 12:pathogens12030384. [PMID: 36986306 PMCID: PMC10056644 DOI: 10.3390/pathogens12030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Infections, which interfere with bone regeneration, may be a critical issue to consider during the development of biomimetic material. Calcium phosphate (CaP) and type I collagen substrates, both suitable for bone-regeneration dedicated scaffolds, may favor bacterial adhesion. Staphylococcus aureus possesses adhesins that allow binding to CaP or collagen. After their adhesion, bacteria may develop structures highly tolerant to immune system attacks or antibiotic treatments: the biofilms. Thus, the choice of material used for scaffolds intended for bone sites is essential to provide devices with the ability to prevent bone and joint infections by limiting bacterial adhesion. In this study, we compared the adhesion of three different S. aureus strains (CIP 53.154, SH1000, and USA300) on collagen- and CaP-coating. Our objective was to evaluate the capacity of bacteria to adhere to these different bone-mimicking coated supports to better control the risk of infection. The three strains were able to adhere to CaP and collagen. The visible matrix components were more important on CaP- than on collagen-coating. However, this difference was not reflected in biofilm gene expression for which no change was observed between the two tested surfaces. Another objective was to evaluate these bone-mimicking coatings for the development of an in vitro model. Thus, CaP, collagen-coatings, and the titanium-mimicking prosthesis were simultaneously tested in the same bacterial culture. No significant differences were found compared to adhesion on surfaces independently tested. In conclusion, these coatings used as bone substitutes can easily be colonized by bacteria, especially CaP-coating, and must be used with an addition of antimicrobial molecules or strategies to avoid bacterial biofilm development.
Collapse
|
36
|
Bogdan DF, Baricz AI, Chiciudean I, Bulzu PA, Cristea A, Năstase-Bucur R, Levei EA, Cadar O, Sitar C, Banciu HL, Moldovan OT. Diversity, distribution and organic substrates preferences of microbial communities of a low anthropic activity cave in North-Western Romania. Front Microbiol 2023; 14:962452. [PMID: 36825091 PMCID: PMC9941645 DOI: 10.3389/fmicb.2023.962452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apă din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania). Materials and Methods To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water. Results and Discussion Pseudomonadota (synonym Proteobacteria) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.
Collapse
Affiliation(s)
- Diana Felicia Bogdan
- Doctoral School of Integrative Biology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Institute for Research, Development and Innovation in Applied Natural Sciences, Cluj-Napoca, Romania,*Correspondence: Diana Felicia Bogdan, ✉
| | - Andreea Ionela Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Iulia Chiciudean
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Paul-Adrian Bulzu
- Biology Centre CAS, Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Laboratory of Microbial Ecology and Evolution, Ceske Budejovice, Czechia
| | - Adorján Cristea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ruxandra Năstase-Bucur
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca, Romania,Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Cristian Sitar
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania,Zoological Museum, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Centre for Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania,Horia Leonard Banciu, ✉
| | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, Cluj-Napoca, Romania,Romanian Institute of Science and Technology, Cluj-Napoca, Romania,Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Burgos, Spain
| |
Collapse
|
37
|
Yadav D, Borpatra Gohain M, Karki S, Ingole PG. A Novel Approach for the Development of Low-Cost Polymeric Thin-Film Nanocomposite Membranes for the Biomacromolecule Separation. ACS OMEGA 2022; 7:47967-47985. [PMID: 36591113 PMCID: PMC9798531 DOI: 10.1021/acsomega.2c05861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 05/27/2023]
Abstract
