1
|
DI Pierro F, Guasti L, Zerbinati N, Bertuccioli A, Risso P, DE Palma AA, Calloni AG, Lukezic M, Baggi E, Colombo M. Role of S. salivarius K12 in the prevention of URTI and AGE in nursery-aged children. Minerva Med 2023; 114:878-880. [PMID: 37768683 DOI: 10.23736/s0026-4806.23.08920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Affiliation(s)
- Francesco DI Pierro
- Scientific and Research Department, Velleja Research, Milan, Italy -
- Department of Medicine and Surgery, University of Insubria, Varese, Italy -
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | - Paolo Risso
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Mohd Fuad AS, Amran NA, Nasruddin NS, Burhanudin NA, Dashper S, Arzmi MH. The Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Oral Cancer Management. Probiotics Antimicrob Proteins 2023; 15:1298-1311. [PMID: 36048406 PMCID: PMC9434094 DOI: 10.1007/s12602-022-09985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Oral carcinogenesis is preceded by oral diseases associated with inflammation such as periodontitis and oral candidiasis, which are contributed by chronic alcoholism, smoking, poor oral hygiene, and microbial infections. Dysbiosis is an imbalance of microbial composition due to oral infection, which has been reported to contribute to oral carcinogenesis. Therefore, in this review, we summarised the role of probiotics, prebiotics, synbiotics, and postbiotics in promoting a balanced oral microbiome, which may prevent oral carcinogenesis due to oral infections. Probiotics have been shown to produce biofilm, which possesses antibacterial activity against oral pathogens. Meanwhile, prebiotics can support growth and increase the benefit of probiotics. In addition, postbiotics possess antibacterial, anticariogenic, and anticancer properties that potentially aid in oral cancer prevention and treatment. The use of probiotics, prebiotics, synbiotics, and postbiotics for oral cancer management is still limited despite their vast potential, thus, discovering their prospects could herald a novel approach to disease prevention and treatment while participating in combating antimicrobial resistance.
Collapse
Affiliation(s)
- Aalina Sakiinah Mohd Fuad
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Nurul Aqilah Amran
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
- Jardin Pharma Berhad, Sunway Subang Business Park, Selangor, 40150, Shah Alam, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Diagnostic Craniofacial and Bioscience, Faculty of Dentistry, Universiti Kebangsaan Malaysia, 50300, Kuala Lumpur, Malaysia
| | - Nor Aszlitah Burhanudin
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Stuart Dashper
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, 3055, Australia
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
- Jardin Pharma Berhad, Sunway Subang Business Park, Selangor, 40150, Shah Alam, Malaysia.
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia.
| |
Collapse
|
3
|
Ramos LS, Parra-Giraldo CM, Branquinha MH, Santos ALS. Cell Aggregation Capability of Clinical Isolates from Candida auris and Candida haemulonii Species Complex. Trop Med Infect Dis 2023; 8:382. [PMID: 37624320 PMCID: PMC10460019 DOI: 10.3390/tropicalmed8080382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic fungal pathogens belonging to the Candida haemulonii complex and the phylogenetically related species Candida auris are well-known for causing infections that are difficult to treat due to their multidrug-resistance profiles. Candida auris is even more worrisome due to its ability to cause outbreaks in healthcare settings. These emerging yeasts produce a wide range of virulence factors that facilitate the development of the infectious process. In recent years, the aggregative phenotype has been receiving attention, as it is mainly associated with defects in cellular division and its possible involvement in helping the fungus to escape from the host immune responses. In the present study, we initially investigated the aggregation ability of 18 clinical isolates belonging to the C. haemulonii species complex (C. haemulonii sensu stricto, C. duobushaemulonii, and C. haemulonii var. vulnera) and C. auris. Subsequently, we evaluated the effects of physicochemical factors on fungal aggregation competence. The results demonstrated that cell-to-cell aggregation was a typically time-dependent event, in which almost all studied fungal isolates of both the C. haemulonii species complex and C. auris exhibited high aggregation after 2 h of incubation at 37 °C. Interestingly, the fungal cells forming the aggregates remained viable. The aggregation of all isolates was not impacted by pH, temperature, β-mercaptoethanol (a protein-denaturing agent), or EDTA (a chelator agent). Conversely, proteinase K, trypsin, and sodium dodecyl sulfate (SDS) significantly diminished the fungal aggregation. Collectively, our results demonstrated that the aggregation ability of these opportunistic yeast pathogens is time-dependent, and surface proteins and hydrophobic interactions seem to mediate cell aggregation since the presence of proteases and anionic detergents affected the aggregation capability. However, further studies are necessary to better elucidate the molecular aspects of this intriguing phenomenon.
