1
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
2
|
Redfern J, Cunliffe A, Goeres D, Azevedo N, Verran J. Critical analysis of methods to determine growth, control and analysis of biofilms for potential non-submerged antibiofilm surfaces and coatings. Biofilm 2024; 7:100187. [PMID: 38481762 PMCID: PMC10933470 DOI: 10.1016/j.bioflm.2024.100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 11/02/2024] Open
Abstract
The potential uses for antibiofilm surfaces reach across different sectors with significant resultant economic, societal and health impact. For those interested in using antibiofilm surfaces in the built environment, it is important that efficacy testing methods are relevant, reproducible and standardised where possible, to ensure data outputs are applicable to end-use, and comparable across the literature. Using pre-defined keywords, a review of literature reporting on antimicrobial surfaces (78 articles), within which a potential application was described as non-submerged/non-medical surface or coating with antibiofilm action, was undertaken. The most used methods utilized the growth of biofilm in submerged and static systems. Quantification varied (from most to least commonly used) across colony forming unit counts, non-microscopy fluorescence or spectroscopy, microscopy analysis, direct agar-contact, sequencing, and ELISA. Selection of growth media, microbial species, and incubation temperature also varied. In many cases, definitions of biofilm and attempts to quantify antibiofilm activity were absent or vague. Assessing a surface after biofilm recovery or assessing potential regrowth of a biofilm after initial analysis was almost entirely absent. It is clear the field would benefit from widely agreed and adopted approaches or guidance on how to select and incorporate end-use specific conditions, alongside minimum reporting guidelines may benefit the literature.
Collapse
Affiliation(s)
- J. Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - A.J. Cunliffe
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| | - D.M. Goeres
- Center for Biofilm Engineering, Montana State University, MT, USA
| | - N.F. Azevedo
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - J. Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, UK
| |
Collapse
|
3
|
Lenka S, Dubey D, Swain SK, Rath G, Mishra A, Bishoyi AK, Purohit GK. Implementation of Silver Nanoparticles Green Synthesized with Leaf Extract of Coccinia grandis as Antimicrobial Agents Against Head and Neck Infection MDR Pathogens. Curr Pharm Biotechnol 2024; 25:2312-2325. [PMID: 38347796 DOI: 10.2174/0113892010290653240109053852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 09/26/2024]
Abstract
BACKGROUND Head and neck infections (HNI) associated with multidrug resistance (MDR) offer several health issues on a global scale due to inaccurate diagnosis. OBJECTIVES This study aimed to identify the bacteria and Candidal isolates and implement the silver nanoparticles green synthesized with leaf extract of Coccinia grandis (Cg-AgNPs) as a therapeutic approach against HNI pathogens. METHODS The Cg-AgNPs were characterized by the UV-visible spectrophotometer, FT-IR analysis, Zeta particle size, Zeta potential, and field emission scanning electron microscope (FESEM) analysis to validate the synthesis of nanoparticles. Additionally, the antimicrobial activity of Cg-AgNPs was presented by the zone of inhibition (ZOI), minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC), and antibiofilm assay. Moreover, the cell wall rupture assay was visualized on SEM for the morphological study of antimicrobial activities, and the in-vivo toxicity was performed in a swiss mice model to evaluate the impact of Cg-AgNPs on various biological parameters. RESULTS Different bacterial strains (Staphylococcus aureus, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Candida sp. (Candida albicans, Candida tropicalis, Candida orthopsilosis, and Candida glabrata) were identified. The MIC, MBC, and antibiofilm potential of Cg-AgNPs were found to be highest against A. baumannii: 1.25 μg/ml, 5 μg/ml, and 85.01±5.19% respectively. However, C. albicans and C. orthopsilosis revealed 23 mm and 21 mm of ZOI. Subsequently, the micromorphology of the cell wall rupture assay confirmed the efficacy of Cg-AgNPs, and no significant alterations were seen in biochemical and hematological parameters on the swiss mice model in both acute and subacute toxicity studies. CONCLUSION The green synthesized Cg-AgNPs have multifunctional activities like antibacterial, anticandidal, and antibiofilm activity with no toxicity and can be introduced against the HNI pathogens.
Collapse
Affiliation(s)
- Smarita Lenka
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Debasmita Dubey
- Department of Medical Research, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Santosh Kumar Swain
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Sijua, Patrapada, Bhubaneswar, 751019, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Mishra
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Clinical Hematology, IMS and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | | |
Collapse
|
4
|
Singh D, Rehman N, Pandey A. Nanotechnology: the Alternative and Efficient Solution to Biofouling in the Aquaculture Industry. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04274-z. [PMID: 36689156 DOI: 10.1007/s12010-022-04274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
Biofouling is a global issue in aquaculture industries. It adversely affects marine infrastructure (ship's hulls, mariculture cages and nets, underwater pipes and filters, building materials, probes, and sensor devices). The estimated cost of managing marine biofouling accounts for 5-10% of production cost. Non-toxic foul-release coating and biocide-based coating are the two current approaches. Recent innovation and development of a surface coating with nanoparticles such as photocatalytic zinc oxide nanocoating on fishing nets, copper oxide nanocoating on the water-cooling system, and silver nanoparticle coating to inhibit microalgal adhesion on submerged surfaces under natural light (photoperiod) could present meaningful anti-biofouling application. Nanocoating of zinc, copper, and silver oxide is an environmentally friendly surface coating strategy that avoid surface adhesion of bacteria, diatoms, algal, protozoans, and fungal species. Such nanocoating could also provide a solution to strains tolerant to Cu, Zn, and Ag. This draft of the special issue demonstrates the anti-biofouling potential of various metal and metal oxide nanoparticle coating to combat aquaculture industry biofouling problems.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nahid Rehman
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
5
|
Self-potent anti-microbial and anti-fouling action of silver nanoparticles derived from lichen-associated bacteria. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|