The separation of biomacromolecules, mainly proteins, plays a significant role in the pharmaceutical and food industries. Among the membranes' techniques, thin-film nanocomposite nanofiltration membranes are the best choice due to their high energy efficiency, excellent productivity, cost-effective and tuneable properties that have captured the attention of the efficient separation of biomacromolecules, especially from the industrial perspective. The present work directs the efficient separation study of proteins, namely, lysozyme, trypsin, pepsin, bovine serum albumin (BSA), and cephalexin, using a thin-film nanocomposite membrane integrated with Arg-MMT (arginine-montmorillonite) clay nanoparticles. The surface morphology and cross-section images of the TFN membranes were studied using a field emission scanning electron microscope (FE-SEM) and a high-resolution transmission electron microscope (HR-TEM). The thermal stability and hydrophilicity of the membranes were examined using thermogravimetric analysis (TGA) and contact angle, respectively. The surface chemistry of the selective layer has different functional groups that were analyzed using FTIR spectroscopy. The performance of the membranes was studied at different trans-membrane pressures and permeation times. The effect of monomer concentration on the separation performance of the membranes was also studied at different permeation times. The membranes' antibacterial activity was evaluated using the Muller-Hinton disk diffusion method using gram-negative Escherichia coli (E. coli) and gram-positive Staphylococcus aureus (S. aureus) bacteria. The highest rejection was achieved for BSA up to 98.92 ± 1%, and the highest permeation was obtained against lysozyme feed solution up to 26 L m-2 h-1 at 5 bar pressure. The membrane also illustrated excellent rejection of cephalexin antibiotics with a rejection of 98.17 ± 1.75% and a permeation flux of 26.14 L m-2 h-1. The antifouling study performed for the membranes exhibited a flux recovery ratio of 86.48%. The fabricated thin-film nanocomposite membrane demonstrated a good alternative for the separation of biomacromolecules and has the potential to be used in different sectors of industry, especially the pharmaceutical and food industry.
Collapse
Affiliation(s)
- Diksha Yadav
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Moucham Borpatra Gohain
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Sachin Karki
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| | - Pravin G. Ingole
- Chemical
Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam785006, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh201002, India
| |
Collapse
|
38
|
Wu RX, Zhang Y, Guo ZQ, Zhao B, Guo JS. Role of Ca2+ and Mg2+ in changing biofilm structure and enhancing biofilm formation of P. stutzeri strain XL-2. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
García-Rodríguez A, Stillwell A, Tochilovsky B, Tanzman JV, Limage R, Kolba N, Tako E, Marques CNH, Mahler GJ. The mechanistic effects of human digestion on magnesium oxide nanoparticles: implications for probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium bifidum VPI 1124. ENVIRONMENTAL SCIENCE. NANO 2022; 9:4540-4557. [PMID: 36874593 PMCID: PMC9983821 DOI: 10.1039/d2en00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The effects of nanoparticles (NPs) on the human gut microbiota are of high interest due to the link between the gut homeostasis and overall human health. The human intake of metal oxide NPs has increased due to its use in the food industry as food additives. Specifically, magnesium oxide nanoparticles (MgO-NPs) have been described as antimicrobial and antibiofilm. Therefore, in this work we investigated the effects of the food additive MgO-NPs, on the probiotic and commensal Gram-positive Lactobacillus rhamnosus GG and Bifidobacterium bifidum VPI 1124. The physicochemical characterization showed that food additive MgO is formed by nanoparticles (MgO-NPs) and after a simulated digestion, MgO-NPs partially dissociate into Mg2+. Moreover, nanoparticulate structures containing magnesium were found embedded in organic material. Exposures to MgO-NPs for 4 and 24 hours increased the bacterial viability of both L. rhamnosus and B. bifidum when in biofilms but not when as planktonic cells. High doses of MgO-NPs significantly stimulated the biofilm development of L. rhamnosus, but not B. bifidum. It is likely that the effects are primarily due to the presence of ionic Mg2+. Evidence from the NPs characterization indicate that interactions bacteria/NPs are unfavorable as both structures are negatively charged, which would create repulsive forces.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Science, Binghamton University, Binghamton, NY, 1302, USA
| | - Allayah Stillwell
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Blake Tochilovsky
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Jacob V Tanzman
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Science, Binghamton University, Binghamton, NY, 1302, USA
| | - Rhodesherdeline Limage
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Nikolai Kolba