Collapse
Affiliation(s)
- Lívia S. Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.S.R.); (M.H.B.)
| | - Claudia M. Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Marta H. Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.S.R.); (M.H.B.)
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (L.S.R.); (M.H.B.)
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
- Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
4
|
Li W, Liang H, Lin X, Hu T, Wu Z, He W, Wang M, Zhang J, Jie Z, Jin X, Xu X, Wang J, Yang H, Zhang W, Kristiansen K, Xiao L, Zou Y. A catalog of bacterial reference genomes from cultivated human oral bacteria. NPJ Biofilms Microbiomes 2023; 9:45. [PMID: 37400465 DOI: 10.1038/s41522-023-00414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The oral cavity harbors highly diverse communities of microorganisms. However, the number of isolated species and high-quality genomes is limited. Here we present a Cultivated Oral Bacteria Genome Reference (COGR), comprising 1089 high-quality genomes based on large-scale aerobic and anaerobic cultivation of human oral bacteria isolated from dental plaques, tongue, and saliva. COGR covers five phyla and contains 195 species-level clusters of which 95 include 315 genomes representing species with no taxonomic annotation. The oral microbiota differs markedly between individuals, with 111 clusters being person-specific. Genes encoding CAZymes are abundant in the genomes of COGR. Members of the Streptococcus genus make up the largest proportion of COGR and many of these harbor entire pathways for quorum sensing important for biofilm formation. Several clusters containing unknown bacteria are enriched in individuals with rheumatoid arthritis, emphasizing the importance of culture-based isolation for characterizing and exploiting oral bacteria.
Collapse
Affiliation(s)
- Wenxi Li
- BGI-Shenzhen, 518083, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, China
| | | | - Xiaoqian Lin
- BGI-Shenzhen, 518083, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, China
| | | | - Zhinan Wu
- BGI-Shenzhen, 518083, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenxin He
- BGI-Shenzhen, 518083, Shenzhen, China
| | | | | | - Zhuye Jie
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, 518120, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, 518083, Shenzhen, China
- James D. Watson Institute of Genome Sciences, 310058, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, 518083, Shenzhen, China
- James D. Watson Institute of Genome Sciences, 310058, Hangzhou, China
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, 266555, Qingdao, China.
- PREDICT, Center for Molecular Prediction of Inflammatory Bowel Disease, Faculty of Medicine, Aalborg University, 2450, Copenhagen, Denmark.
| | - Liang Xiao
- BGI-Shenzhen, 518083, Shenzhen, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, 266555, Qingdao, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| | - Yuanqiang Zou
- BGI-Shenzhen, 518083, Shenzhen, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, 266555, Qingdao, China.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, China.
| |
Collapse
|
5
|
Liu Y, Daniel SG, Kim HE, Koo H, Korostoff J, Teles F, Bittinger K, Hwang G. Addition of cariogenic pathogens to complex oral microflora drives significant changes in biofilm compositions and functionalities. MICROBIOME 2023; 11:123. [PMID: 37264481 DOI: 10.1186/s40168-023-01561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Dental caries is a microbe and sugar-mediated biofilm-dependent oral disease. Of particular significance, a virulent type of dental caries, known as severe early childhood caries (S-ECC), is characterized by the synergistic polymicrobial interaction between the cariogenic bacterium, Streptococcus mutans, and an opportunistic fungal pathogen, Candida albicans. Although cross-sectional studies reveal their important roles in caries development, these exhibit limitations in determining the significance of these microbial interactions in the pathogenesis of the disease. Thus, it remains unclear the mechanism(s) through which the cross-kingdom interaction modulates the composition of the plaque microbiome. Here, we employed a novel ex vivo saliva-derived microcosm biofilm model to assess how exogenous pathogens could impact the structural and functional characteristics of the indigenous native oral microbiota. RESULTS Through shotgun whole metagenome sequencing, we observed that saliva-derived biofilm has decreased richness and diversity but increased sugar-related metabolism relative to the planktonic phase. Addition of S. mutans and/or C. albicans to the native microbiome drove significant changes in its bacterial composition. In addition, the effect of the exogenous pathogens on microbiome diversity and taxonomic abundances varied depending on the sugar type. While the addition of S. mutans induced a broader effect on Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances with glucose/fructose, S. mutans-C. albicans combination under sucrose conditions triggered unique and specific changes in microbiota composition/diversity as well as specific effects on KEGG pathways. Finally, we observed the presence of human epithelial cells within the biofilms via confocal microscopy imaging. CONCLUSIONS Our data revealed that the presence of S. mutans and C. albicans, alone or in combination, as well as the addition of different sugars, induced unique alterations in both the composition and functional attributes of the biofilms. In particular, the combination of S. mutans and C. albicans seemed to drive the development (and perhaps the severity) of a dysbiotic/cariogenic oral microbiome. Our work provides a unique and pragmatic biofilm model for investigating the functional microbiome in health and disease as well as developing strategies to modulate the microbiome. Video Abstract.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Scott G Daniel
- Department of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hye-Eun Kim
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan Korostoff
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Flavia Teles
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle Bittinger
- Department of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Geelsu Hwang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Martorano-Fernandes L, Brito ACM, de Araújo ECF, de Almeida LDFD, Wei XQ, Williams DW, Cavalcanti YW. Epithelial responses and Candida albicans pathogenicity are enhanced in the presence of oral streptococci. Braz Dent J 2023; 34:73-81. [PMID: 37466528 PMCID: PMC10355268 DOI: 10.1590/0103-6440202305420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/11/2023] [Indexed: 07/20/2023] Open
Abstract
Experimental models that consider host-pathogen interactions are relevant for improving knowledge about oral candidiasis. The aim of this study was to assess the epithelial immune responses, Candida penetration of cell monolayers, and virulence during mixed species culture infections. Single species cultures of Candida albicans and mixed cultures (C. albicans, Streptococcus mutans, and Streptococcus sanguinis) were used to infect monolayers of HaCaT and FaDu ATCC HTB-43 cells for 12 h. After infection, IL-18 and IL-34 gene expression was measured to assess epithelial cell immune responses, and lactate dehydrogenase (LDH) activity was measured as an indicator of cell damage. Microscopy determined C. albicans morphology and penetration of fungal cells through the keratinocyte monolayer. Monolayers devoid of infection served as controls. Data were analyzed by an ANOVA one-way test followed by Tukey's post-hoc test (α = 0.05). The results found that IL-18 and IL-34 gene expression and LDH activity were significantly (p < 0.05) upregulated for both cell lines exposed to mixed species cultures compared with C. albicans alone. Candida albicans yeast and hyphae were evident in C. albicans only infections. In contrast, monolayers infected by C. albicans, S. mutans, and S. sanguinis exhibited higher microbial invasion with several hyphal aggregates detected. The presence of streptococci in C. albicans infection enhances the virulence and pathogenicity of the fungus with associated increased immune responses and tissue damage. Extrapolation of these findings to oral infection would indicate the added potential benefit of managing bacterial components of biofilms during treatment.
Collapse
Affiliation(s)
- Loyse Martorano-Fernandes
- Graduate Program in Dentistry. Federal University of Paraíba.