- Cornell University, Food Science Department, Ithaca, NY 14853, USA
| | - Elad Tako
- Cornell University, Food Science Department, Ithaca, NY 14853, USA
| | - Cláudia N H Marques
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
- Department of Biological Science, Binghamton University, Binghamton, NY, 1302, USA
| | - Gretchen J Mahler
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| |
Collapse
|
40
|
Outer membrane protein of OmpF contributes to swimming motility, biofilm formation, osmotic response as well as the transcription of maltose metabolic genes in Citrobacter werkmanii. World J Microbiol Biotechnol 2022; 39:15. [PMID: 36401137 DOI: 10.1007/s11274-022-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022]
Abstract
Bacterial outer membrane proteins (Omps) are essential for environmental sensing, stress responses, and substance transport. Our previous study discovered that OmpA contributes to planktonic growth, biocide resistance, biofilm formation, and swimming motility in Citrobacter werkmanii, whereas the molecular functions of OmpF in this strain are largely unknown. Thus, in this study, the ompF gene was firstly knocked out from the genome of C. werkmanii using a homologous recombination method, and its phenotypical alternations of ∆ompF were then thoroughly characterized using biochemical and molecular approaches with the parental wild type (WT) and complementary (∆ompF-com) strains. The results demonstrated that the swimming ability of ∆ompF on semi-solid plates was reduced compared to WT due to the down-regulation of flgC, flgH, fliK, and fliF. Meanwhile, ompF deletion reduces biofilm formation on both glass and polystyrene surfaces due to decreased cell aggregation. Furthermore, ompF inactivation induced different osmotic stress (carbon sources and metal ions) responses in its biofilms when compared to WT and ∆ompF-com. Finally, a total of 6 maltose metabolic genes of lamB, malE, malK, malG, malM, and malF were all up-regulated in ∆ompF. The gene knockout and HPLC results revealed that the MalEFGK2 cluster was primarily responsible for maltose transport in C. werkmanii. Furthermore, we discovered for the first time that the upstream promoter of OmpF and its transcription can be combined with and negatively regulated by MalT. Overall, OmpF plays a role in a variety of biochemical processes and molecular functions in C. werkmanii, and it may even act as a targeted site to inhibit biofilm formation.
Collapse
|
41
|
ompX contribute to biofilm formation, osmotic response and swimming motility in Citrobacter werkmanii. Gene X 2022; 851:147019. [DOI: 10.1016/j.gene.2022.147019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/04/2022] Open
|
42
|
Effect of Calcium Ion Supplementation on Oral Microbial Composition and Biofilm Formation In Vitro. Microorganisms 2022; 10:microorganisms10091780. [PMID: 36144381 PMCID: PMC9500923 DOI: 10.3390/microorganisms10091780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The oral cavity contains a variety of ecological niches with very different environmental conditions that shape biofilm structure and composition. The space between the periodontal tissue and the tooth surface supports a unique anaerobic microenvironment that is bathed in the nutrient-rich gingival crevicular fluid (GCF). During the development of periodontitis, this environment changes and clinical findings reported a sustained level of calcium ion concentration in the GCF collected from the periodontal pockets of periodontitis patients. Here, we report the effect of calcium ion supplementation on human oral microbial biofilm formation and community composition employing an established SHI medium-based in vitro model system. Saliva-derived human microbial biofilms cultured in calcium-supplemented SHI medium (SHICa) exhibited a significant dose-dependent increase in biomass and metabolic activity. The effect of SHICa medium on the microbial community composition was evaluated by 16S rRNA gene sequencing using saliva-derived microbial biofilms from healthy donors and periodontitis subjects. In this study, intracellular microbial genomic DNA (iDNA) and extracellular DNA (eDNA) were analyzed separately at the genus level. Calcium supplementation of SHI medium had a differential impact on iDNA and eDNA in the biofilms derived from healthy individuals compared to those from periodontitis subjects. In particular, the genus-level composition of the eDNA portion was distinct between the different biofilms. This study demonstrated the effect of calcium in a unique microenvironment on oral microbial complex supporting the dynamic transformation and biofilm formation.