Cidade Universitária, João Pessoa, Paraiba, Brazil
| | - Arella Cristina Muniz Brito
- Graduate Program in Dentistry. Federal University of Paraíba.
Cidade Universitária, João Pessoa, Paraiba, Brazil
| | | | | | - Xiao-Qing Wei
- Oral and Biomedical Sciences, School of Dentistry, Cardiff
University, Cardiff , Wales, United Kingdom
| | - David Wynne Williams
- Graduate Program in Dentistry. Federal University of Paraíba.
Cidade Universitária, João Pessoa, Paraiba, Brazil
| | - Yuri Wanderley Cavalcanti
- Department of Clinic and Social Dentistry. Federal University of
Paraíba. Cidade Universitária, João Pessoa, Paraiba, Brazil
| |
Collapse
|
7
|
Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experience-based knowledge has shown that bacteria can communicate with each other through a cell-density-dependent mechanism called quorum sensing (QS). QS controls specific bacterial phenotypes, such as sporulation, virulence and pathogenesis, the production of degrading enzymes, bioluminescence, swarming motility, and biofilm formation. The expression of these phenotypes in food spoiling and pathogenic bacteria, which may occur in food, can have dramatic consequences on food production, the economy, and health. Due to the many reports showing that the use of conventional methods (i.e., antibiotics and sanitizers) to inhibit bacterial growth leads to the emergence of antibiotic resistance, it is necessary to research and exploit new strategies. Several studies have already demonstrated positive results in this direction by inhibiting autoinducers (low-molecular-weight signaling compounds controlling QS) and by other means, leading to QS inhibition via a mechanism called quorum quenching (QQ). Thus far, several QS inhibitors (QSIs) have been isolated from various sources, such as plants, some animals from aqueous ecosystems, fungi, and bacteria. The present study aims to discuss the involvement of QS in food spoilage and to review the potential role of probiotics as QSIs.
Collapse
|
8
|
Di Pierro F, Iqtadar S, Mumtaz SU, Bertuccioli A, Recchia M, Zerbinati N, Khan A. Clinical Effects of Streptococcus salivarius K12 in Hospitalized COVID-19 Patients: Results of a Preliminary Study. Microorganisms 2022; 10:microorganisms10101926. [PMID: 36296202 PMCID: PMC9609702 DOI: 10.3390/microorganisms10101926] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Anatomical and physiological considerations indicate that the oral cavity is a primary source of the lung microbiota community, and recent studies have shown that the microbiota in the lungs contributes to immunological homeostasis, potentially altering the organ’s susceptibility to viral infection, including SARS-CoV-2. It has been proposed that, in the case of viral infection, lung Gram-negative bacteria could promote the cytokine cascade with a better performance than a microbiota mainly constituted by Gram-positive bacteria. Recent observations also suggest that Prevotella-rich oral microbiotas would dominate the oral cavity of SARS-CoV-2-infected patients. In comparison, Streptococcus-rich microbiotas would dominate the oral cavity of healthy people. To verify if the modulation of the oral microbiota could have an impact on the current coronavirus disease, we administered for 14 days a well-recognized and oral-colonizing probiotic (S. salivarius K12) to hospitalized COVID-19 patients. The preliminary results of our randomized and controlled trial seem to prove the potential role of this oral strain in improving the course of the main markers of pathology, as well as its ability to apparently reduce the death rate from COVID-19. Although in a preliminary and only circumstantial way, our results seem to confirm the hypothesis of a direct involvement of the oral microbiota in the construction of a lung microbiota whose taxonomic structure could modulate the inflammatory processes generated at the pulmonary and systemic level by a viral infection.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, 20100 Milan, Italy