Collapse
|
43
|
Biodegradation of high molecular weight hydrocarbons under saline condition by halotolerant Bacillus subtilis and its mixed cultures with Pseudomonas species. Sci Rep 2022; 12:13227. [PMID: 35918482 PMCID: PMC9345985 DOI: 10.1038/s41598-022-17001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/19/2022] [Indexed: 11/08/2022] Open
Abstract
Biodegradation of high-molecular-weight petroleum hydrocarbons in saline conditions appears to be complicated and requires further investigation. This study used heavy crude oil to enrich petroleum-degrading bacteria from oil-contaminated saline soils. Strain HG 01, with 100% sequence similarity to Bacillus subtilis, grew at a wide range of salinities and degraded 55.5 and 77.2% of 500 mg/l pyrene and 500 mg/l tetracosane, respectively, at 5% w/v NaCl. Additionally, a mixed-culture of HG 01 with Pseudomonas putida and Pseudomonas aeruginosa, named TMC, increased the yield of pyrene, and tetracosane degradation by about 20%. Replacing minimal medium with treated seawater (C/N/P adjusted to 100/10/1) enabled TMC to degrade more than 99% of pyrene and tetracosane, but TMC had lesser degradation in untreated seawater than in minimal medium. Also, the degradation kinetics of pyrene and tetracosane were fitted to a first-order model. Compared to B. subtilis, TMC increased pyrene and tetracosane's removal rate constant (K1) from 0.063 and 0.110 per day to 0.123 and 0.246 per day. TMC also increased the maximum specific growth rate of B. subtilis, P. putida, and P. aeruginosa, respectively, 45% higher in pyrene, 24.5% in tetracosane, and 123.4% and 95.4% higher in pyrene and tetracosane.
Collapse
|
44
|
Tagrida M, Benjakul S. Liposomes loaded with betel leaf (Piper betle L.) extract: Antibacterial activity and preservative effect in combination with hurdle technologies on tilapia slices. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Loureiro AV, Barbosa MLL, Morais MLGS, Souza IP, Terceiro LS, Martins CS, Sousa APR, Leitão RFC, Shin JH, Warren CA, Costa DVS, Brito GAC. Host and Clostridioides difficile-Response Modulated by Micronutrients and Glutamine: An Overview. Front Nutr 2022; 9:849301. [PMID: 35795588 PMCID: PMC9251358 DOI: 10.3389/fnut.2022.849301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in intestinal microbiota are integral to development of Clostridioides difficile (C. difficile)—associated nosocomial diarrhea. Certain diets, especially Western diets, increase susceptibility to C. difficile infection (CDI). Here, we discuss recent findings regarding how nutrients modulate response of the host and C. difficile during infection. Calcium has a role in the sporulation and germination process. Selenium is effective in reducing the total amount of C. difficile toxin A (TcdA) and toxin B (TcdB) and in decreasing its cytotoxicity. In addition, selenium phosphate synthetase deficiency reduces C. difficile growth and spore production. On the other hand, iron has a dual role in C. difficile growth. For instance, high intracellular levels can generate reactive hydroxyl radicals, whereas low levels can reduce its growth. In humans, zinc deficiency appears to be related to the recurrence of CDI, in contrast, in the CDI model in mice a diet rich in zinc increased the toxin's activity. Low vitamin D levels contribute to C. difficile colonization, toxin production, and inflammation. Furthermore, glutamine appears to protect intestinal epithelial cells from the deleterious effects of TcdA and TcdB. In conclusion, nutrients play an important role in modulating host and pathogen response. However, further studies are needed to better understand the mechanisms and address some controversies.