- Digestive Endoscopy, Fondazione Poliambulanza, 25133 Brescia, Italy
- Correspondence: ; Tel.: +39-0523-510848; Fax: +39-0523-511894
| | - Somia Iqtadar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Sami Ullah Mumtaz
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan
| | - Alexander Bertuccioli
- Department of Biomolecular Sciences (DISB), University of Urbino, 61029 Urbino, Italy
| | - Martino Recchia
- Medistat, Unità di Epidemiologia Clinica e Biostatistica, 20100 Milan, Italy
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Amjad Khan
- Nuffield Division of Clinical and Laboratory Sciences (NDCLS), Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
10
|
Trukhan DI, Sulimov AF, Trukhan LY. Changes in the organs and tissues of the oral cavity in the new coronavirus infection (COVID-19): A review. CONSILIUM MEDICUM 2022. [DOI: 10.26442/20751753.2022.5.201755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
SARS-CoV-2 infection can cause changes in the organs and tissues of the oral cavity, which is associated with a wide distribution of angiotensin-converting enzyme type 2 in the oral cavity, mainly epithelial cells of the oral mucosa, gums and fibroblasts of the periodontal ligament. Thus, the oral mucosa is susceptible to SARS-CoV-2 infection and may act as a gateway for the virus, as well as a reservoir for SARS-CoV-2. We searched the literature for the period from the beginning of the pandemic until May 30, 2022, devoted to the study of changes in the organs and tissues of the oral cavity with a new coronavirus infection (COVID-19) in the electronic search engines PubMed/MEDLINE and Scopus. A special place in the study of changes in the organs and tissues of the oral cavity with a new coronavirus infection (COVID-19) is occupied by periodontal pathology. A number of reviews and clinical studies conclude the importance of good oral hygiene and periodontal health as an important aspect of COVID-19 prevention and management. Oral probiotics can be considered as a promising direction for correcting changes in organs and tissues of the oral cavity in COVID-19.
Collapse
|
11
|
Rismayuddin NAR, Mohd Badri PEA, Ismail AF, Othman N, Bandara HMHN, Arzmi MH. Synbiotic Musa acuminata skin extract and Streptococcus salivarius K12 inhibit candida species biofilm formation. BIOFOULING 2022; 38:614-627. [PMID: 35899682 DOI: 10.1080/08927014.2022.2105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the effect of synbiotic Musa acuminata skin extract (MASE) and Streptococcus salivarius K12 (K12) on Candida species biofilm formation. Liquid chromatography quadrupole time-of-flight (LC-Q-TOF-MS) was conducted to characterize MASE. To determine the effect of synbiotic on Candida biofilm, 200 µL of RPMI-1640 containing Candida, K12, and MASE were pipetted into the same well and incubated at 37 °C for 72 h. A similar protocol was repeated with K12 or MASE to determine the probiotic and prebiotic effects, respectively. Dimorphism, biofilm biomass, and Candida total cell count (TCC) were determined. A total of 60 compounds were detected in MASE. C. albicans (ALT5) and Candida lusitaniae exhibited the highest reduction in biofilm biomass when co-cultured with prebiotic (77.70 ± 7.67%) and synbiotic (97.73 ± 0.28%), respectively. All Candida spp. had decreased TCC and hyphae when co-cultured with synbiotic. In conclusion, MASE and K12 inhibit Candida biofilm formation.