Collapse
Affiliation(s)
- Andréa V. Loureiro
- Department of Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Maria L. L. Barbosa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Maria L. G. S. Morais
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Ismael P. Souza
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Letícia S. Terceiro
- Department of Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Conceição S. Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Arkila P. R. Sousa
- Department of Pharmacology and Physiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Renata F. C. Leitão
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Jae H. Shin
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, United States
| | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, United States
| | - Deiziane V. S. Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, VA, United States
| | - Gerly A. C. Brito
- Department of Medical Sciences, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Department of Pharmacology and Physiology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Gerly A. C. Brito
| |
Collapse
|
46
|
Enhancing Biocide Efficacy: Targeting Extracellular DNA for Marine Biofilm Disruption. Microorganisms 2022; 10:microorganisms10061227. [PMID: 35744744 PMCID: PMC9228965 DOI: 10.3390/microorganisms10061227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Biofilm formation is a global health, safety and economic concern. The extracellular composition of deleterious multispecies biofilms remains uncanvassed, leading to an absence of targeted biofilm mitigation strategies. Besides economic incentives, drive also exists from industry and research to develop and apply environmentally sustainable chemical treatments (biocides); especially in engineered systems associated with the marine environment. Recently, extracellular DNA (eDNA) was implicated as a critical structural polymer in marine biofilms. Additionally, an environmentally sustainable, multi-functional biocide was also introduced to manage corrosion and biofilm formation. To anticipate biofilm tolerance acquisition to chemical treatments and reduce biocide application quantities, the present research investigated eDNA as a target for biofilm dispersal and potential enhancement of biocide function. Results indicate that mature biofilm viability can be reduced by two-fold using reduced concentrations of the biocide alone (1 mM instead of the recommended 10 mM). Importantly, through the incorporation of an eDNA degradation stage, biocide function could be enhanced by a further ~90% (one further log reduction in viability). Biofilm architecture analysis post-treatment revealed that endonuclease targeting of the matrix allowed greater biocide penetration, leading to the observed viability reduction. Biofilm matrix eDNA is a promising target for biofilm dispersal and antimicrobial enhancement in clinical and engineered systems.
Collapse
|
47
|
Hu L, Li Q, Yan J, Liu C, Zhong J. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153137. [PMID: 35041964 DOI: 10.1016/j.scitotenv.2022.153137] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 05/16/2023]
Abstract
Soil organic carbon (SOC) is an important component of soil ecosystems, and soils are a hotbed of microorganisms playing critical roles in soil functions and ecosystem services. Understanding the interaction between SOC and soil microbial community is of paramount significance in predicting the C fate in soils following vegetation restoration. In this study, high-throughput sequencing of 16S rRNA and ITS genes combined with 13C NMR spectroscopy analysis were applied to characterize SOC chemical compounds and elucidate associated soil microbial community. Our results indicated that the contents of SOC, total nitrogen, total phosphorus, microbial biomass carbon and biomass nitrogen, dissolved organic carbon, available potassium, exchangeable calcium and soil moisture increased significantly (P < 0.05) along with the vegetation restoration processes from corn land, grassland, shrub land, to secondary and primary forests. Moreover, the Alkyl C and O-alkyl C abundance increased with vegetation recovery, but no significant differences of Alkyl C were observed in different successional stages. In contrast, the relative abundance of Methoxyl C showed an opposite trend. The dominate phyla Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota and Basidiomycota were strongly related to SOC. And, SOC was found to be the determining factor shaping soil bacterial and fungal communities in vegetation restoration processes. The complexity of soil bacteria and fungi interactions along the vegetation restoration chronosequence increased. Determinism was the major assembly mechanism of bacterial community while stochasticity dominated the assembly of fungal community. Bryobacter, Haliangium, and MND1 were identified as keystone genera in co-occurrence network. Besides, the dominant functional groups across all vegetation restoration processes were mainly involved in soil C and N cycles and linked to the enhanced recalcitrant SOC storage. Our results provide invaluable reference to advance the understanding of microbe response to vegetation restoration processes and highlight the impact of microbes on recalcitrant SOC storage.