Collapse
Affiliation(s)
- Nurul Alia Risma Rismayuddin
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Puteri Elysa Alia Mohd Badri
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Ahmad Faisal Ismail
- Department of Paediatric Dentistry and Dental Public Health, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - H M H N Bandara
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
12
|
The Effect of Oral Probiotics (Streptococcus Salivarius k12) on the Salivary Level of Secretory Immunoglobulin A, Salivation Rate, and Oral Biofilm: A Pilot Randomized Clinical Trial. Nutrients 2022; 14:nu14051124. [PMID: 35268099 PMCID: PMC8912462 DOI: 10.3390/nu14051124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/27/2022] [Accepted: 03/05/2022] [Indexed: 12/01/2022] Open
Abstract
We aimed to assess the effect of oral probiotics containing the Streptococcus salivarius K12 strain on the salivary level of secretory immunoglobulin A, salivation rate, and oral biofilm. Thirty-one consenting patients meeting the inclusion criteria were recruited in this double-blind, placebo-controlled, two-arm, parallel-group study and randomly divided into probiotic (n = 15) and placebo (n = 16) groups. Unstimulated salivation rate, concentration of salivary secretory immunoglobulin A, Turesky index, and Papillary-Marginal-Attached index were assessed after 4 weeks of intervention and 2 weeks of washout. Thirty patients completed the entire study protocol. We found no increase in salivary secretory immunoglobulin A levels and salivary flow rates in the probiotic group compared with placebo. Baseline and outcome salivary secretory immunoglobulin A concentrations (mg/L) were 226 ± 130 and 200 ± 113 for the probiotic group and 205 ± 92 and 191 ± 97 for the placebo group, respectively. A significant decrease in plaque accumulation was observed in the probiotic group at 4 and 6 weeks. Within the limitations of the present study, it may be concluded that probiotic intake (Streptococcus salivarius K12) does not affect salivation rates and secretory immunoglobulin A salivary levels but exhibits a positive effect on plaque accumulation. Trial registration NCT05039320. Funding: none.
Collapse
|
13
|
Ganea M, Nagy C, Teodorescu AG, Lesyan M, Hanga-Farcas A, Horvath T, Miere FG. Preliminary Studies on the Formulation of Vaginal Suppositories with Liposomal Oregano Oil. PHARMACOPHORE 2022. [DOI: 10.51847/ybqmdzd3tn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Sato H, Yano A, Shimoyama Y, Sato T, Sugiyama Y, Kishi M. Associations of streptococci and fungi amounts in the oral cavity with nutritional and oral health status in institutionalized elders: a cross sectional study. BMC Oral Health 2021; 21:590. [PMID: 34798863 PMCID: PMC8603531 DOI: 10.1186/s12903-021-01926-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Disruption of the indigenous microbiota is likely related to frailty caused by undernutrition. However, the relationship between undernutrition and the oral microbiota, especially normal bacteria, is not obvious. The aim of this study was to elucidate the associations of nutritional and oral health conditions with prevalence of bacteria and fungi in the oral cavity of older individuals. METHODS Forty-one institutionalized older individuals with an average age ± standard deviation of 84.6 ± 8.3 years were enrolled as participants. Body mass index (BMI) and oral health assessment tool (OHAT) scores were used to represent nutritional and oral health status. Amounts of total bacteria, streptococci, and fungi in oral specimens collected from the tongue dorsum were determined by quantitative polymerase chain reaction (PCR) assay results. This study followed the STROBE statement for reports of observational studies. RESULTS There was a significant correlation between BMI and streptococcal amount (ρ = 0.526, p < 0.001). The undernutrition group (BMI < 20) showed a significantly lower average number of oral streptococci (p = 0.003). In logistic regression models, streptococcal amount was a significant variable accounting for "not undernutrition" [odds ratio 5.68, 95% confidential interval (CI) 1.64-19.7 (p = 0.06)]. On the other hand, participants with a poor oral health condition (OHAT ≥ 5) harbored significantly higher levels of fungi (p = 0.028). CONCLUSION Oral streptococci were found to be associated with systemic nutritional condition and oral fungi with oral health condition. Thus, in order to understand the relationship of frailty with the oral microbiota in older individuals, it is necessary to examine oral indigenous bacteria as well as etiological microorganisms.
Collapse
Affiliation(s)
- Hanako Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Akira Yano
- Iwate Biotechnology Research Center, 174-4 Narita 22 Jiwari, Kitakami, Iwate 024-0003 Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1 Idai Dori 1 chome, Yahaba, Iwate 028-3694 Japan
| | - Toshiro Sato
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Yukiko Sugiyama
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| | - Mitsuo Kishi
- Division of Preventive Dentistry, Department of Oral Medicine, Iwate Medical University School of Dentistry, 1-3-27 Chuo-dori, Morioka, Iwate 020-8505 Japan
| |
Collapse
|