Collapse
Affiliation(s)
- Linan Hu
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China; Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| | - Qiang Li
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China.
| | - Jiahui Yan
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| | - Chun Liu
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou 510632, China; Department of Ecology, Jinan University, Guangzhou 510632, China.
| | - Juxin Zhong
- Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China; International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| |
Collapse
|
48
|
Gao Y, Zhang Z, Lun Z, Gong L, Xu A, Li X. Synergistic Effects of Fluconazole Combined with Doxycycline Against Dual-Species Cultures of Candida albicans and Staphylococcus epidermidis and the Mechanisms of Action. Microb Drug Resist 2022; 28:525-535. [PMID: 35363560 DOI: 10.1089/mdr.2021.0301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial and fungal coinfections have posed great clinical challenges in recent years, and combination therapy may be a useful way to treat these mixed infections. The objective of this study was to find an effective drug combination to treat dual-species cultures of fungi and bacteria. In this study, we focused on poorly investigated mixed cultures of Candida albicans and Staphylococcus epidermidis. In this research, we investigated the effects of fluconazole (FLC) and doxycycline (DOX) against dual-species cultures of C. albicans and S. epidermidis. Both the fractional inhibitory concentration index model and ΔE model revealed a synergistic antimicrobial effect between FLC and DOX against the four groups of dual-species cultures. Mechanistic studies revealed that the synergism of FLC and DOX against dual-species cultures may be associated with the inhibition of biofilms and calcium dysregulation. Fluconazole+doxycycline appears to be a potential drug combination for the treatment of bacterial and fungal coinfections. These findings are of great significance for overcoming clinical bacterial and fungal coinfections and might provide novel insights into drug discovery for combination therapy.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihe Zhang
- Otorhinolaryngologic Department, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Zhicai Lun
- Pharmacy Department, Juxian Hospital of Traditional Chinese Medicine, Rizhao, China
| | - Liping Gong
- Obstetrics and Gynecology Department, Yicheng Street Community Health Service Center, Linyi, China
| | - Anran Xu
- Center for Reproductive Medicine, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Xiuyun Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
49
|
Kim H, Son HM, Lee HK. Characterization of bio-adsorptive removal performance of strontium through ureolysis-mediated bio-mineralization. CHEMOSPHERE 2022; 288:132586. [PMID: 34718026 DOI: 10.1016/j.chemosphere.2021.132586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The adsorptive removal performance of strontium (Sr) through bio-mineralization metabolism under various parameters was evaluated in this study. The primary mechanism of bio-mineralization used in this study was the urea hydrolysis process through bacterial enzymatic catalysis. Bacillus sp, which was isolated from river sediment, was used as a ureolytic bacteria. Various environmental conditions were set as different initial concentrations of Sr (10, 50, 100, 200, and 500 mg/L), and various ratios of Mg/Ca (4, 2, 1, 0.5, and 0.25). The concentrations of Sr2+, Ca2+, and Mg2+ in the solution of the batch experiment were measured to identify the bio-mineralization performance and the removal rate of Sr. In addition, the main Sr removal mechanism of ureolytic bacteria was identified. As a result, for Sr removal of bacteria, the bio-mineralization mechanism was more predominant than the adsorption of Sr. The rapid growth and high nucleation site production were observed when the initial concentration of Sr2+ increased and the Mg/Ca ratio was lowered, resulting in high biomineralization performance and Sr removal rate. The main phases of carbonate minerals formed in the presence of Sr, Ca, and Mg were SrCO3 and SrCa(CO3)2. Mg2+ could retard the bacterial growth and participate in the formation of carbonate minerals, when a large amount of Mg2+ was present. Furthermore, the desorption rate of Sr2+ from bacterial pastes containing the carbonate minerals increased as the concentration of HCl increased, although the carbonate minerals were in a stable state.
Collapse
Affiliation(s)
- Hayeon Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - H M Son
- Device Solutions, Samsung Electronics, Samsungjeonja-ro 1, Hwaseong-si, Gyeonggi-do, 18448, South Korea
| | - H K Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
50
|
Inhibition of biofilm formation of Geobacillus stearothermophilus in calcium-reduced milk protein formulation is associated with calcium, sodium and bacteria growth history: A preliminary study. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|